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Abstract—This paper presents an exemplar-based method to provide intuitive way for users to generate 3D human body shape 

from semantic parameters. In our approach, human models and their semantic parameters are correlated as a single linear 

system of equations. When users input a new set of semantic parameters, a new 3D human body will be synthesized from the 

exemplar human bodies in the database. This approach involves simpler computation compared to non-linear methods while 

maintaining quality outputs. A semantic parametric design in interactive speed can be implemented easily. Furthermore, a new 

method is developed to quickly predict whether the parameter values is reasonable or not, with the training models in the 

human body database. The reconstructed human bodies in this way will all have the same topology (i.e., mesh connectivity), 

which facilitates the freeform design automation of human-centric products. 

Keywords— Parametric design, 3D human body, exemplar-based, statistical model, human-centric products.  
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1 INTRODUCTION

UTOMATIC generation of realistic 3D human bo-
dies is an increasingly important topic in many ap-
plications such as biometric analysis, computer 

graphics, and apparel design. Several systems have been 
proposed that attempt to create general human models 
from 3D scans. However, the expensive acquisition device 
– 3D human scanner cannot be afforted by many middle 
and small enterprises. Therefore, there is a great request 
from the market to have a parametric design tool for hu-
man bodies so that the shape of a 3D human body can be 
generated from a set of semantic input (e.g., height, chest-
girth, waist-girth, hip-girth, inseam-length, etc.).  

Past studies have analyzed the body shape coefficients 
and their variances with various methods. Blanz et al. [1] 
trained regression functions to correlate them to semanti-
cally significant values like weight, body fat content, or 
pose. Allen et al. [2] utilized parametric freeform mesh 
design to reconstruct human model from 3D scanner. The 
parameterization allows them to explore a variety of ap-
plications for human body modeling, including: morph-
ing, texture transfer, statistical analysis of shape, model 
fitting from sparse markers, feature analysis to modify 
multiple correlated parameters, and transfer of surface 
detail and animation controls from a template to fitted 
models. Seo and Magnenat-Thalmann [3] developed a 
method for generating human bodies given a number of 
high level semantic constraints and evaluate the accuracy 
of linear regression based morphing functions. Linear 
models have been employed in human-centric freeform 
product design. Scherbaum et al. [4] have concluded from 
their research concerning face morphing: although non-

linear regression functions are numerically more accurate, 
the visual difference to the linear counterpart is minimal. 
Hasler et al. [5] adopted the similar morphing technique 
as a single linear equation system in the minimum norm 
sense for human pose modeling. They relate 3D meshes 
and human body features (e.g. body fat scale, namely 
weight, body fat percentage, percentage of muscle tissue, 
water content, and bone weight, etc.) to generate the func-
tion of parametric design. Wang [6] adopted a non-linear 
optimization approach to synthesize 3D human bodies 
from exemplars while satisfying the input semantic pa-
rameters – the computation is very time-consuming. 

The above literature review indicates that most past 
studies concerning human body modeling were focused 
on animation or human pose generation like [5] and [7]. 
Little work has addressed the feasibility of this approach 
on human body modeling for design and manufacturing 
aspects. The semantic features definition and constraints 
of 3D human models in design and manufacturing of 
human-centric products are quite different from those of 
computer animation. Here, we employ the feature defini-
tion given in [6] on the parameterized human bodies, 
where the semantic features include vertices, curves and 
patches. Figure 1 gives an example. Moreover, the exist-
ing approaches did not offer a mechanism to check the 
feasibility of input semantic parameters.  

