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Abstract 
 

This paper presents a novel technique for modeling a 3D non-manifold freeform model around a 3D reference 

model. In order to represent both the design abstractions and the incomplete topological information, first of all, 

a new non-manifold data structure is defined. Our data structure embodies the functional vitalities of both the 

boundary representation data structure and the complex-based data structure. Along with our data structure, a set 

of topological operators is defined to manipulate the entities in the data structure. Based on the non-manifold 

data structure and the topological operators, we developed a technique to construct 3D freeform objects around a 

reference model. Intuitive 2D sketches are adopted to specify the detail profile of the constructed object. The 

construction method is feature based – every reference model has pre-defined features, and the feature template 

of the constructed object is related to the features of the reference model by feature node encoding. Therefore, 

the surfaces derived from one reference model can be regenerated automatically on another reference model 

with the same features. The geometry coverage of our geometric modeling approach includes both manifold and 

non-manifold 3D freeform objects. 

Keywords: non-manifold model, feature template, reference model, 2D sketches, geometric modeling. 

 

 

1. Introduction 
 

In design processes and engineering analyses, design abstractions expressed as lines or surfaces are integral 

parts of the conceptual model for a physical object. This conceptual modeling approach can be equally applied 

to non-physical objects. In geometric modeling, such an approach is commonly referred to as non-manifold 

geometric modeling or non-homogeneous geometric modeling in view of the nature of the modeling domain. 
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This paper is going to develop a new approach for modeling 3D non-manifold freeform objects. The modeling 

method is feature-based – the constructed object is around a 3D reference model by a feature template; every 

reference model has pre-defined features; and the feature template of a constructed object is related to the 

features on the reference model. Therefore, the surfaces derived from one reference model can be regenerated 

automatically on another reference model with the same features, which greatly improves the efficiency of 3D 

object modeling. The geometry coverage of the modeling method presented in this paper includes closed 

surfaces (e.g., Fig. 1a), open surfaces (e.g., Fig. 1b), and more complex non-manifold surfaces (e.g., Fig. 1c). 

   

   
(a) (b) (c) 

Fig. 1    Closed surface, open surface, and more complex non-manifold surface 

Abstractions are frequently used along with the models for physical objects, which leads to the non-

manifold geometric modeling. With the exception of this, a non-manifold data structure is also used to store the 

incomplete topological information generated in the topology designing process of a product. Thus, first of all, a 

non-manifold data structure is defined in section 3. Our data structure embodies the functional vitalities of both 

the boundary representation data structure and the complex-based data structure, so the design abstractions and 

the incomplete topological information can be stored. Consideration has also been made to design a set of 

topological operators to relieve the geometric modeling system from specific and complex manipulation on the 

underlying data structure. Based on the non-manifold data structure and the topological operators, section 4 

introduces a method to construct 3D freeform objects around a reference model. The feature template for a 3D 

freeform object is designed according to the features on a reference model by feature node encoding and 

topological graph construction. 2D sketches are conducted to specify the 3D profiles of the final object on the 

feature template. After that, the smooth mesh surfaces interpolating the feature nodes and profiles in a feature 

template are computed. Both manifold and non-manifold surfaces can be constructed. At the end of the paper, in 

order to demonstrate the functionality of our approach, an application in the apparel industry is given. 
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2. Related Work 
 

Modeling of non-manifold object     

Weiler (1986) [1] presented the first significant work on the non-manifold model. An edge-based data structure 

called the Radial Edge Structure (RES) was proposed. In order to represent the non-manifold adjacency 

relationships at vertices, edges, and faces, he introduced the face-use, loop-use, edge-use, and vertex-use 

topological entities in association with the face, loop, edge, and vertex entities, respectively. However, in the 

RES, it is impossible to form a correct shell using only topological data when a non-manifold vertex has to be 

traversed. To overcome this drawback of the RES, Choi (1989) [2, 3] proposed the Vertex-based Boundary 

Representation (VBR), in which the zone and disk topological entities are introduced to represent the inclusive 

relationships between the local regions at a vertex. Some other approaches are complex-based representation [4-

6]. Since the complex-based data structure, unlike the afore-mentioned data structure, is based on a simple 

incidence graph that has no ordering information, it does not enable easy computation of certain important 

properties (orientability, for instance). A more recent research on the representation of non-manifold models is 

the Partial Entity Structure (PES) [7], which is a compact non-manifold boundary representation. The storage 

size of the PES is reduced to half of the radial edge structure (RES). However, incomplete boundaries cannot be 

represented in this data structure, which is vital to maintain in a conceptual design. Our data structure is a 

combination of the boundary representation and the complex-based representation, which can overcome the 

above inadequacies.  

In topological modeling, a set of basic topological operators is utilized to manipulate the entities. The 

topological operators for non-manifold modeling are based on the non-manifold Euler-Poincarè formula [8-11]. 

Not only is a minimal set of the Euler operators required but also a practically sufficient set of the operators is 

needed to enable efficient implementation of high-level modeling capabilities. Masuda (1993) [10] defines 

operators for his complex-based data structure; and Lee (2001) [7] also presented a set of operators related to the 

PES. In this paper, the topological operators catering for the new non-manifold data structure are also included. 

Feature based freeform mesh object modeling     

In the past, many freeform modeling approaches have been developed. Some of them are related to surface 

construction [12-14]; some are interactive modification methods [15-17]; and others are deformation techniques 

[18-24]. The freeform object construction method presented in this paper is feature-based. It relates directly to 

the feature-based freeform object modeling and the mesh fitting techniques.  
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Feature-based object modeling has been studied for a long time [25-34]. In feature-based modeling, object 

semantics are systematically represented for a specific application domain; in other words, a semantic feature is 

an application-oriented feature defined on geometric elements. There are two approaches for building a feature 

model [32]: 1) The design by feature approach that creates the feature model of an object by composing the 

available features in a feature library; 2) The feature recognition approach that recognizes various features from 

a geometric model of an object according to the features defined in a feature library. In our feature-based object 

construction approach, a feature template related to a reference model is built and profiles of the feature 

template are specified using 2D sketches. After the profiles of a feature template are defined, a mesh surface 

fitting the profiles is constructed. This is a new approach as the technique involves no feature recognition and 

uses a feature template library rather than a feature library. It allows more flexibility in the design environment. 

