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Abstract

Ray representation (Ray-rep) of a solid has been stud-
ied and used in the solid modeling community for many
years because of its compactness and simplicity. This
paper presents a parallel approach for mesh surface
modeling from multi-material volume data using an ex-
tended Ray-rep as an intermediate, where every homo-
geneous region is enclosed by a set of two-manifold sur-
face meshes on the resultant model. The approach con-
sists of three major algorithms: firstly, an algorithm is
developed to convert the given multi-material volumet-
ric data into a Ray-rep for heterogeneous solid; secondly,
filtering algorithm is exploited to process the rays of
heterogeneous solid in parallel; and lastly, the adaptive
mesh surfaces are generated from the ray-rep through a
dual-contouring like algorithm. Here the intermediate
surfaces between two constituent materials can be di-
rectly extracted without building the volumetric mesh,
and the manifold topology is preserved on each surface
patch. Furthermore, general offset surface can be eas-
ily computed in this paradigm by designing a special
parallel operator for the rays.

Keywords: Surface mesh, implicit representation, het-
erogeneous models, parallel algorithm.

1 Introduction

The methods for computing the interface (in the repre-
sentation mesh surface) between the homogeneous ma-
terial regions from a multi-material volume data, which
is obtained by CT [1, 2] or MRI [3], have been studied
for many years. The main purpose for computing these
mesh surfaces bounding homogeneous material regions
is to ease the downstream applications of simulation us-
ing finite element method (FEM) or boundary element

method (BEM). Although the meshfree analysis and
simulation methods [4, 5, 6] can be employed, it is still
important to have the surface representation in many
computational engineering applications. After getting
well-defined surface meshes bounding homogenous re-
gions, the procedure to generate volumetric meshes for
each region is standard (see [7, 8] and the references
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therein). The generated mesh surfaces bounding ho-
mogeneous material regions have many applications in
both the mechanical engineering and the biomedical en-
gineering.

Problem Statement: Suppose a heterogeneous object
H in ℜ3 is defined by a function F (p) with p ∈ Ψ ⊂ ℜ3

(the domain Ψ is given by an input multi-material vol-
umetric data), where the value of F (p) is an integral
index of material class between 0 and n – the total num-
ber of material types in H. F (p) = 0 means H does not
occupy p (i.e., no material). If a region filled with the
i-th type of material is denoted by Ωi, we then have
H = ∪n

i=0Ωi, Ωi ∩ Ωj = Γij (i 6= j) and Γi = ∂Ωi ∩ H
where each homogeneous material region has a mean-
ingful boundary surface Γi and the interface between Ωi

and Ωj is denoted by Γi,j = Γj,i = Γi ∩ Γj (∀i 6= j).
Therefore, all the intermediate surface in H can be de-
fined as

Γ(H) = ∪n
i,j=0(1 − δi,j)Γi,j (1)

with δi,j being the Kronecker delta defined to be one for
i = j and zero otherwise. To ease downstream applica-
tions like BEM (or FEM), we need to construct adaptive
and quality mesh approximation of Γ(H), where each in-
termediate surface Γi,j is represented by a two-manifold
mesh patch and the two linked patches should have con-
sistent boundaries (i.e., their corresponding nodes are
coincident).

The problem to be solved here is more or less simi-
lar to our previous work in [9]; however, we develop a
parallel modeling approach here which can generate the
results much faster – the computation time is reduced
from tens of minutes to several seconds. Moreover, un-
like [9] that stored the volumetric distance-field to each
homogeneous region, we employ a set of Ray-reps to
encode the information for all material regions where
the memory requested by Ray-rep models is in the or-
der of surface area but not the volume – it consumes less
memory. Therefore, data sets with higher resolution can
be processed. Figure 1 gives an illustration of our ap-
proach. A multi-material volumetric data is originally
given in Fig.1(a) with different colors representing differ-
ent materials, and the generated Ray-rep is visualized by
surfels at the endpoints of rays in Fig.1(b). Figure 1(c)
shows the surface meshes extracted by our approach. It
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Figure 1: The major steps of our approach: (a) the originally given multi-material volumetric data H, (b) the
generated Ray-rep of heterogeneous solid – visualized by the surfels at the samples of rays, (c) the reconstructed
Γ(H) as an assembly of two-manifold mesh surfaces, and (d) the reconstructed five homogeneous material regions
bounded by surface meshes.

is easy to find that the meshes are compatible at bound-
aries and the sharp features are well-preserved. In other
words, the nodes on the boundary of two linked patches
are coincident, and sharp edges are generated on the
result mesh surfaces (see the zoom-view of Fig.1(c)).