In this paper, we provide an intuitive way for the user 
to generate body shape by appointing a set of semantic 
values. Human models and the semantic parameters are 
correlated as a single linear system of equations. This ap-
proach involves simpler computation compared to non-
linear methods while maintaining quality outputs. By 
this, a semantic parametric design in interactive speed 
can be implemented easily. A new method is developed 
to quickly predict whether the parameter values is rea-
sonable or not, with a set of training models as given in 
the human model database with 77 female and 83 male 
subjects. 
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2 METHODOLOGY 

This paper aims to develop a semantic parametric design 
algorithm which constructs a human model conformed to 
a set of semantic parameters. Figure 2 shows the over-
view of proposed method. It mainly consists of four parts. 
First, a feature model is constructed on each subject from 
the 3D point cloud by the method in [6]. We then con-
struct a human body database containing training data 
from the scanned subjects. The next step is to reduce the 
dimensions in the correlation between body and the pa-
rameters by applying Principal Component Analysis 
(PCA). After the dimensionality reduction, the correla-
tions between scanned models and the semantic parame-
ters can be computed as a simple linear system. A proce-
dure of feasibility check is applied to determine if the pa-
rameter values input by the user is reasonable. Finally, 
new model is constructed in two different ways. The user 
can specify a model for modification, or we search for the 
most similar one existing in the training data to work on. 
Each part of the approach will be explained in detail be-
low. 

2.1  Feature Model of Human Body 

The parametric design method relies on training models 
to capture 3D body shape with semantic parameters. The 
training data of this approach is obtained from full body 
3D scanning. We employ the feature-based human body 
parameterization technique developed in the previous 
work [6] to construct the feature-based human model as 
well as the semantic parameters for all the 160 subjects. 
The feature model construction of human body consists 
of two phases. 

 Feature wireframe construction: In this step, the 
key feature points are firstly extracted at underarm, 
crotch, belly-button, front-neck, back-neck, and 
bust of a human body. Then, the location of the 
semantic feature points on the surface of a scanned 
human body can be determined according to the 
anthropometrical rules and feature extraction algo-
rithm with fuzzy logic concept [8]. Lastly, the fea-
ture points are linked by parametric curves approx-

imating the underline 3D point cloud which indi-
cates the surface of scanned human body. 

 Feature patches generation: First, Gregory patches 
are generated to interpolate the feature curves and 
the cross-tangents defined on them. After that, the 
surface patches are refined to better capture the 
geometric details of human bodies. Lastly, a sym-
metric body can be generated by average the fea-
ture model and the mirrored model of itself – this is 
an optional step only applies to significant asym-
metric human bodies.  

The resultant feature models are with the consistent mesh 
connectivity and feature points, curves and patches. Thus, 
the bijective mapping of points between two human bo-
dies is easily obtained. The synthesis of a new human 
body can be completed by generating a new mesh with 
the same connectivity and only positioning the vertices to 
new locations. The semantic parameters of each training 
human body can be obtained from the feature points and 
curves. 

2.2  Principle Component Analysis 

Principal component analysis (PCA) has been used to 
analyze facial features [2][5]. The main advantage is its 
lower computational complexity by discarding relation-
ships of low variance. The full dataset does not need to be 
retained to approximate the original examples.  

Assume there are m scanned models serves as exem-
plars, we list them in a matrix 

 
mnmaaaA




321   

with ai being a 13 n  vector with n vertices from the mesh 

 

Fig.2. Overview of the proposed approach. 

 

Fig.1. Parameterization of feature-based human body [6]: (left) point 
cloud from 3D scan, (middle-left) parameterized human body, (mid-
dle-right) feature curves and vertices, and (right) checkerboard to 
verity feature patches.  
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The covariance of A  is TAAC )( , whose dimension is 
nn 33  . As mn 3 , we instead compute the transpose 

of its covariance, AAD T)(  (ref. [9]). Apply Eigenvalue 
decomposition on it as 

xDx  , 

we can obtain m eigenvectors, xj, which is 1m . By xj, we 
can determine the jth eigenvector of C as 

jj xAy  , 

where yj is a 13 n  vector.The normalized eigenvectors 

jjj yyy ˆ  (j=1,…,m) are the principal vectors of A , 
where each is associated with a variance  j . The vectors 
are sorted so that  
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We keep the first k principal components according to the 
percentage of the total variance explained r by each prin-
cipal component. 
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Thus, we map mnA 3  into a reduced matrix ][ imk bB   
(k<<3n) spanning the linear space of exemplar human 
bodies, named as the reduced exemplar matrix. 