In our 3D object construction algorithm, we build the 3D mesh surface from the 3D profile curves, which is 

converted from 2D sketches input and with an arbitrary topology. The constructed surface interpolating the 

given 3D curves must be smooth. There are two approaches to construct smooth mesh surfaces interpolating 

given curves with an arbitrary topology: the combined subdivision scheme [35, 36], which is subdivision mask 

based; and the variational subdivision scheme [37], which is discrete fairing based. In our approach, not all the 

edges in the feature template mesh have interpolating curves; this does not satisfy the initial condition of the 

combined subdivision scheme. Thus, the variational subdivision scheme is chosen. The surface constructed is 

around a 3D reference model, and collision between the constructed surface and the reference model should be 

prevented during the shape construction process. The variational subdivision scheme is modified by integrating 

the collision detection. In order to achieve an efficient scheme, the voxel-based approach [38] is used to detect 

the collision. 

 

 

3. Topological Data Structure for Non-manifold Mesh Modeling 
 

The geometric coverage of conventional boundary representation solid modelers is confined to the domain 

of two-manifold objects. For every point on the boundary of a two-manifold object, there exists a sufficiently 

small neighborhood that is topologically the same as an open disk in 2ℜ . If there are any points on the 

boundary that do not satisfy the two-manifold condition, the object is classified as non-two-manifold, or simply 

non-manifold (see Fig. 2). While almost all physical artifacts in the world are two-manifold objects, in terms of 

modeling, the domains of two-manifold ones cannot easily accommodate the entities of a lower dimensionality, 

such as stand-alone faces and wireframe edges. However, such entities are important in engineering design for 



 5 

representing the abstraction of a geometric shape (e.g., the 3D patterns in computer-aided garment design, which 

are assembled stand-alone surfaces; injection model parts or any thin-walled components). 

  
(a) two-manifold (b) non-two-manifold 

Fig. 2    Two-manifold vs. non-two-manifold 

BODY

MESHSURFACE

MESHLOOP

MESHEDGE

TRGLFACE

TRGLEDGE

TRGLNODE

MESHJOINT

ATTRIB_EDGE

ATTRIB_FACENODE

ATTRIB_EDGENODE

 

BODY Entire Model Complex MESHSURFACE Mesh Surface 

MESHLOOP Mesh Surface Loop TRGLFACE Triangular Face 

MESHEDGE Mesh Surface Edge TRGLEDGE Triangular Face Edge 

MESHJOINT Mesh Surfaces Joint TRGLNODE Triangular Face Node 

ATTRIB_EDGE Curves on Mesh Surface ATTRIB_FACENODE Nodes on Triangular Face 

ATTRIB_EDGENODE Nodes on Triangular Edge   

Fig. 3    Data structure framework 

 Data structure 

 

In order to catch the representation of geometric abstractions and the incomplete topological information, a 

non-manifold data structure for geometric object modeling by triangular meshes is to be constructed. The non-

manifold elements such as stand-alone faces or wireframe edges can be stored in the new triangular mesh entity 

– MESHSURFACE. The important adjacency information for non-manifold model – the order of faces around 

an edge is stored in a new entity – MESHJOINT. The proposed data structure will embody the functional 

vitalities of both the boundary representation data structure and the complex-based data structure. The 

framework of our data structure is defined as shown in Fig. 3. 
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There are many ways of viewing this data structure: for instance, it can be thought of as being a tree, with 

BODY as its root. A BODY has a collection of MESHSURFACEs, each of which is comprised of many 

MESHEDGEs, MESHLOOPs, TRGLFACEs, TRGLEDGEs, and TRGLNODEs; and a BODY also has a 

collection of MESHJOINTs, each of which is comprised of some ordered MESHEDGEs. A TRGLFACE 

consists of 3 TRGLEDGEs. A TRGLEDGE is a line segment ended by 2 TRGLNODEs. Each MESHSURFACE 

is bounded by MESHLOOPs, which consists of several MESHEDGEs. Each MESHEDGE has a collection of 

TRGLEDGEs; and each TRGLEDGE has its own direction flag in the MESHEDGE. The adjacent information 

of MESHSURFACEs at some MESHEDGEs is stored in a new entity – MESHJOINT. Each MESHJOINT has a 

collection of MESHEDGEs, which contain the same number of TRGLEDGEs, and the TRGLEDGEs are one to 

one connected (as shown in Fig. 4). If a MESHEDGE is in the same direction with a MESHJOINT, it is defined 

as a positive one in the MESHJOINT; otherwise, it is defined as a negative one. The MESHEDGEs in a 

MESHJOINT are stored in a clockwise order by the right-hand rule (as shown in Fig. 4; where M1, M2, and M3 

are three MESHSURFACEs, E1, E2, and E3 are their related MESHEDGEs which contain the same number of 

TRGLEDGEs, and EO is the MESHJOINT containing the adjacent information). The detail description of each 

entity is shown in Table 1 (Pseudo code is shown in Appendix I). Using the data structure, it is easy to carry out 

any topological and geometrical manipulation on the manifold or non-manifold triangular mesh models. 