1.1 Related Work

The research of solid modeling for heterogeneous ob-
jects has been studied for many years and can be classi-
fied into the forward modeling strategy and the reversed
modeling strategy, where the forward modeling strat-
egy generates heterogenous objects according to simple
input of design parameters and the reversed modeling
reconstructs the heterogeneous objects from volumet-
ric data sets. Unlike our approach that constructs the
heterogeneous objects in a reversed modeling approach,
most of the existing methods consider the forward mod-
eling strategy (ref. [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]).
A detail review on the modeling of heterogeneous object
in the last decade was given in [19]. Hua et al. de-
scribed a multiresolution heterogeneous solid modeling
framework using simplex splines in [20]. Although a fit-
ting algorithm was given, it is not clear how to apply
their method to the multi-material volumetric data. Be-
sides, they did not consider the reconstruction of sharp
features either. The output model of our approach is
a multi-volume model, which is in fact the one pre-
sented in [17]. This multi-volume model can be eas-
ily supported by current commercial CAD/CAM sys-
tems if such a heterogeneous model is represented as
the assembly of several parts, where each part presents
a volume with distinct material. The difficulty is how
to construct the exactly same intermediate surfaces on
two neighboring volumes, which is going to be solved
by our research. The most recent researches that gen-
erate mesh surfaces from volumetric data are [1] and
[2], where [1] concentrates on how to precisely classify-

ing the volumetric model into component regions with
homogeneous materials and [2] describes the strategy
of modeling multi-component structure with the help of
distance fields. None of them used the power of paral-
lel computing which is nowadays available on consumer
PCs.

There are dozens of algorithms in literature trying to
generate two-manifold polygonal mesh surfaces from a
volumetrically represented solid model. The Marching
Cubes (MC) algorithm [21] is the first approach in the
literature to generate a polygonal mesh surface from an
implicit surface. As a variant of the original MC al-
gorithm, the authors of [22, 23] modified the MC al-
gorithm for single material to M3C, a multi-material
marching cubes algorithm. However, as mentioned in
[22], there are 88 (i.e., 16,777,216) possible cases when
the eight cube-vertices have eight different materials,
which makes the task of making topology correct very
tough and tedious. Compared with [22], the dual con-
touring approach conducted in [24] is simpler. Comput-
ing the dual contouring on the finest resolution of vol-
umetric data will generate too many polygons like the
M3C algorithm, thus it is impractical. Therefore, an
octree structure is needed to make the dual contouring
adaptive to the surfaces. In this paper, we will employ a
dual-contouring like method to first construct an octree
from the Ray-rep solid in parallel, and then generate
the polygon soup that will be separated into a set of
assembled two-manifold mesh surfaces finally.

The original ray representation (Ray-rep) of a solid
was presented in [25] by Ellis et al. The researches fol-
lowed include [26, 27, 28, 29]. Menon and Voelcker sam-
pled the solid models into parallel rays tagged with h-tag
(i.e., the information of half-space at the endpoints of
rays) in [27] so that the completeness of Ray-rep can be
generated. Benouamer and Michelucci employed triple
Ray-rep to sample a solid in three orthogonal direc-
tions so that the solid modeling operations can be com-
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Figure 2: Flow-chart of hRay-rep based mesh generation
algorithm.

puted more robustly. As mentioned in [29], Ray-rep can
make problem easy in the applications involving offsets,
sweeps, and Minkowski operations. Stimulated by the
work of [29], we will employ enriched triple Ray-rep as
an intermediate to generate surface meshes from multi-
material volume data. Another line of research related
to our work is the so-called Marching Intersections (MI)
approach [30, 31, 32]. However, none of the above ap-
proaches considered the modeling with multi-material
objects, and it is not easy to enable their algorithms to
take advantage of the parallel computing. To the best
of our knowledge, this is the first parallel approach to
process heterogenous solids in Ray-rep.

1.2 Main Result

Main results of the work presented in this paper include:

• A parallel approach is exploited to model mesh sur-
faces from multi-material volume data using Ray-
rep as an intermediate, where every homogeneous
region is enclosed by a set of two-manifold surface
meshes on the resultant model.

• An extended Ray-rep, the hRay-rep, for heteroge-
neous solids is presented in this paper, which can
store the volume data more compactly.

• Several parallel filters/operators are developed to
process the samples on the rays of a solid in hRay-

rep, which include not only the filters that keep the
topology of model unchanged (like the smoothing
filters) but also the operators that modify the topol-
ogy (e.g., the offsetting and even the Minkowski
sum).

The flow-chart of our mesh generation algorithm is given
in Fig.2.

