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Abstract

Radial Basis Function (RBF) has been used in surface recon-
struction methods to interpolate or approximate scattered data
points, which involves solving a large linear system. The lin-
ear systems for determining coefficients of RBF may be ill-
conditioned when processing a large point set, which leads to
unstable numerical results. We introduce a quasi-interpolation
framework based on compactly supported RBF to solve this
problem. In this framework, implicit surfaces can be recon-
structed without solving a large linear system. With the help
of an adaptive space partitioning technique, our approach is ro-
bust and can successfully reconstruct surfaces on non-uniform
and noisy point sets. Moreover, as the computation of quasi-
interpolation is localized, it can be easily parallelized on multi-
core CPUs.

1 Introduction

Surface reconstruction from points sampled from a three-
dimensional object has played an important role in geo-
metric modeling for a few decades. Its aim is to construct
a geometric structure on a set of points in order to make
explicit the proximity relationships between points on the
surface of an object [8]. A lot of research work has been
devoted to developing reconstruction methods for applica-
tions in computer graphics, robotics, and computer-aided
design and manufacturing (CAD/CAM). Implicit repre-
sentation is good at repairing incomplete data as it can
handle topology change easily and is robust for noises.
Therefore, approaches based on fitting implicit functions to
input point sets become one of the main trends in surface
reconstruction, where several approaches in literature used
RBF based interpolation or approximation [11, 28]. How-
ever, when the number of interpolation points is very large,
the interpolation matrix may become ill-conditioned. In
this case, more than having a high computational cost, the
numerical computation could become unstable. Changing
interpolation into approximation by adding an approxima-
tion efficient on the diagonal of the matrix can improve the
stability; however, the stability still pretty much relies on
the performance of numerical solvers. Different from an ex-
act interpolation approach, the quasi-interpolation method
presented in this paper does not require solving large linear
systems, and can generate satisfactory results with small
shape approximation errors.

Most work about quasi-interpolation in literature [18,
36] is developed for the computation on regular grid points;
here, we generalize it to work for unorganized point sets
and the surface reconstruction problem can be solved
thereafter. Specifically, a hierarchical quasi-interpolation
method based on RBFs is proposed in this paper for re-
constructing an implicit surface from scattered points.

The technical contribution of this approach is three-
fold. Firstly, we introduce a quasi-interpolation method
for fitting Radial Basis Functions (RBFs) onto scattered
points. This method avoids solving large linear systems

which may be ill-conditioned. In the quasi-interpolation
method, the RBF on each point is computed locally and
independently; therefore, the reconstruction can be eas-
ily parallelized. Secondly, a multi-level quasi-interpolation
method based on Compactly Supported Radial Basis Func-

tions (CSRBFs) is presented. How shape parameters influ-
ence the quality of reconstructed surface is also analyzed.
Lastly, an adaptive scheme for choosing shape parameters
and compact supports in CSRBF based fitting is proposed
for reconstructing surfaces from imperfect data. As a re-
sult, for those almost uniform points, no parameter needs
to be specified. For highly non-uniform points, only a pa-
rameter δ needs to be given by users for determining adap-
tive support size.

The rest of this paper is organized as follows. Af-
ter reviewing some related work in Section 2, we present
the details of RBF-based quasi-interpolation in Section 3.
Section 4 discusses the function of shape parameters and
support sizes on reconstruction results, and introduces an
adaptive scheme for determining their values. Experimen-
tal results are given in Section 5, and our paper ends with
the conclusion section.

2 Related Work

The problem of reconstructing surfaces from point clouds
has been widely studied for many years (ref. [9, 30]). A
large number of reconstruction algorithms have been pro-
posed. Basically, they can be classified into two major
groups: direct methods and indirect methods.

Direct methods usually involve the construction of
Voronoi diagram and reconstruct a mesh surface by link-
ing points directly, which need dense samples with little
noise [3,14,15]. Although a number of algorithms that are
robust to noises have been presented recently [4,16,22], this
type of methods is generally more sensitive to noise than
indirect methods. Moreover, the cost to compute Voronoi
diagram is high in both memory and time.

Indirect methods attempt to create a signed implicit
function, which divides the space into inside and outside
of an object, from a set of oriented points. Mesh surface
can then be extracted from the zero level set of this im-
plicit function by contouring methods (e.g., [7,20,25]). Sur-
face reconstruction algorithms in this group can be further
classified according to whether the computation is taken
locally or globally.

For local methods, the main advantages include fast
computation and ability to handle large data sets. Al-
gorithms in this sub-group began from Hoppe [19]. He
approximated a manifold with piecewise linear surfaces
from unorganized points. After that, a volumetric method
was presented which provides high-resolution surfaces from
range images but struggles to handle misaligned sur-
faces [12]. Other examples of local approaches include
the one based on moving least squares [1, 17] and its vari-
ants [5, 29]. The Multi-level Partition of Unity Implicits
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(MPU) method [27] proposed by Ohtake et al. excels in the
above advantages. However, these methods have difficulty
in handling points with poor quality, such as those contain
noises, outliers, holes, and have high non-uniformity.