EO

E3

E2

E1

 

M1 M3

M2

EO
EO’

E1

E2

E3

M2

M3
M1

 

EO’

E3

E2

E1

 

Fig. 4    Clockwise list of MESHEDGEs in a MESHJOINT 

We define four attributes in our data structures. They include ATTRIB_NODE, ATTRIB_EDGE, 

ATTRIB_EDGENODE, and ATTRIB_FACENODE, where ATTRIB_EDGENODE and ATTRIB_FACENODE 

are derived from ATTRIB_NODE. ATTRIB_EDGENODE is the attribute node on a TRGLEDGE, and 

ATTRIB_FACENODE is the attribute node in a TRGLFACE. Their coordinates depend on the position of 

TRGLEDGE’s nodes or the position of TRGLFACE’s nodes. In detail, the coordinate of an 
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ATTRIB_EDGENODE is represented by a parameter u  related to the nodes of a TRGLEDGE; and the 

coordinate of an ATTRIB_FACENODE is represented by ),,( wvu  – the parametric area coordinate of a 

TRGLFACE. An ATTRIB_EDGE is an ordered collection of ATTRIB_NODEs, which can be either 

ATTRIB_EDGENODEs or ATTRIB_FACENODEs. The detail description of each attribute is shown in Table 2 

(Pseudo code is shown in Appendix II). 

Table 1    Representational Entities 

Entity Representation Description 

BODY Complex of MESHSURFACEs and 

MESHJOINTs 

Highest level entity in a model. 

MESHSURFACE Complex of MESHEDGEs, 

MESHLOOPs, TRGLFACEs, 

TRGLEDGEs, and TRGLNODEs 

A portion of BODY’s surface. It defines the 

shape of BODY, and is represented by many 

triangles. 

MESHLOOP Complex of MESHEDGEs Connected portion of a MESHSURFACE’s 

boundary. 

MESHJOINT Complex of MESHEDGEs Assembly information of MESHSURFACEs. 

MESHEDGE Complex of TRGLEDGEs A portion of MESHLOOP. It defines the shape 

of MESHLOOP. (+ve, clockwise; and -ve, 

anti-clockwise) 

TRGLFACE Complex of three TRGLEDGEs Portion of a MESHSURFACE. 

TRGLEDGE Complex of two TRGLNODEs Boundary of a TRGLFACE, holds the model 

together with adjacency information. (+ve, 

clockwise; -ve, anti-clockwise) 

TRGLNODE A point Boundary of a TRGLEDGE. 

 

Table 2    Representational Attributes 

Attribute Representation Description 

ATTRIB_NODE A point An attribute point on the surface of a 

MESHSURFACE. 

ATTRIB_EDGE Complex of ATTRIB_NODEs An attribute curve lying on the surface of a 

MESHSURFACE. It is a list of 

ATTRIB_NODEs, and passes triangular 

faces of the MESHSURFACE. 

ATTRIB_EDGENODE A point An attribute point on a triangular edge. Its 

position depends on the positions of the two 

endpoints of the edge. 

ATTRIB_FACENODE A point An attribute point in a triangular face. Its 

position depends on the positions of the 

three nodes of the face. 
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 Topological operators 

 

The construction of a valid geometric model is achieved through the use of a proper set of topological 

operators. In geometric modeling, the fundamental topological operators are Euler operators [7, 10] that are 

consistent with the Euler-Poincarè formula. Likewise, the extended topological operators for non-manifold 

geometric modeling have to satisfy the same formula. Theoretically, just nine independent Euler operators and 

their inverse operators are sufficient to define all complex based non-manifold geometric models [10]. Volume 

is not included in our approach; therefore only eight extended Euler operators are utilized (shown in Appendix 

III), and they are restricted to the triangular meshes. 

When editing a model, often several repeated sequences of the extended Euler operators are used. These 

sequences are formulated as high level editing operations. Five of these sequences are formulated as high level 

editing operations, these include edge collapse, edge split, edge swap, face split, and face triangulation. These 

high level operators are provided to automate the performance of the extended Euler operator sequences and 

increase the efficiency of topological operations, and they are frequently used in triangular mesh processing 

algorithms (i.e., edge collapse, edge split, and edge swap was utilized for mesh optimization [39]; face split 

operator was conducted in the famous Loop Subdivision Scheme [40], Variational Subdivision Scheme [37], and 

Modified Butterfly Subdivision Scheme [16]; and face triangulation was applied for remeshing [41]). The detail 

description of these operators is listed as follows. Their sequences of extended Euler operators are shown in 

Table 3; and their illustration is shown in Fig. 5. 

Table 3    Sequences of Extended Euler Operators for High Level Operators 

Operator Sequence of extended Euler operators 

edge split kill_face_make_Chole (2 times) ⇒  split_edge ⇒  make_edge_Chole (2 times) ⇒  

make_face_kill_Chole (4 times) 

edge collapse kill_face_make_Chole (for all faces sharing dP ) ⇒  kill_edge_Chole (for all edges 

sharing dP ) ⇒  kill_vertex_complex (for dP ) ⇒  make_edge_Chole (connecting to eP  

for all original faces sharing dP  except 1f  and 2f ) ⇒  make_face_kill_Chole 

(appropriate times) 

edge swap kill_face_make_Chole (2 times) ⇒  kill_edge_Chole ⇒  make_edge_Chole ⇒  

make_face_kill_Chole (2 times) 

face split kill_face_make_Chole ⇒  split_edge (3 times) ⇒  make_edge_Chole (3 times) ⇒  

make_face_kill_Chole (4 times) 

face triangulation kill_face_make_Chole ⇒  make_vertex_complex (by ATTRIB_FACENODE), 

make_vertex_edge (by ATTRIB_EDGE), split_edge (by ATTRIB_EDGENODE) ⇒  

make_edge_Chole (appropriate times) ⇒  make_face_kill_Chole (appropriate times) 
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Edge split: For a triangular edge e , the edge split operator involves introducing the edge midpoint mP  that 

separates the edge e  into two new edges, 1e  and 2e . The two triangles, 1f  and 2f , sharing edge e  are 

replaced by four new triangles, 4,,1, K=jjf . One new vertex, mP , and four new edges, 4,,1, K=jje , are created. And 

all topological information of entities sharing edge e  and its endpoints should also be altered (see Fig. 5a). If 

the edge e  has a MESHJOINT connected, the corresponding TRGLEDGEs of e  connecting the same 

MESHJOINT should be applied to the same split operation as e . 