The hRay-rep will be introduced in Section 2. The
parallel construction of a hRay-rep solid from multi-
material volume data will be presented in Section 3 to-
gether with the parallel smoothing filters. After briefing

Figure 3: 2D illustration of hRay-rep – the extended
Ray-rep for heterogeneous solids, where regions with dif-
ferent materials are presented in different colors. The
depth of a sample on the intermediate surface is its dis-
tance to the viewing plane. The orientation of normal
vector at the sample is specified by Definition 4.

the contouring method of a hRay-rep solid in Section 4,
the parallel algorithm to compute general offset will be
exploited in Section 5.

2 Ray-rep for Heterogeneous

Solids

In this section, we will define an extended Ray-rep,
hRay-rep, which is used to describe the heterogeneous
solids in our approach.

Definition 1 Having a heterogeneous solid H de-
fined by a function F (p) with the value of F (p) being
an integral index of material class between 0 and n,
Γ(H) defined in Eq.(1) gives the intermediate surfaces
separating the homogeneous regions in H.

Figure 3 gives a 2D illustration of a heterogeneous
solid H and the homogeneous regions are illustrated in
different colors.

Definition 2 Without loss of generality, the hRay-
rep of a heterogeneous solid H along a specified di-
rection e, denoted as R(e,H), can be considered as a
two-dimensional image with w×w rays, where each ray
passes through the center of a pixel along the viewing
direction e.

Definition 3 The samples on a ray re
i,j (i, j =

1, . . . , w) of R(e,H) are the intersections between the
ray and the intermediate surface Γ(H). The depth at-
tribute at a sample gives the depth from the intersection
to the viewing plane, and all samples on a ray are sorted
by their depths in ascending order.

Definition 4 The normal attribute is defined at each
sample to specify the normal vector of the intermediate
surface Γ(H) at the sample; to maintain a consistent ori-
entation, the normal vectors on the intermediate surface
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Γi,j always point from the region Ωi to Ωj if i > j.

Definition 5 The material identification number,
ID, is also defined at each sample on the rays of R(e,H),
where ID = i(n+1)+ j if the ray is entering the homo-
geneous material region Ωj from Ωi at this sample, and
n is the number of different materials in H.

By Definition 5, if a point pr on the ray is given, we
can easily detect which region pr belongs to by checking
the IDs of two neighboring samples on the ray. Also, if
the value of ID at a sample is given, we can easily know
that the sample is on the intermediate surface Γk,l by
k = xID/(n + 1)y and l = ID − k(n + 1).

Sampling a given model with R(e,H) along a single di-
rection e will miss the surface regions that are nearly
perpendicular to e (e.g., the bottom region of the sur-
face shown in Fig.3 will be missed by the horizontal
rays). As mentioned in [28], this miss-sampling can be
improved by conducting another sampling along the di-
rection perpendicular to e.

Definition 6 The complete hRay-rep R(H) of a het-
erogeneous solid H consists of R(x,H), R(y,H) and
R(z,H) which have the same resolution and are sam-
pled along x−, y− and z−axis respectively; the rays
are arranged so that their intersections form w ×w ×w
nodes of uniform grids.

Figure 3 gives the 2D illustration of a complete hRay-
rep. The sizes of information stored on a ray range from
O(1) to O(k) where k is the maximal number of layers
of Γ(H) on this ray. On most practical models, k is
a constant number that satisfies k ≪ w; in the worst
case, k → w on all rays, the upper bound of hRay-rep’s
memory complexity, O(w3), is reached. Therefore, we
have the following proposition.

Proposition 1 The memory complexity of hRay-rep
is O(w2) on most practical models, and with O(w3) in
the worst case.

In short, the memory cost of a hRay-rep is much less
than a voxel-based representation of multi-material vol-
ume data, which is with O(w3) memory complexity.
We will describe in the following section that the in-
formation from the multi-material volume data can be
completely retained when converting it into a complete
hRay-rep.

Definition 7 The point set S sampled from the in-
termediate surfaces Γ(H) of a heterogeneous solid H is
defined as a d-covering of H where any point p on Γ(H)
can find a point q that ‖p − q‖ ≤ d.

Proposition 2 The intermediate surfaces Γ(H) sam-
pled into a complete hRay-rep gives a d-covering of H
with d bounded by

√
3r, where r is the sampling distance

between horizontal (or vertical) rays in a R(e,H).

Proof. See Appendix.

Figure 4: Converting multi-material volume data into
a hRay-rep solid, where the boxes with different colors
represent the voxels with different materials.