Global function based approaches have the advantage
of being able to handle data sets with the aforementioned
defects. Examples of such methods include RBF-based
approaches [11, 28, 34], integration of Voronoi diagrams
and variational method [2], Poisson surface reconstruction
technique [21], and smooth signed distance method [10].
These methods reduce the surface reconstruction problem
to a numerical optimization problem, and often need to
find the solution of a large linear system. Unfortunately,
if there is a large number of points, the linear system may
become ill-conditioned and its numerical computation can
be unstable.

Our surface reconstruction method presented in this
paper is global function based. A quasi-interpolation
scheme is introduced to speed up the reconstruction of
surfaces from scattered points. It is stable and does not
need to solve the large linear system that could be ill-
conditioned. The adaptive multi-level quasi-interpolation
framework is robust to points with non-uniformities and
noises, and can successfully reconstruct surfaces in high
quality.

Quasi-interpolation is a kind of approximation meth-
ods. It possesses some advantages, such as less compu-
tation time and stable computation. In [13, 23, 26], some
quasi-interpolation methods have been discussed for ap-
proximation of a function with a neural network the ac-
tivation function of which is sigmoidal. The univariate
quasi-interpolants were discussed in [36]. Han and Hou
discussed quasi-interpolation by radial basis functions and
provided a suitable value of the shape parameter in [18],
which shows a constructive method for obtaining a family
of approximate interpolations. The surface reconstruction
method in this paper is inspired by it. Here, the quasi-
interpolation is applied to scattered points instead of reg-
ularly sampled grid points.

3 RBF-based Quasi-interpolation

Given a set of (n + 1) data pairs (vi, fi), i = 0, 1, · · · , n,
where vi ∈ ℜ3 and fi ∈ ℜ are 3D points and their asso-
ciated function values, we consider an interplant g(x) as

g(x) =

n∑

i=0

ciϕi(x), (1)

where φρ(r) = φ(r/ρ), φ(r) = (1 − r)4+(4r + 1) is the
Wendaland’s CSRBF [35], ρ is the support size, and

ϕi(x) =
φρ(λi‖x − vi‖)∑n

j=0
φρ(λj‖x − vj‖)

(2)

is the normalized radial basis function. The value of λi

is assigned as
√
µ/ηi, where µ is a shape parameter and

ηi = infk 6=i ‖vk − vi‖ reflects the impact of the density
of points. The appropriate value of the shape parameter
µ has been suggested for the computation on uniformly
sampled grid points with global RBF in terms of Gaussian
by Han and Hou [18]. However, their result cannot be
applied to scattered data. Moreover, for CSRBF, the value
of µ also affects the support size of each basis function.
Based on our experimental tests, we can always choose
µ = 0.1ρ2 to obtain satisfactory results.

According to [31], a surface interpolating a given data
set can be represented by a weighted average of the values
at the data points. Shepard constructed a group of weight-
ing functions to interpolate two-dimentional data in [31].

Here, we assign the coefficients, ci, with the values, fi, at
data points and use the normalized radial basis functions,
ϕi, as weighting functions. In other words,

ci = fi, (i = 0, 1, · · · , n), (3)

and the surface function g(x) is approximated by

g′(x) =

n∑

i=0

fiϕi(x). (4)

However, different from two-dimentional interpolation in
[31], the values, fi, at 3D data points are unknown for
surface reconstruction. In this section, methods are in-
troduced to estimate the values of fis for fast RBF-based
surface reconstruction.

3.1 Single-level quasi-interpolation

In this subsection, we demonstrate how our quasi-
interpolation scheme works at a single level. Considering
a set of scattered points V = {vi} on a surface S, we as-
sume that all the points are equipped with unit normals
ni defining an inward-pointing orientation. We are go-
ing to generate a 3D scalar field g′(x) whose zero level-set
g′(x) = 0 approximates S. In order to avoid adding off-
points that lead to a bigger system of linear equations with
interior and exterior constraints (ref. [11]), an interpolation
function similar to the method in [28] is constructed as

g′(x) → g(x) =
n∑

i=0

(ci + hi(x))ϕi(x) = 0, (5)

where hi(x) is a local quadratic approximation of S in a
small vicinity of vi, ci and ϕi(x) are defined as Eqs.3 and
2. The support size ρ is determined by the density of V .
We organize the points in V into an octree in which each
leaf cell contains no more than eight points. ρ is equal
to 3/4 of the average diagonal length of the leaf cells. In
order to get hi(x), we create a local orthogonal coordinate
system (u, v, w) at each point vi by setting the direction
of ni as the positive direction of w. A quadric polynomial
w = w(u, v) ≡ au2 + 2buv + cv2 is used to fitting the
local surface of V in a vicinity of vi, where the coefficient
a, b, and c can be determined by solving a small linear
system (usually in the least-square form). Then, hi(x)
can be set as hi(x) = w − w(u, v). More details can be
found in [28]. For exact interpolation, the coefficients ci
are determined by solving the system of linear equations
5. Here, we rewrite Eq.5 as