Edge collapse: The edge collapse operation is based on the identification of the two endpoints of edge e , thus 

leading to a unique point eP  that can be either one of the original edge endpoints. This operation removes the 

two triangles, 1f  and 2f , their shared edge e , and two edges sharing the deleted vertex dP  in 1f  and 2f ; and 

replaces the endpoints of edges sharing dP  to eP  (see Fig. 5a). If the edge e  has a MESHJOINT connected, the 

same as edge split, the corresponding TRGLEDGEs of e  connecting the same MESHJOINT should be applied 

to the same collapse operation as e . 

Edge swap: The two triangles ( 1f  and 2f ) sharing edge e  are replaced by two new triangles ( 1f ′  and 2f ′ ) 

sharing the dual edge e′  of e . All topological information of entities sharing endpoints of edge e  and endpoints 

of e′  should be alternated (see Fig. 5a). If the edge e  has a MESHJOINT connected, this operation is simply 

prevented. 

Face split: The face split operator subdivides one triangular face into four triangular faces uniformly, where 

three new vertices are introduced to divide each triangular edge into two edges, new triangular edges and faces 

are constructed to link these new vertices. The illustration of the face split operator is shown in Fig. 5b. If any 

edge of the triangular face shares a MESHJOINT with another edge, its corresponding TRGLEDGEs in the 

same MESHJOINT should have a stand-alone vertex inserted in the middle, and its related faces are re-

triangulated by the following face triangulation operator. 

Face triangulation: This operator triangulates the face with stand-alone attribute vertices and the edges on it. 

The vertices and edges are stored as ATTRIB_ FACENODEs, ATTRIB_EDGENODEs, and ATTRIB_EDGEs in 

the data structure. This operator converts ATTRIB_FACENODEs and ATTRIB_EDGENODEs to 

TRGLNODEs, and the TRGLEDGE with ATTRIB_EDGENODEs defined is divided into several 

TRGLEDGEs. The ATTRIB_EDGEs are converted to TRGLEDGEs. New TRGLEDGEs and TRGLFACEs are 
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constructed to connect edges and nodes. The original TRGLFACE is removed. The new constructed 

TRGLFACEs must be in the same orientation and not overlapped, and the newly constructed TRGLEDGEs 

must not intersect with other triangles. One example of face triangulation is shown in Fig. 5c.  

edge split edge collapse edge swap

initial configuration 

f1 f2

f’2

f’1f1

f2

f3

f4

eP

e

e′

eP

dP

mP

1e

2e

3e
4e

 
(a) edge collapse, edge split, and edge swap 

 

⇒  

 
(b) face split 

 

⇒  

 
(c) face triangulation 

Fig. 5    High level topological operators 

 

4. Feature-based Model Construction 
 

This section focuses on a new method of modeling a 3D freeform object around a 3D reference model. The 

modeling method is feature-based – the constructed object is around a 3D reference model by a feature template; 

every reference model has pre-defined features; and the feature template of the constructed surfaces are related 

to the features on the reference model. The feature template of the constructed object is conducted to regenerate 

the object automatically when using another reference model with the same features. 
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⇒  

 

 

+ 

 

⇒  

 

  (a) feature template  (b) reference models (c) different shapes 

Fig. 8    Different shapes of the same template on different reference models 

 Feature template for freeform object models 

 

Freeform objects can be classified in accordance with their feature-based topological structure [33] and can 

be stored as different object feature templates. Each object feature template is represented by a set of triangular 

mesh surfaces - MESHSURFACEs, which is assembled by MESHJOINTs and stored in a BODY entity fΒ . In 

a feature template fΒ , the position of each vertex (which is called feature node and stored by TRGLNODE) is 

related to a relevant feature on a reference model. Thus, when we apply the same template to different reference 

models with the same features, we obtain the triangular meshes of different shapes (see Fig. 8).  

The semantic feature curves and points of a reference feature model are first defined. In the following 

feature node encoding process, the relationship between the position of each feature node and the features on a 

reference model are determined. After that, the topological graph of fΒ  is designed interactively. The 3D 

profiles of the feature template are specified by 2D sketches and stored in fΒ  by ATTRIB_EDGENODEs. 

4.1.1 Reference model 

In our approach, a reference model Η  is also represented by a triangular mesh with a set of pre-defined 

semantic feature curves. Each semantic feature curve consists of a sorted set of line segments lying on the mesh 

surface of the reference model. The line segments might not be the topological edges on the reference model; 

they can pass through triangular faces (see Fig. 9a). The feature curves are stored by the ATTRIB_EDGE 

attributes in our data structure (defined in section 3.1). The line segments that belong to a specific semantic 

feature curve have a common feature ID number. Each semantic feature point is an intersection point of two 

semantic feature curves, and is stored by the ATTRIB_NODE attribute. Every semantic feature point has its own 
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ID number. For example, in Fig. 9b, the bold line segments with ID number 13 represents the chest feature curve 

of a human model; in Fig. 9c, the bold line segments with ID number 31 represents the center-front feature 

curve of a human model; and in Fig. 9d, the white point is the feature point determined by these two feature 

curves, the ID number of the feature point is 05.  

    
(a) (b) (c) (d) 

Fig. 9    Feature curves and points on a reference model 

The position and orientation of the designed feature template is highly dependent on the position and 

distribution of the semantic feature curves and points. Thus, the location of the feature curves and points on the 

reference model is important. In other words, they must point out the features accurately. For example, if the 

chest feature curve of a human model (No.13 curve in Fig. 9b) were in a wrong position – upper or lower, the 

final constructed 3D object would have a bad shape at the real chest position. Therefore, the feature exaction 

algorithm should be robust enough to support variations in positioning. Since this is not a major focus of the 

paper, we only implement the method represented in [34] to get reference models with features. 