3 From Multi-Material Volume

Data to Ray-rep

A multi-material volume model H in the discrete do-
main, H, is a set of integral vectors in Z3. Elements
si,j,k = (i, j, k) ∈ H ⊂ Z3 are called voxels and are
thought of as unit cubes centered at (i, j, k). As H is a
multi-material model (i.e., a heterogeneous solid), each
voxel also contains an integral number to specify its type
of material. Therefore, we use sh

i,j,k to denote a voxel
at (i, j, k) with material index h. In this section, we
will introduce a parallel algorithm to convert H into
a hRay-rey, by which the meshes approximating the in-
termediate surfaces Γ(H) can be efficiently extracted by
the method in section 4. In order to recover the shape-
edges on H which are damaged by the uniform sampling
in Z3, two bilateral smoothing filters are introduced here
as well.

3.1 Position and Normal Estimation

Without loss of generality, we can lay out a complete
hRay-rep R(H) to let its rays in all three directions pass
though and intersect at the center of voxels in H (as
shown in Fig.4), and the origin of the complete hRay-
rep R(H) (i.e., the intersection of rx

0,0, ry
0,0 and rz

0,0) is

located at (0, 0, 0) ∈ Z3. The samples on the hRay-rep
R(x,H), R(y,H) and R(z,H) can then be obtained by
the remarks below.

Remark 1 A sample is added on the ray rz
i,j if there

are two neighboring voxels: sh
i,j,k and sm

i,j,k+1 with h 6=
m; (k + 1

2 )r is assigned as the depth of sample with r
being the width of a voxel.

Note that, a voxel sh
i,j,k ∈ (Z3 \H) can be considered

as a voxel sh
i,j,k ∈ H with h = 0. Similarly, the samples

on rx
j,k can be generated by checking sh

i,j,k and sm
i+1,j,k,

and checking sh
i,j,k and sm

i,j+1,k can obtain the samples

on ry

k,i.
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Remark 2 The value of ID at a sample on the in-
termediate surface of two different material regions is
encoded by Definition 5.

Remark 3 The normal vector at a sample on the in-
termediate surface Γi,j (i<j) are computed by the Princi-

pal Component Analysis (PCA) of its neighboring sam-
ples (ref. [33]), where only the samples with the same
value of ID are considered and the orientation of nor-
mals is adjusted according to Definition 4.

Details of Parallel Implementation The opera-
tions in Remark 1 and 2 can be easily parallelized to
run in multi-threads where each thread only considers
the samples on its corresponding ray. For Remark 3, the
neighboring samples of a sample on the voxel sh

i,j,k with
distance less than r♭ (♭ ∈ Z) will be searched on check
all the possible samples among the voxels si′,j′,k′ with
i′ ∈ [−(♭+1)+ i, (♭+1)+ i], j′ ∈ [−(♭+1)+j, (♭+1)+j]
and k′ ∈ [−(♭ + 1) + k, (♭ + 1) + k]. All tests in this pa-
per choose ♭ = 3 as the search range. This neighborhood
search can also be implemented in parallel on mutex ex-
clusion threads, where concurrent writing of the same
variable by multiple threads does not happen. More-
over, if the set of volume data is very huge, it is easy to
implement the above conversion algorithm in an out-of-
core streaming mode to generate the complete hRay-rep.

3.2 Bilateral Smoothing Filters

When directly contouring the hRay-rep generated by
Remarks 1-3 to generate mesh surfaces, the staircase ar-
tifacts can be found on the resultant surfaces (see Fig.5).
To solve this problem, two feature-preserved bilateral fil-
ters similar to [34, 35, 36] are introduced to smooth the
samples on a complete hRay-rep R(H).

Normal Filter For a sample s with the surface nor-
mal vector ns and the position ps, the filtered normal
ns is computed by

ns =
1

k(s)

∑

q∈N(s)

Wc(‖ps − pq‖)Ws(I(s, q))nq (2)

where

k(s) =
∑

q∈N(s)

Wc(‖ps − pq‖)Ws(I(s, q)), (3)

and N(s) is the neighboring samples of s with the same
ID

N(s) = {q : ‖ps − pq‖ < 2σc (∀ID(s) = ID(q))}. (4)

Wc(t) = e−t2/2σ2

c (5)

is the standard Gaussian filter with parameter σc =
1.5r, and

Ws(t) = e−t2/2σ2

s (6)

is a similarity weight function for feature-preserving
with parameter σs = 0.15 that penalizes large varia-
tion in normals. I(s, q) known as an intensity function

Figure 5: Function of smoothing filters: (top row) the
staircase artifacts can be found on the slope surface gen-
erated from the samples produced by Remarks 1-3, and
(bottom row) the staircase artifacts are eliminated by
applying the normal and depth filters while the sharp
features are preserved.

defines the projection of the normal difference on the
normal ns as

I(s, q) = ns · (ns − nq). (7)

Depth Filter The bilateral filter on the depth ds

of a sample s on the ray in e direction is defined in a
similar way. The update of depth value ds at the sample
s is computed by

δds
=

1

k(s)

∑

q∈N(s)

Wc(‖ps − pq‖)Ws(I(s, q))δq (8)

where

δq = (pq − ps) · e (9)

gives the distance from s to the projection of q on the
ray e holding the sample s.