Although the value of k can be chosen by experiences, 
e.g., let k=0.95, we can also determine it in a better con-
trolled way according to a user given geometric error to-
lerance, . After mapping a scanned model ai into a k-
dimensional point bi, an approximated human model ia~  
can be synthesized from the k scalars in bi by 

  abyyya iki  ˆˆˆ~
21  . 

In principle, choosing greater value for k will make the L2 
norm, 

22 ~)( iij aabL  ,  

between ia~  and ai smaller. Figure 3 shows the recon-
structed models from 7, 15, 30 and 77 coefficients respec-
tively and the geometric error between them and the orig-
inal models. We can start from an initial guess k to see if 
the L

2 norms on all ia~ s are smaller than . If not, we will 
increase k by one and check again. Repeating this step, a 
minimal value of k satisfying the given geometric error 
tolerance can be determined. 

 

Fig.3. The reconstructed human bodies using different number of PC coefficients (i.e., different k) – using more coefficients can get better 
results. The color map is generated by the publicly available PolyMeCo [11] to visualize the geometric error between the reconstructed human 
model and the original model. As there are 83 male subjects, when k=77, the reconstructed male body is still an approximation.  
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2.3  Correlation with Semantic Parameters 

The PCA method helps characterize the space of human 
body variation, but it does not provide the correlation 
between the body shape and the semantic features. Here 
we show how to relate several variables simultaneously 
by learning the relationships between the body parame-
ters and the PCA weights. Such relationships serve as the 
key for synthesizing a desired model from a set of input 
semantic parameters. 

Suppose we have p semantic parameters of each 
scanned model, listing the parameters for all m examples 
forms a semantic parameter matrix 

 
mpmlllL


 21  

with li a 1p  vector. The correlation between L and the 
reduced exemplar matrix B can be represented by a sys-
tem of linear equations. More specifically, we assume 

),,1( milRb ii    

where kpR   is the relation matrix and the vector 1p  is 
a corresponding residual. If m>k+1, the value of  R  and 
  can be determined through a least-square solution. 

Given a new set of semantic parameters, newl , the cor-
responding coefficient in the reduced linear space B can 
be computed by 

T
newnew Rlb )(  . 

Then,  

  abyyya newknew  ˆˆˆ
21  . 

Note that, if the value of p is not changed, we can pre-
compute R  and  , and the computations in the whole 
regression and reconstruction procedure is just linear 
substitution which can be completed in an interactive 
speed. 

Figure 4 shows an example with the model’s bust size 
increased from 91cm to 99cm. However, the generaliza-
tion derived from the linear system is constrained by the 
exemplars used. Given that most of the scanned models 
are of normal parameter ranges, the new model con-
structed with parameter vales out of the ranges can be 
problematic. For example (see Fig. 5), it is not adequate to 
modify the waist size from 80cm to 30cm. Unreasonable 
meshes apparently occur in the output model (Fig. 5). The 
values out of modifiable ranges may easily cause twist in 
the output model. Certainly better generalization perfor-
mance can be achieved by adding more extreme exem-
plars. 

2.4  Feasibility Check 

To overcome the above problem, we propose a method to 
estimate the quality of the new model produced by a set 
of parameter values input by the user. It determines 
whether the resultant model is of a good quality by con-
sidering the parameter ranges in the training data. The 
method first computes the convex hull corresponding to 
the linear system in the parameter space. If the new fea-
ture vector is in the convex hull, the outcome should be 
reasonable. On the contrary, the new model is likely to 
become problematic when the vector is far from the con-
vex hull region. The convex hull of a set of points is the 
smallest convex polyhedron that contains the points. The 
convex hull is a fundamental construction for mathemat-
ics and computational geometry. The feasibility check 
with the convex hull approach is described as follows. 