4.1.2 Feature nodes encoding 

As mentioned at the beginning of section 4.1, the position of each feature node is related to the features on 

reference model Η . The relationship is built between a feature node iv
v

 in the object feature template and a 

feature point jq  on Η , where j  is the ID number of point jq . The position vector )( jqp
v

 of jq  is determined 

from the intersection of two feature curves, 1f  and 2f . Since the feature point jq  lies on 1f  and 2f , the unit 

tangent vectors of feature curves 1f  and 2f  at jq  – )( 1ft
v

 and )( 2ft
v

, and the unit normal vector )( jqn
v

 of the 

surface of Η  at jq  are well defined. The vectors )( 1ft
v

, )( 2ft
v

, and )( jqn
v

 form a local coordinate frame as 

shown in Fig. 10. The three vectors may not be an orthogonal set, but it is obvious that the scalar product 

( ) 0)()()( 21 ≠jqnftft
vvv

. Thus, the position )( ivp
vv

 of any vertex f
i Vv ∈
v

 can be represented by 

)()()()()( 21 ftftqnqpvp iijiji

vvvvvv
γβα +++= .                                                (1) 
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Each vertex iv
v

 thus consists of four elements: ),,,( iiij γβα . The encoding process, which relates one feature 

node f
i Vv ∈
v

 on the object model to a feature point jq  on the reference model Η , is actually a process to 

determine these four elements of vertex iv
v

. 

Equation (1) defines the relationship between the positions of iv
v

 and jq . Another popular form used to 

define the relationship between the positions of the two points is 

dqpvp ji

vvvv
+= )()(                                                                       (2) 

where the position of vertex iv
v

 is also determined by four elements: ),,,( zyx dddj . When a new reference 

model Η′  with the same features is used, the new position of each vertex iv
v

 in Fig. 10 can be easily calculated 

by equation (1) or (2). As shown in Fig. 11, )(1 ivp
vv

 is the new position determined by equation (1), and )(2 ivp
vv

 

is the new position determined by equation (2). It was found that the orientation of the feature node related to a 

reference model is not guaranteed when using equation (2), but equation (1) strongly preserves the orientation. 

This is an important factor in many industrial applications, so ),,,( iiij γβα  is chosen as the four elements to 

determine the position of iv
v

 according to equation (1). 

jq

)( 1ft
v

2f

1f

)( 2ft
v

)( jqn
v

)( ivp
vv

2f

1f

 

jq

)( 1ft
v

2f

1f

)( 2ft
v

)( jqn
v

)(1 ivp
vv

)(2 ivp
vv

2f

1f

 
Fig. 10    Local frame on feature point jq  Fig. 11    New position of iv

v
 determined 

4.1.3 Build topological graph 

Using interactive tools, we can define the feature nodes of a feature template fΒ  around the reference 

model Η  by determining the four parameters of a feature node. After that, the topological graph of fΒ  is to be 

specified. The topological graph is a collection of MESHSURFACEs that are connected by MESHJOINTs. For 

example, Fig. 12a shows the topological graph of a non-manifold object that consists of four MESHSURFACEs 

(in different colors). This object includes both stand-alone faces and wireframe edges. The bolded edges are 

MESHJOINTs. The topological graph can be constructed using interactive tools. Since our data structure is 

complex-based, the incomplete topology information during the construction process is easy to be stored. Fig. 
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12b-12h shows some fragments of the construction process of the topological graph. In Fig. 12b, the feature 

nodes have been defined around the reference model. The feature nodes are generally outside the reference 

model, and their positions actually define the final coarse shape of the constructed object; so the feature nodes 

should be chosen very carefully. An interactive tool is used to connect the feature nodes by edges as shown in 

Fig. 12c; and Fig. 12d shows the feature template after creating all edges. Triangular faces can also be created 

one by one interactively (Fig. 12e and 12f). Fig. 12f and 12h show the final result. 

By the limitation of the shape construction that will be presented in section 4.2, the feature template should 

be in a good shape and orientation. Sharp angle triangles are required to be prevented; triangular faces belonging 

to one MESHSURFACE should have the same orientation (i.e., two adjacent triangles are not allowed to have 

reversed normal directions); and an asymmetrical topological graph will lead to an asymmetrical final object 

even if the distribution of the feature nodes is symmetric.  

    
(a)  (b) (c) (d) 

    

(e) (f) (g) (h) 

Fig. 12    An example of topological graph construction process 

4.1.4 Profile specification 

After the coarse shape of the feature template is determined, 2D sketches are used to specify the 3D profiles 

of some triangular edges in the feature template, which describe the detail shape of the constructed object and 

are interpolated in the shape construction step. The 3D profile of a triangular edge is a 3D curve whose two 

endpoints coincide with the two endpoints of the edge. In order to obtain a good shape of the constructed object, 

the 3D profiles are expected to be smooth at its endpoints. Each 3D profile is represented by a list of 

parameterized 3D points attached on a triangular edge. In our implementation, the points are stored by 

ATTRIB_EDGENODEs.  
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Two problems arise when using a 2D stroke Ψ  to specify a 3D: 1) whose profiles are specified by Ψ , and 

2) how to determine the positions of the 3D attached points by Ψ . After solving these two problems, the 2D 

stroke Ψ  is converted to the 3D profiles attached to some edges. 

For a given feature edge jivv
vv

 with endpoints iv
v

 and jv
v

, it is selected by the stroke Ψ  if jivv
vv

 is visible 

and the distances between )(),( ji vv
vv

ζζ  and Ψ  are less than ε , where 23: ℜ→ℜζ  is the map that sends 

spatial point 3ℜ∈iv
v

 to screen point 2ℜ∈iψ , and ε  is a small tolerance value (e.g., 4=ε  pixels). In the 

following, a plane is determined to project the points Ψ∈iψ  to convert them into 3D points ** Ψ∈iψ  in 3ℜ , 

where *Ψ  is a list of 3D points. When multiple feature edges are selected, a plane that approximately passes 

through the selected feature edges is conducted. If only one feature edge is selected, we use the plane that 

bisects the dihedral angle along the chosen edges to project the points Ψ∈iψ . In this way, the sketched profile 

faces towards the camera as much as possible. After all Ψ∈iψ  are converted to ** Ψ∈iψ  in 3ℜ , we separate 

them into intervals and store the points in one interval in its related edge. For a selected feature edge ml vv
vv

, we 

search the closest point l*ψ  to lv
v

 in *Ψ , and the closest point m*ψ  to mv
v

 in *Ψ . Then, the points 

mljj ,,,*
K=ψ  are stored as the attached points list in ml vv

vv
.  