Remark 4 We let dnew
s = ds + δds

if |δds
| < r/2;

otherwise, we truncate the depth update by δds
=

1
2rδds

/|δds
|.

Proposition 3 Applying the bilateral depth filter on
the complete hRay-rep R(H) will not break the consis-
tency of inside/outside status at the intersection points
of rays by the truncation defined in Remark 4.

Proof. The position of a sample determined by Remarks
1-3 is located on the boundary between two neighbor-
ing voxels; thus, the movement defined in Remark 4 will
avoid it from moving beyond the center of the two vox-
els. As the rays of R(H) intersect at the center of voxels,
the update of depths on samples by Eq.(8) and Remark
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4 will not change the inside/outsite status at the inter-
section points of rays. Therefore, the inconsistent cases
on triple ray-reps discussed in [28] will not occur here.

⋄
In practice, we usually apply normal filter to the hRay-

rep solid R(H) first, and then followed by a run of depth
filtering and another run of normal filtering.

Details of Parallel Implementation Since both
these filters adopt the same support size N(s) defined in
Eq.(4), the computation can also be parallelized to run
in multi-threads where each thread only considers the
update of samples on one ray. For a sample s on re(i, j)
with depth value ds, the samples on the following rays
are detected to see if they are in N(s):

• re(i′, j′) with both (i′− i) and (j′−j) ∈ [−△,+△];

• re+1(j′, k′) with k = xds/ry, and both (k′ − k) and
(j′ − j) ∈ [−△,+△];

• re+2(k′, i′) with both (k′ − k) and (i′ − i) ∈
[−△,+△].

Here, the discrete support size △ = pσc/rq = 2 with
σc = 1.5r, the directions of rays are changed in cycle
from x to y, and then z. Again, the computation in
these two filters can be mutex-free if we always retain
the position before processing at each sample.

4 Contouring a Multi-Material

Ray-rep Solid

We use a dual-contouring like algorithm to generate
mesh surfaces to approximate the intermediate surfaces
Γ(H) of a heterogeneous solid H from its hRay-rep
R(H). The algorithm consists of two steps: first, an
Octree is constructed to span the space of H so that the
geometry and the topology in each leaf cell is simple;
second, the polygons are constructed on the minimal
edges to link the vertices in leaf cells.

4.1 Octree construction

By letting three edges of the root cell overlap with the
rays rx

0,0, ry
0,0 and rz

0,0 of R(H) respectively and the
width of root cell be (2m + 1)r with m = plog2 wq, the
intersected Hermite data points between the cell-edge
and the solid model H can be efficiently and easily de-
tected on the hRay-rep R(H). The material index on
the eight nodes of a cell can also be detected easily.
Starting from the root cell, the cells are recursively re-
fined into eight sub-cells based on the condition of 1) the
topology simplicity and 2) the geometry approximation
error, which have been studied in [37, 38, 39]. Here, we
extend to multi-material solids.

Definition 8 For all Hermite samples in a cell C, a
point vc, the position of which minimizes the quadratic

error function (QEF), is defined as the error-minimizing

point of the cell.

The refinement of cells is stopped based on three cri-
teria.

Resolution Criterion The width of cell C is r (i.e.,
the finest resolution of hRay-rep has arrived).

Topology Criterion The intermediate surfaces of
the heterogeneous solid H inside a cell C have a disk-like
topology.

Geometry Criterion The distance between the
error-minimizing point vc and the planes defined by all
Hermite samples in a cell C is not greater than a user
defined tolerance εg.

As discussed in [37, 39], both the face ambiguous config-
uration and the voxel ambiguous configuration will lead
to complex topology inside a cell – here, these cases hap-
pen if the face diagonal nodes (or the volume diagonal
nodes) on a cell C are with the same material index.
The multiple intersections between the ray and Γ(H)
(i.e., Hermite data) in the range of a cell edge will also
make the topology of the cell complex. Moreover, it sup-
pose to have no Hermite data in the solid (or complex)
cell, which must be checked on the cells with the same
material index on all their eight nodes. In the geometry
criterion, εg = 0.5r is used for all our tests.

4.2 Mesh Generation

The mesh generation on an octree follows the strategy
given in [24]. On the minimal edges whose two end-
points are with different material indices, the polyg-
onal faces are constructed by connecting the error-
minimizing points in the cells neighboring to the mini-
mal edges. The orientation of a face should be arranged
in a way that its normal points to the homogeneous re-
gion with a smaller material index. For each face, we
give it an ID in the same way as Definition 5. Therefore,
the polygon soup can be separated into a set of assem-
bled two-manifold mesh patches, where each patch is
formed by the polygons with the same ID. Details of
this separation can be found in [9]. Figure 6 gives an
example result of the mesh generation.