We regard the semantic parameter matrix is as a set of 
m points in a p-dimensional coordinate system. To com-
pute the convex-hull, the coordinates of a point must in-
dependent to each other. However, this is not the case. 
Usually, the semantic parameters of human bodies are 
not independent, e.g., a taller model often has a longer 
inseam. Therefore, a normalization process is needed to 
establish the orthonormal basis. Gram-Schmidt algorithm 
[12] is a common method to construct an orthogonal basis 
for an arbitrary dimensional space. Given a set of bases 
 nuuu ,,, 21   spanning an n-dimensional inner product 
space U . The Gram-Schmidt algorithm constructs a new 
set of orthogonal bases  nvvvV ,,, 21  , which spans the 
same n-dimensional space as U . By defining the projec-
tion operator, that projects the vector v orthogonally onto 
the vector u, as 

v
vv

uv
uprojv

,

,
 , 

where uv,  denotes the inner product of v and u. The 
Gram-Schmidt process then works as follows: 

11 uv  , 

12

1

21
2222

,

1
v

v

uv
uuprojuv v  , 

 

Fig.4. On increasing the bust-girth of a model from 91cm (left) to 
99cm (right) – feasible human body can be reconstructed. The 
computation employs 15 PC coefficients. 

 

Fig.5. On decreasing the waist-girth of the model from 80cm (left) to 
30cm (right) – infeasible models are generated. The computation 
employs 15 PC coefficients as well. 
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The sequence nvvv ,,, 21   is the required system of ortho-
gonal vectors and the normalized vectors neee ,,, 21   
form an orthonormal set by iii vve  . 

In our case, after calculating the orthonormal bases 
 peee ,,, 21   from L, the parameters li of each subject i 
are are projected onto the new bases to become e

il . Then, 
the convex hull of m points: e

il (i=1,…,m) is constructed by 
the Quick-Hull algorithm (ref. [13]). The convex hull con-
structed with the projected semantic parameters, e

il , de-
fines the feasible area of the linear system. If a new vector 
is outside and far from the convex hull, the resultant 
model is likely to be invalid. Fig. 6 shows an example for 
a gradual change of parameter values in a 3-dimensional 
space and comparing with the convex hull. The star point 
indicates the new parameter. For explanation simplifica-
tion, we only select 3 semantic parameters: height, bust-
girth, and waist-girth. In this case we are going to modify 

the height of a female model from the original height 
168cm to different heights. From Fig.7, it is easy to find 
that only the models with height 155cm, 165cm and 
175cm are reasonable. For the corresponding points in the 
projected parameter space (see Fig. 6), the positions with 
respect to 155cm and 175cm are on the boundary of con-
vex hull, and the position with respect to 165cm is inside.  

Generally, we can use the convex hull E of the pro-
jected m points: e

il (i=1,…,m), to check the feasibility of 
input parameters. For a given newl , it is firstly projected to 
become e

newl . If e
newl  is inside the convex hull E, the given 

parameters in newl  are feasible. Otherwise, we either re-
ject the input, or project e

newl  onto the closest point on the 
surface of the convex-hull E to compute the reconstructed 
model. 

3 EXPERIMENTAL RESULTS 

This section discusses the experimental results under dif-
ferent test conditions. The results demonstrate the effica-
cy of the proposed method. In section 3.1, we discuss the 
effect of selecting different principle components on the 
reconstructed human models. Section 3.2 shows the test 
results when the size of training data is small. The pur-
pose is to show the stability of the proposed linear model. 
Finally, we intentionally add a noise model to the training 
data. The robustness of our method is thus validated. 

3.1  Selection of Principal Components 

Figure 8 and 9 list the shape variation on first seven prin-
cipal components from our training data set. It is impor-
tant to choose a proper threshold in the PCA step that 
balances between the degree of data variance it produces 
and the system complexity. We have to keep enough 
principal components to capture the variance in the train-
ing data. Insufficient principal components may result in 
inaccurate reconstructed models as already been analyzed 
in previous section. However, retaining more principal 
components is not always advantageous. The solution 
process may require excessive computational load im-
posed by higher system complexity. Furthermore, too 
many components may capture unnecessary details that 
contain noise and thus weaken the effectiveness of the 
linear regression model. 