    
(a) (b) (c) (d) 

Fig. 13    Specify a profile through a 2D stroke 

One example of specifying profiles through a 2D stroke is given in Fig. 13. Fig. 13a shows the feature 

graph before specifying a profile at the chest; in Fig. 13b, a 2D stroke is input; Fig. 13c shows the determined 

projection plane; and Fig. 13d shows the result. 

When re-generating the 3D object on a reference object with a different shape, the positions of the feature 

nodes in the feature template are changed. We need to shift the position of the attached points on the triangular 

edges to re-generate the “new” 3D profiles. If an edge is moved from ml vv
vv

 to ml vv **
vv

, the new positions of 

points 10, −= niiQ
K

 attached to it are shifted by scaling the vector between them and ml vv
vv

. The idea is shown in 
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Fig. 14, where the vector between iQ  and ml vv
vv

 is scaled by 
ml

ml

vv

vv
vv

vv
**

. The formulation to compute the new 

positions of iQ  is shown below 

[ ]{ } )]*()*([()*()()()()(
**

)(* lmillmili

ml

ml

i vpvpuvpvpvpuvpQp
vv

vv
Qp

vvvvvvvvvvvvv
vv

vv
v

−++−−−=        (3) 

where iu  is the parameter defined by the lengths of line segments [42]. 

[ ])()()( lmil vpvpuvp
vvvvvv

++

)( lvp
vv

)( mvp
vv

)( iQp
v

[ ])()()()( lmili vpvpuvpQp
vvvvvvv

−−−

 

[ ])*()*()*( lmil vpvpuvp
vvvvvv

++

)*( lvp
vv

)*( mvp
vv

)(* iQp
v

[ ]{ })()()()(
**

lmili
ml

ml
vpvpuvpQp

vv

vv vvvvvvv
vv

vv

−−−

 
(a) before moving (b) after moving 

Fig. 14    Shift a 3D profile 

 

 Shape construction 

 

In this section, triangular mesh surfaces are constructed from the feature template interpolating its feature 

nodes and 3D profiles by applying a modified variational subdivision scheme. The feature template is actually 

assembled coarse triangular mesh surfaces with some interpolating curves (3D profiles). The basic idea of a 

variational subdivision scheme is to iteratively apply a topological splitting operator to introduce new vertices to 

increase the degrees of freedom, followed by a discrete fairing operator to increase the overall smoothness [37]. 

In our approach, the scheme is modified to construct mesh surfaces that interpolate not only the initial vertices 

but also the specified profiles. The topological splitting operator inserts new control vertices into the mesh. The 

split operation is chosen to be uniform so that all the new vertices are regular (valance is equal to 6, as shown in 

Fig. 15a). The position of the inserted new vertex *v
v

, which lies on the edge esvv
vv

, is determined by 

))()((
2

1
*)( es vpvpvp

vvvvvv
+=  if there is no profile specified on esvv

vv
; or by )

2

1
(*)( cvp
vvv

=  if there is a profile 

specified on esvv
vv

, where )(uc
v

 is the parametric curve that represents the profile shape. We also divide )(uc
v

 

into two parts )(uc f

v
 and )(ucb

v
 at )

2

1
(c
v

, and attach )(uc f

v
 and )(ucb

v
 to the newly created edges from 
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splitting (in Fig. 15b, )(1 uc f

v
 and )(1 uc b

v
 are from )(1 uc

v
, and )(2 uc f

v
 and )(2 uc b

v
 are from )(2 uc

v
). The 

smoothing operator moves the control vertices according to the weighted averages of neighboring vertices. The 

positions of vertices in the refined mesh are changed to achieve a global energy functional minimization. Here, 

we implement the 2
nd

 order umbrella operator as an iterative solver of the problem. As mentioned by Kobblet 

[37], since each update step only computes a linear combination of nearby vertices, the computational 

complexity is linear if the number of umbrella iterations is bounded (in fact, a constant number). In order to 

guarantee that the resultant fine mesh interpolates the originally given vertices, the umbrella operator must not 

be applied to those vertices that already belong to the initial mesh. Also in order to guarantee that the resultant 

fine mesh interpolates the 3D profiles, the umbrella operator must not update the positions of the vertices lying 

on the profiles. The vertices whose positions can be updated are called free vertices (rounded white nodes in Fig. 

15), and the vertices whose positions cannot be updated are called fixed vertices (rectangular gray nodes in Fig. 

15).  

⇒

 

)(1 uc
v

)(2 uc
v

⇒

)(1 uc b

v

)(1 uc f

v

)(2 uc f

v

)(2 uc b

v

 
(a) without profile interpolation (b) with profile interpolation 

Fig. 15    Subdivision 

Since the umbrella operator can only be applied to the vertices within the same mesh surface, in order to 

maintain the connection in the assembled mesh surfaces, the position of vertices on a MESHJOINT must not be 

updated. By following this rule, the modified variational subdivision scheme can be applied to each 

MESHSURFACE individually to obtain the refined mesh surfaces interpolating the nodes and profiles in a 

feature template.  

The mesh surfaces are constructed around a 3D reference model, so it is likely that collision between the 

constructed detail mesh surface and the reference object may occur during the surface construction procedure 

(e.g., the object in Fig. 16b is constructed from the feature template in Fig. 16a without collision detection). 