Parallel Implementation The step of octree con-
struction takes the majority of computing time, which
however can be processed in parallel easily. In our im-
plementation, the root cell is firstly refined into 64 sub-
cells in the third layer of the octree. Then, the sub-cells
are assigned to different threads to be further refined for
the octree construction. After this parallelization, the
major time in contouring a hRay-rep solid is taken by
filling the topology information of half-edge data struc-
ture instead.
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Figure 6: Example of mesh generation on hRay-rep of
a heterogeneous solid: (left) octree is constructed from
hRay-rep (only the non-solid/non-empty leaf cells are
displayed), (middle) and (right) the assembly of mesh
surface patches are generated.

5 Parallel Computing of General

Offset Surface

Designing different filters will enable our paradigm to
compute the resultant surface meshes of other solid
modeling operations. We employ the computation of
general offset surface as an example. General Offset-
ting is a very important operation in the applications of
CAD/CAM [40] and biomedical engineering [2]. Unlike
the uniform offset surface of a given model, the general
offset surface needs to offset different thickness from the
original surface. In the manufacturing applications (e.g.,
[40]), this leads to a more accurately machined part or
can speed up the machining. In the biomedical engi-
neering applications (e.g., [2]), this makes the simulation
more realistic as the offset surface is usually employed
to generate the muscle walls which in general is not uni-
form. Therefore, suppose we have a similar problem as
[2] that given a heterogeneous solid H = ∪n

i=0Ωi, the
general offset surface of a homogeneous material region
Ωk is to be computed where different offset ǫj is adopted
on different intermediate surface Γk,j (or Γj,k).

It is well known that the uniform offset surface of a
given model M with an offset ǫ can be computed by the
Minkowski sum of M with a sphere centered at origin
and with the radius ǫ. Computing accurate Minkowski
sum of a freeform model and a sphere is impractical and
unnecessary. Here, an approximation of Minkowski sum
is evaluated. For every sample s on the intermediate
surface Γk,j (or Γj,k) of the hRay-rep R(H), we place
a sphere S centered at s and with the radius |ǫj |. The
union (or subtraction if ǫj < 0) of Ωk and S is then
computed, where the Boolean operation on Ray-rep has
been well defined in [25]. Repeating the union (or sub-
traction) operations until all samples of the surface ∂Ωk

of Ωk have been processed, we obtain a new hRay-rep
solid Ωǫ

k whose surface ∂Ωǫ
k is the general offset of Ωk

and the mesh surface for which can be generated by the
method in section 4.

However, computing the general offset in this way is
very time-consuming (especially when processing mod-
els in high resolution of hRay-rep). A new algorithm
is developed here to model the hRay-rep R(Ωǫ

k) of the

Figure 7: The resultant samples for offset surface on a
ray (pointed by blue arrow) are obtained by the samples
from three different groups.

solid Ωǫ
k in parallel. We separate the computation of

R(Ωǫ
k) into the computation of samples on each ray of

R(Ωǫ
k) in multiple-threads where the thread for the ray

re
i,j(Ω

ǫ
k) will only generate samples on itself – thus it is

mutex-free.
The samples on the ray re

i,j(Ω
ǫ
k) come from three dif-

ferent ways:

• Group I: The samples of the intermediate surface
Γh,k (h6=k) on the ray re

i,j(H);

• Group II: Intersections between the ray re
i,j(H) and

the spheres centered at the samples of Γh,k (h6=k) on
the rays re(H);

• Group III: Intersections between the ray re
i,j(H)

and the spheres centered at the samples of
Γh,k (h6=k) on the rays re+1(H) and re+2(H) that
are perpendicular to re

i,j(H).

The samples from each group are actually formed into
pairs and the region between a pair of samples repre-
sents the solid on the ray re

i,j(H). Figure 7 gives an
illustration of the samples in three groups. Usually, if
ǫ 6= 0, the samples in Group I will be eliminated. How-
ever, they are important to present the interval of solid
before processing, so they are included in our compu-
tation. By computing the union (or substraction) of
these pairs of samples, we can obtain the samples on
the re

i,j(Ω
ǫ
k) for the hRay-rep R(Ωǫ

k).
For the samples of Group II and III, it is unwise to

check all re(H), re+1(H) and re+2(H) rays. If ǫmax =
max{ǫk} and ∆ǫ = pǫmax/rq, only the samples on the
rays of

re
i′,j′(H) with ((i′ − i)2 + (j′ − j)2)r2 < ǫ2max

are considered for generating Group II samples, and the
samples on the rays of

7



Figure 8: Valid regions of rays for obtaining Group II
and Group III samples.

re+1

j′∈[j−∆ǫ,j+∆ǫ],k∈[1,w](H) and re+2

k∈[1,w],i′∈[i−∆ǫ,i+∆ǫ]
(H)

are checked to generate Group III samples. Figure 8
gives an illustration of the necessary regions of rays to
be considered.