We select 76 female models as the training data in this 
example. Suppose we are going to apply the parametric 
design on a human model, which has been shown in Fig.5 
previously. Four semantic parameters (Height, Bust, 
Waist, and Inseam) are of our concern in this case. We 
intend to change the bust size of the model from 
91.1831cm to 100cm while keeping the other parameters 
fixed. Figure 10 shows the cumulative percentage versus 
the number of the principal components retained. As 
shown in Fig. 10, we first take seven principal compo-
nents according to the general standard 80% [9] to gener-
ate a synthesized female model from the exemplars. The 
resultant model looks good (see Fig. 11), but detailed in-
vestigation shows one problem. Although the bust size of 
the result – 99.81cm is satisfactory, the waist size is not 
properly maintained, i.e. 85.69cm vs. 80.4519cm of the 

 

Fig.6. Parameterization of feature-based human body [6]: (left) point 
cloud from 3D scan, (middle-left) parameterized human body, (mid-
dle-right) feature curves and vertices, and (right) checkerboard to 
verity feature patches.  

 

Fig.7. Parameterization of feature-based human body [6]: (left) point 
cloud from 3D scan, (middle-left) parameterized human body, (mid-
dle-right) feature curves and vertices, and (right) checkerboard to 
verity feature patches.  
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original. We thus test out different numbers of principal 
components to find an optimal threshold. Figure 11 
shows the corresponding results. The height in the model 
produced by 50% variance (with only three principal 
components) is not maintained (164.23 cm vs. 168.397 
cm). For the high variance percentages 95% and 99%, all 
the parameters of the new models are acceptable. The 
component numbers are 16 and 30, respectively. Howev-
er, when increasing from 95% to 99%, only ~5%, the 
memory and computation cost has been almost doubled. 
Therefore, we usually choose 95% as a trade-off between 
the accuracy and the efficiency. 

With an optimal selection of principal components, we 
are now able to use the relation T

newnew Rlb )(   to do 
parametric design of 3D human body. For example, the 
user specifies the semantic parameters: Height = 174cm, 
Bust = 93cm, and Waist = 80cm. A new feature vector lnew 
is constructed based on the input. Next, a model (shown 
in Fig.12) with a similar parameters (Height = 175.343cm, 
Bust = 95.788cm, Waist = 78.9447cm, and Inseam = 
79.1214cm) is selected. Before applying the relation to 
obtain bnew, we determine if the new parameters are rea-
sonable by the proposed Convex Hull method. The pro-
jected point e

newl  is located in the convex hull, so we ex-
pect the customized model is of a good quality. We then 
apply the linear model to generate a new model (see Fig. 
12). The parameters of the resultant model are Height = 
173.01cm, Bust = 90.68cm, Waist = 79.02cm, and Inseam = 
80.22cm. The reconstructed human body is satisfactory 

both visually and parametrically. 

3.2  Stability Test 

This example is conducted to show the stability of our 
method with a small set of exemplars. Only 5 male mod-
els are selected from the database. For preserving data 
variation, these models contain the extremes of four pa-
rameters: Height, Chest, Waist, and Inseam (see Table 1). 
Model 1 is the tallest and has the longest inseam; Model 2 
is the shortest and has the shortest inseam; Model 3 has 
the smallest waist size; Model 4 has the largest chest and 
waist; Model 5 has the smallest chest. 

Seven principal components are remained (i.e., >95% 
total variance is kept). Here, we only all. We only allow 
one single parameter to vary due to a low number of 
training models. Figure 13 shows the tests. First, we try to 
enlarge the height of Model 2 from 159.32cm to 170cm. 
The height of the reconstructed model (see the middle of 
Fig.13) is 169.98cm – very close to the target. The other 
parameters change in proportion to the height in this 
case, especially Inseam. Secondly, we change to another 
parameter – waist to conduct the parametric design. The 
waist girth is expected to be reduced from 77.82cm to 
68cm. The resultant model (shown in the right of Fig.13) 
has the waist-girth 66.3cm. These two tests demonstrate a 
high stability of our algorithm under the condition of 
fewer training data. The linear regression method works 
quite stably under such circumstance. This property is 
highly advantageous when with data shortage. Certainly 
more training models improve the quality and accuracy 
in our method. 