Here, the voxel-based collision detection scheme [38] is integrated to prevent collision between the constructed 

surface and the reference object. First of all, the whole detection space is uniformly subdivided into small voxel 

spaces. After the topological split operator inserts new vertices, using the coordinate of the new vertex to find a 

corresponding voxel space, the triangular faces in the voxel space are used to detect whether the free vertex is 

inside the reference object. If a vertex is inside the reference object, pull it to the outside space of the reference 
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object along the discrete surface normal direction at the free vertex. In the discrete fairing operation, if the 2
nd

 

umbrella-operator pulls a vertex from the outside space of the reference object to the inside space of the 

reference object, the update is prevented. To obtain a more accurate result, the position update of a vertex in the 

2
nd

 umbrella operator is subdivided into several steps, and the update is performed in steps while detecting the 

collision between the updated vertex and the reference model. The object construction result with collision 

detection is shown in Fig. 16c. 

   

(a) feature template (b) collision occurs (c) final result 

Fig. 16    Collision avoidance 

5. Experimental Results 
 

The shape construction method applies the modified variational subdivision scheme to individual 

MESHSURFACEs to generate the final shape. Thus, as addressed by Hubeli and Gross in [6], different types of 

the connecting configuration lead to different fairing results. In our approach, different shapes can be 

constructed by different defined MESHJOINTs. The examples shown in Fig. 17 demonstrate this flexibility of 

modeling different shapes.  

With the same wireframe and the same profiles of the feature template (Fig. 17a and17b), four different 

final shapes are generated by different connecting configurations. In example I (Fig. 17c and 17d), the boundary 

edges of the five mesh surfaces are connected by one MESHJOINT, the connecting order of the five mesh 

surfaces is M1, M2, M3, M4 and M5. In example II (Fig. 17e and 17f), the MESHEDGE of surface M2 

connected by the MESHJOINT is an inner edge while the other three edges of M1, M3 and M4 are boundary 

edges. Two inner edges and one boundary edge are connected by one MESHJOINT in example III (Fig. 17g and 

17h). If more complex results were expected, two or more MESHJOINTs can be used – as shown in example IV 

(Fig. 17i and 17j), one MESHJOINT connects the boundary edge of M1 and the inner edge of M2, and another 

MESHJOINT connects the inner edge of M2 and the inner edge of M3. 
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(a) the same wireframe  (b) the same profiles 

  

(c) example I (d) illustration of example I: one MESHJOINT connecting 

five MESHSURFACEs in order – M1, M2, M3, M4, M5 

  

(e) example II (f) illustration of example II: one MESHJOINT connecting 

four MESHSURFACEs in order – M1, M2, M3, M4 

  

(g) example III (h) illustration of example III: one MESHJOINT connecting 

three MESHSURFACEs in order – M1, M2, M3 

  

(i) example IV (h) illustration of example IV: two MESHJOINTs defined – 

one connecting M1 and M2, and another connecting M2 and 

M3 

Fig. 17    The flexibility of modeling different shapes around a MESHJOINT  
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(a) raw data of 1Η  (b) 1Η  with features (c) 
f

1Β  on 1Η  (d) 1Μ  from 
f

1Β  

    

(e) raw data of 2Η  (f) 2Η  with features (g) 
f
2Β  on 2Η  (h) 2Μ  from 

f
2Β  

  

(i) 2D patterns of 1Μ  from 1Η  (j) 2D patterns of 2Μ  from 2Η  

Fig. 18    Application in the apparel industry 

The technique presented in this paper can be widely used in many industrial applications (e.g., the apparel 

industry, the toy industry and the shoe industry). For example, in the apparel industry, after using the technique 

presented in [34] to generate the feature human model 1Η  by the raw data that is output from a laser scanner 

(Fig. 18a and 18b), the approach presented in this paper is applied to build the feature template 
f

1Β  of a piece of 

cloth on 1Η  (Fig. 18c). After the final shape 1Μ  of 
f

1Β  is constructed (Fig. 18d), it can be flattened into 2D 

patterns for manufacturing (Fig. 18i). When we regenerate the piece of cloth on another human model 2Η  (Fig. 

18e and 18f), after computing the new position of the feature nodes and 3D profiles in 
f

1Β , the new shape of the 

feature template 
f
2Β  is determined (Fig. 18g). In the same way, we can construct its 3D final shape, 2Μ  (Fig. 

18h) and its related 2D patterns (Fig. 18j). Obviously, the technique presented in this paper is very helpful to 

any industrial applications that attempt to automatically regenerate the 3D designed freeform objects on the 
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reference models with the same features but different shapes. In other words, to implement the automatic 

customization. 

 

6. Conclusion 
 

This paper presents a novel feature-based approach for modeling a 3D non-manifold freeform model around 

a 3D reference model. A new topological data structure is first defined with a set of operators. Based on the data 

structure and the operators, we developed the technique to construct 3D freeform objects around a reference 

model. Finally, an application of our technique in the apparel industry is given to demonstrate the functionality 

of our approach. In summary, our method has the following advantages: 

• A new modeling method for 3D freeform objects is developed – the method is feature based, so the 

surfaces derived from one reference model can be regenerated automatically on another reference 

model with the same features; 

• The geometry coverage of our modeling approach includes both manifold and non-manifold objects; 

• Our non-manifold data structure embodies the functional vitalities of both the boundary data structure 

and the complex-based data structure, so incomplete topological information and the design 

abstractions can be easily stored; along with the data structure, a set of topological operators for non-

manifold triangular mesh is developed; 

• Intuitive 2D sketches are conducted to specify the detail shape of the constructed surfaces on the 

feature template of the designed 3D object. 

While constructing the interpolating surface from the object template with the profiles specified, our current 

implementation conducts the uniform subdivision scheme, which leads to the non-uniform distribution of 

triangle density on the mesh surface. It is believed that an adaptive subdivision scheme can improve the non-

uniform distribution of triangles. The fairing operator used in this paper can be applied only to two-manifold 

mesh surfaces. One possible further research is to consider a “volume-based” method to obtain a more flexible 

fairing result across the joints of mesh surfaces.  
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Appendix I    Entities 
 

The data structure of entities is written in pseudo code as follows. 