Actually, the number of rays to generate Group II
and III samples can be further reduced by excluding
some rays. The rays that intersect with re

i,j(H) will be
eliminated by the pairs of Group I samples during union
operations. For example, if there is a pair of samples
on re

i,j(H) with depth values ds and de, and the region
on ray between ds and de belongs to Ωk, the samples
generated by the rays

re+1

j′∈[j−∆ǫ,j+∆ǫ],k′
(H) and re+2

k′,i′∈[i−∆ǫ,i+∆ǫ]
(H)

are removed from Group III if k′r ∈ [ds+ǫmax, de−ǫmax].
Similarly, for inwards offsetting conducted by subtrac-
tion operations, if there is a pair of samples on re

i,j(H)
with depth value de and d′s, and the region on ray be-
tween de and d′s does not belong to Ωk, the samples on
the above rays will be neglected if k′r ∈ [de + ǫmax, d

′
s −

ǫmax] as the subtraction operations by the spheres cen-
tered at these samples will not contribute to the samples
on re

i,j(Ωk).

By the above strategy of parallelization, the general
offset surface for a homogeneous material region can be
efficiently computed on multiple threads. For the gen-
eral offset of the boundary surface of H but not a region
Ωk ⊂ H, it can be obtained by computing the inwards
offset of material region Ω0. Figure 9 gives an example
of general offset surface generated from a brain model,
and the example of general offset surface generated on
a Mechanical part is given in Fig.10.

6 Results and Discussion

We have implemented the proposed approach in C++
and tested various examples on both a consumer level
PC with Intel Core 2 Quad CPU Q6600 2.4GHz + 4GB
RAM and a workstation PC with two Intel Xeon Quad

Figure 9: Generating general offset surface on a brain
model: (a) the hRay-rep of the brain model, (b) the
hRay-rep of the general offset surface, and (c) the
meshes for the general offset surface and the brain
model.

CPU E5440 2.83GHz + 8GB RAM. The parallel algo-
rithms are implemented using OpenMP and Microsoft
Visual Studio.

Our first example is a mechanical engine model with
five different materials which has been given previously
in Fig.1. The second example is a mechanical part
with four cylinders in different materials (see Fig.6 and
Fig.10). It is not difficult to find that the sharp features
are well reconstructed on the model because of the bi-
lateral normal and depth filters. The third example is a
brain model with six different organ regions in different
material labels (see Fig.9). More examples are given in
Figs.11-14. The computational statistics are shown in
Table 1 – all examples can be computed very efficiently.
The input multi-material volumetric data of the biomed-
ical models are obtained by segmenting the CT images
using the publicly available Snap software at [41]. A
more efficient segmentation can be conducted by using
minimal-cut based segmentation methods (e.g., [1]).

Basically, the accuracy of final mesh surfaces is af-
fected by the resolution of input volumetric data sets.
As the generation of hRay-rep and the contouring for
producing mesh surfaces are controlled by the coeffi-
cients relating to the resolution of input volume, an in-
put with higher resolution results in a more accurate
result. For example, if artifacts on the intersection lines
shown in Fig.10 need to be further reduced, the best
method is to ask for an input with higher resolution
although it is difficult sometime.

The tests on parallel general offsetting also give en-
couraging results. Besides the examples given in Fig.9
and Fig.10, we have also computed the offset surface on
a lion model with complex geometry (see Fig.15) with
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Table 1: Computational Statistics

Time (sec.) on a Quad-Core CPU Time (sec.) on two Quad-Core CPUs
Model Figure Voxel Resolution hRay-rep Filtering Meshing* hRay-rep Filtering Meshing*

Construct Construct

Engine 1 256 × 256 × 110 0.597 4.61 2.31 (1.52) 0.260 1.91 2.06 (1.39)
Cylinders 5 & 10 256 × 256 × 256 0.601 3.49 0.484 (0.211) 0.345 1.46 0.365 (0.210)

Brain 9 149 × 181 × 119 0.496 4.28 3.73 (2.59) 0.200 1.90 3.21 (2.40)
Fibers 11 256 × 256 × 256 0.915 7.78 0.810 (0.446) 0.470 3.28 0.630 (0.415)
Knee 12 193 × 229 × 305 0.899 6.86 1.63 (0.982) 0.400 2.74 1.36 (0.910)
Tooth 13 512 × 512 × 360 1.39 3.32 0.795 (0.468) 1.17 1.94 0.720 (0.467)
Bone 14 350 × 350 × 600 2.02 12.8 6.31 (4.26) 1.27 5.77 2.05 (1.43)

Note that the time reported in the bracket is the time spent on the filling of topology in half-edge data-structure, the
splitting of polygons into triangles, and the memory allocation and release management.