3.3  Robustness Test 

Robustness is another desired property in parametric de-
sign of human models. A robustness test is thus con-

 

Fig.10. Cumulative percentage of variance vs. the number of prin-
cipal components. 

 

Fig.12. An example of parametric design of human body: to build a 
model with Height = 174cm, Bust = 93cm, and Waist = 80cm. 

TABLE 1 
FIVE MODELS WITH EXTEME VALUES IN FOUR PARAMETERS 

 Model 1 Model 2 Model 3 Model 4 Model 5 

Height 200.58 159.32 177.86 187.53 178.43 
Chest 99.34 90.29 91.43 112.53 80.65 

Waist 81.38 77.82 68.37 112.40 75.98 
Inseam 94.86 65.91 82.99 87.77 81.19 

 

 

Fig.13. The example of parametric design when with only five exem-
plars: (a) the original model, (b) by heightening from 159.32cm to 
170cm, and (c) by thinning the  waist from 77.82cm to 68cm. 
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ducted to verify that on our method. We intentionally 
add an invalid model as a noise into the five training 
models in the previous section. The noise model (see Fig. 
14(a)) has an abnormal ratio of inseam to the sleeve 
length. A design method of high robustness is expected to 
tolerate the noise. 

Now there are six models in the test with Inseam as the 
only parameter to vary. We change the inseam of Model 2 
(shown in Fig.13(a)) from 65.911cm to 80cm. The result 
(Fig. 14(b)) looks very similar to the model produced 
without noise in the training data (Fig. 14(c)). Therefore, it 
is easy to find that the linear regression model tends to 
average out the noise. 

4 CONCLUSION AND DISCUSSION 

Modeling of realistic 3D human bodies plays an essential 

role in many applications like computer animation, bio-

medical analysis, human-centric product development, 

and fashion design. The functional requirements and con-

straints of human body modeling vary across different 

applications. Most past studies were focused on the mod-

el construction for computer animation or human pose 

generation. Less work concerned parametric design of 

human body for the design and manufacturing of human-

centric products. In this paper, we developed a novel me-

thod for parametric design of human models from seman-

tic input. The design mechanism was driven by a statis-

tical model constructed from a set of body shape exem-

plars. Feature-based human models were used to explicit-

ly define the control parameters and assure the unity of 

topology of each model. The correlations between the 

semantic parameters and 3D meshes of a human model 

were characterized as a statistical linear system. Such a 

linear approach requires simpler computation compared 

to nonlinear methods. Our method conducted Principal 

Component Analysis (PCA) for reducing the complexity 

of the linear system while maintaining a good capability 

of shape preserving. We also developed a technique 

based on convex hull calculation to predict whether the 

parameter values given by the user produce a satisfactory 

model. The test results in different conditions demon-

strate the practicality of this work. The proposed method 

worked well with few training data. It could also tolerate 

noisy data, showing a high robustness. We expect that the 

parametric design method of human models greatly im-

proves design automation of human-centric products as 

 

Fig.11. The results of retaining different number of principal components according to the percentage of total variance when modifying the 
bust size of original model from 91.18cm to 100cm – the other three dimensions are expected to not change.  

 

Fig.14. Robustness test: (a) the noisy model with an abnormal ration 
of inseam to the sleeve length, (b) the reconstructed model with the 
noisy training data – target inseam at 80cm, and (c) the reconstruc-
tion without noise.  
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illustrated in [14], [15] and [16]. 

Several topics are worth of pursuing based on this 
work. First, the feasibility check provides an approximate 
evaluation for the new parameter values input by the us-
er. Probability (e.g. Bayesian approaches) should be in-
corporated into the check to enhance its application val-
ues. Besides, it is highly advantageous to accelerate gen-
eration of the training data. A good method is to integrate 
image processing techniques with 3D body scanning. The 

feature geometry can be automatically extracted from 2D 
images of a human. Such automatic feature extraction 
should extend the practicality of semantic parametric de-
sign of human body model to a larger extent. 
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Fig.8. The models spanning the first seven principal components of the female exemplars and their corresponding variances.  
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