• Whole body 

BODY { 

 Int indexNo; 

Double box[6]; // Bounding box of this BODY 

FLAGS flg; // Status flags 
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MESHSURFACE **meshsurface_list; // MESHSURAFCEs list 

MESHJOINT  **meshjoint_list; // MESHJOINT list 

};  

• Mesh surface 

MESHSURFACE { 

 Int indexNo; 

Double box[6]; // Bounding box of this mesh surface 

FLAGS flg; // Status flags 

MESHLOOP **meshloop_list; // MESHLOOPs list 

MESHEDGE **meshedge_list; // MESHEDGEs list 

TRGLFACE **trglface_list; // TRGLFACEs list 

TRGLEDGE **trgledge_list; // TRGLEDGEs list 

TRGLNODE **trglnode_list; // TRGLNODEs list 

ATTRIB_EDGE **attr_edge_list; // ATTRIB_EDGEs list 

};  

• Joint of mesh surfaces 

MESHJOINT { 

 Int indexNo; 

FLAGS flg; // Status flags 

FLAGS *dirFlg; // Direction flags of MESHEDGEs 

MESHEDGE **meshedge_list; // MESHEDGEs (clockwise order) 

};  

• Loop of mesh surface 

MESHLOOP { 

 Int indexNo; 

FLAGS flg; // Status flags 

MESHEDGE **meshedge_list; // MESHEDGEs list 

MESHSURFACE *mesh_surface; // MESHSURFACE contains this loop 

};  

• Edge of mesh surface 

MESHEDGE { 

 Int indexNo; 

FLAGS flg; // Status flags 

FLAGS *dirFlag; // Direction flags of TRGLEDGEs 

TRGLEDGE **trgledge_list; // TRGLEDGEs list 

MESHSURFACE *mesh_surface; // Surface contains this mesh edge 

MESHLOOP *mesh_loop; // Loop contains this mesh edge 

MESHJOINT *mesh_joint; // Joint contains this mesh edge 

};  

• Triangular Face 

TRGLFACE { 

 Int indexNo; 

FLAGS flg; // Status flags 

FLAGS dirFlg[3]; // Direction flags of edges 

Float abcd[4]; // Plane equation of this triangle 

TRGLEDGE *trgl_edge[3]; // Edges of this triangle 

MESHSURFACE *mesh_surface; // Surface contains this triangle 

ATTRIB_FACENODE **attr_node; // ATTRIB_FACENODEs list 

}; 

• Edge of triangular face 
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TRGLEDGE { 

 Int indexNo; 

FLAGS flg; // Status flags 

TRGLNODE *trgl_node[2]; // Nodes of this edge 

MESHSURFACE *mesh_surface; // Surface contain this edge 

TRGLFACE *trgl_face[2]; // Left and right TRGLFACEs 

ATTRIB_EDGENODE **attr_node; // ATTRIB_EDGENODEs list 

}; 

• Node of triangular face 

TRGLNODE { 

 Int indexNo; 

FLAGS flg; // Status flags 

Double p_3d[3]; // Spatial position 

Double p_3d_backup[3]; // Backup of spatial position 

Double p_2d[3]; // Planar position 

MESHSURFACE *mesh_surface; // Surface contain this node 

TRGLFACE **trglface_list; // Adjacent TRGLFACEs list 

TRGLEDGE **trgledge_list; // Adjacent TRGLNODEs list 

}; 

Appendix II    Attributes 

The data structure of attributes is written in pseudo code as follows. 

• ATTRIB_NODE 

ATTRIB_NODE { 

FLAGS flg; // Status flags 

ATTRIB_EDGE *attr_edge; // ATTRIB_EDGEs contain this node 

}; 

• ATTRIB_EDGE 

ATTRIB_EDGE { 

FLAGS flg; // Status flags 

MESHSURFACE *mesh_surface; // Surface contain this edge 

ATTRIB_NODE **attr_node; // Pointer of ATTRIB_NODEs list 

}; 

• ATTRIB_EDGENODE 

ATTRIB_EDGENODE : public ATTRIB_NODE { 

Double u; // Parameter coordinate of this node 

Double p_3d[3]; // Spatial position 

TRGLEDGE *trgl_edge; // TRGLEDGE contain this node 

}; 

• ATTRIB_FACENODE 

ATTRIB_FACENODE : public ATTRIB_NODE { 

Double u, v, w; // Areal coordinate of this node 

Double p_3d[3]; // Spatial position 

TRGLFACE *trgl_face; // TRGLFACE contain this node 

}; 
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Appendix III    Extended Euler Operators 

The eight extended Euler operators are listed in Table A-1 and Fig. A-1. Reverse operators are enclosed in 

brackets, and Chole denotes a hole in a complex. 

  
make[kill]_vertex_complex Make[kill]_face_kill[make]_Chole 

  
Make[kill]_vertex_edge make[kill]_vertex_ring 

  
make[kill]_edge_Chole make[kill]_edge_kill[make]_ring 

  
make[kill]_edge_kill[make]_complex split[merge]_edge 

Fig. A-1    Extended Euler operators 

Table A-1    Function Description of Extended Euler Operators 

Operator Function of operator 

make[kill]_vertex_complex Create a single vertex complex 

make[kill]_vertex_edge Create a vertex and an edge connecting to an existed vertex (the 

operator can be carried out freely or inside a face) 

make[kill]_edge_Chole Connect two vertex by a new edge to form a hole in a complex 

make[kill]_edge_kill[make]_complex Connect two vertex complexes by a new edge  (since the two complexes 

are connected, one complex should be removed) 

make[kill]_face_kill[make]_Chole Create a new face on a complex hole and remove the hole 

make[kill]_vertex_ring Create a stand-alone vertex on a face (the single vertex forms a ring) 

make[kill]_edge_kill[make]_ring Connect two stand-alone vertices by a new edge on a face (two rings are 

merged into one ring, thus one ring should be removed) 

Split[merge]_edge Split one edge into two edges by adding a new vertex on the original 

edge 
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