Figure 10: Generating general offset surface on a me-
chanical part: (a) the hRay-rep of the model, (b) the
hRay-rep of the general offset surface, (c) the surfaces
generated from hRay-rep – sharp features are well pre-
served, (d) the meshes for the general offset surface and
the mechanical part, and (e) the assembly drawing of
homogeneous regions.

a large offset value – ǫ = −10r. The computing time on
offsetting is listed in Table 2.

With a simple extension, our parallel algorithm of
general offsetting can be modified to compute the
Minkowski sum of a solid in hRay-rep with another
solid in mathematical implicit representation (e.g., the
superellipsoid [42] – more details can be found in Ap-
pendix B). As the intersection segments between a ray
and a solid in mathematical implicit representation can
be analytically computed, the Minkowski sum between
a hRay-rep solid and an implicit solid can be generated
by the same strategy of our algorithm in section 5. Fig-
ure 16 shows the Minkowski sum of the lion model and
two superellipsoids, which can be efficiently computed in
14.46 and 6.93 seconds respectively. As the Minkowski
sum has many applications in solid modeling, robotics

Figure 11: Example of a Fiber model: (a) the input
volumetric data, (b) the hRay-rep of the model, (c) the
reconstructed intermediate surfaces from the hRay-rep,
and (d) the mesh surfaces.

Table 2: Computing Time on Offsetting

Model Res. Offsets Time* (sec)

Brain 149 × 181 × 119 0.25r ∼ 5r 2.55
Cylinders 256 × 256 × 256 0.25r ∼ 5r 4.33

Lion 257 × 257 × 257 −10r 6.35

*Tested on the workstation with two Quad-Core CPUs.

path planning and CAD/CAM, our approach shows a
good potential to benefit these areas.

7 Conclusions

A parallel approach is presented in this paper to com-
pute mesh surfaces from multi-material volume data us-
ing hRay-rep (an extended Ray-rep) as an intermediate.
After generating the hRay-rep of heterogeneous solid, a
set of two-manifold surface meshes can be directly con-
structed from the hRay-rep where every homogeneous
region is enclosed by an assembly of mesh patches to
approximate the intermediate surfaces of heterogeneous
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Figure 12: An example of Knee model.

Figure 13: An example of Tooth model.

solids. Several parallel filters/operators have been de-
veloped to process the samples on the rays of a solid
in hRay-rep. The experimental results show that our
parallel approach can efficiently compute the surface
meshes for various multi-material volumetric data sets.
Moreover, as all the algorithms developed in this paper
are mutex-free, it is very likely that they can be imple-
mented on a more highly parallel platform — Graphics

Processing Unit (GPU), which is considered as our work
in the near future.
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A Proof of Proposition 2

Proposition 2 The intermediate surfaces Γ(H) sampled
into a complete hRay-rep gives a d-covering of H with d

bounded by
√

3r, where r is the sampling distance between
horizontal (or vertical) rays in a R(e, H).
Proof. The rays in a complete hRay-rep actually form many
cubic cells. The samples of hRay-rep are located at the edges
of the cells. After analyzing the possible configurations of the
intermediate surfaces inside the cells, the configuration with
the longest distance from a surface point p to the samples
on hRay-rep is as shown in Fig.17. The distances from p

to the intersections on the cell edges are
√

3r. Therefore,
after sampling a given heterogeneous solid H into hRay-rep
with sampling distance r, the obtained point set S gives a
d-covering of H with d ≤

√
3r.

⋄

B Superellipsoid

The superellipsoid gives a family of shapes formed from the
spherical product of two superquadratric curves, whose im-

Figure 17: The configuration with the longest distance
from a surface point p to the samples – the yellow ones
on the edges of a cell.

Figure 18: Choosing different n1 and n2 leads to differ-
ent shapes which however are all bounded by the vol-
ume: [−rx, rx] × [−ry, ry] × [−rz, rz].

plicit representation is

(| x

rx

|
2

n2 + | y

ry

|
2

n2 )
n2

n1 + | z

rz

|
2

n1 = 1. (10)

Figure 18 gives examples of superellipsoid with different pa-
rameters in n1 and n2.
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