ψ(x) =

n∑

i=0

ciϕi(x) = −
n∑

i=0

hi(x)ϕi(x). (6)

The surface reconstruction problem with local quadric ap-
proximations then becomes a standard RBF fitting prob-
lem based on the function value constraints that ti = ψ(vi)
with ti denoting the right-hand side of Eq.6. With the
above analysis of quasi-interpolation, the quasi-solution of
this problem (i.e., the values of the coefficients ci) can be
found by

ci = −
n∑

i=0

hi(vi)ϕi(vi) = ti (7)

and g′(x) for quasi-interpolating the given points can then
be constructed as follows.

g′(x) =
n∑

i=0

(−
n∑

j=0

hj(vi)ϕj(vi) + hi(x))ϕi(x). (8)
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The computation of the above quasi-interpolation is very
fast as the evaluation for the coefficients ci and hi are inde-
pendent of each other. However, for ones using compactly
supported radial basis functions, it is weak in repairing
incomplete regions in the sampled data sets. Although us-
ing adaptive support size as described in Section 4.2 can
somewhat overcome this drawback, enlarging the support
size always slows down the reconstruction. Moreover, an
implicit surface reconstructed by single-level CSRBFs only
has valid function values defined in a narrow band around
the surface S. Therefore, the grids used for polygonization
need to be smaller than the support size. This can further
reduce the speed of mesh surface reconstruction.

3.2 Multi-level quasi-interpolation

A multi-level quasi-interpolation method is presented here
to overcome problems mentioned above. Similar to
[28], we construct a multi-scale hierarchy of point sets
{V 1, V 2, · · · , VM = V } and refine fitting results by pro-
gressively adding basis functions according to the points
at different levels. A base function g0(x) = 0 is defined at
the coarsest level, and then recursively determines the set
of approximating functions gk(x) = gk−1(x) + δk(x) (k =
1, 2, · · · ,M) where gk(x) approximates a surface by the
points in V k. The shifting function δk(x) is defined by a
form introduced in the aforementioned single-level quasi-

interpolation as δk(x) =
∑nk

i=0
(cki + hk

i (x))ϕ
k
i (x), where

nk is the number of points in V k. Again, hk
i (x)s are local

quadratic approximations formulated by applying a least
square fitting to V k. The exact solution of the coefficients
can be determined by solving the system of linear equations
gk(x) = gk−1(x) + δk(x) = 0. Here, they are computed in
the manner of quasi-interpolation.

As in [28], we rewrite the linear system as

nk∑

i=0

cki ϕ
k
i (x) = −gk−1(x)−

nk∑

i=0

hk
i (x)ϕ

k
i (x). (9)

For any point v
k
i , we approximate its corresponding coef-

ficient cki by

cki = −gk−1(vi)−
nk∑

j=0

hk
j (vi)ϕ

k
j (vi). (10)

Here, we adopt the strategy in [28] to compute the
support size ρk and the subdivision levels M . The support
size ρk at level k is recursively defined by ρk = ρk−1/2 and
ρ1 = αL, where L is the diagonal length of the bounding
box of V , and the parameter α = 0.75 is chosen so that
an octant of the bounding box is always covered by a ball
of radius ρ1 centered somewhere in the octant. The shape
parameter µk is defined by µk = 4µk+1, and µM with M
being the number of subdivision levels is specified by users.
We found that a smooth surface can be reconstructed when
µM is a value of about 1

10
(ρM )2. The value of M can be de-

termined by ρ1 and ρ̂, where ρ̂ is equal to 3/4 of the average
diagonal length of the leaf cells that contain no more than
eight points of V . The equation M = ⌈− log2(ρ̂/(2ρ

1))⌉
provided in [28] is used to determine the number of levels.

4 Shape Parameter and Support Size

There are two free parameters, the shape parameter µ and
the support size ρ, in Eq.2 to control variational fitting re-
sults. As shown in Figs.1 and 2, reconstructed surface blurs
the local fits on the given points when enlarging the shape
parameter µ. For scattered points representing a complex
shape, using a fixed shape parameter µ for all points is not

(a) Points (b) µ = 0.1 (c) µ = 1.0 (d) µ = 2.0

(e) µ = 3.239 (f) µ = 6.0 (g) µ = 10.0 (h) µ = 20.0

Figure 1: Single-level quasi-interpolation with different shape
parameter µ. In (e), we set µ = 0.1ρ2

.

(a) Points (b) 0.00001 (c) 0.00196 (d) 0.01

Figure 2: Multi-level quasi-interpolation with different shape
parameters µM . In (c), we set µM = 0.1(ρM )2

appropriate. In fact, points with non-uniformities or holes
are quite common in practice. Using a fixed support size
ρ for all points may result in a failed reconstruction (see
Figs.5(d) and 5(g) for examples). In order to solve these
problems, we develop a scheme in this section to compute
these parameters in an adaptive way.

4.1 Shape parameter

Reconstructed surfaces are different when different values
of the shape parameter µ are used. We try to assign differ-
ent value to the shape parameter at each point vi and let
its value be determined by the intensity of a small vicinity
of vi. By setting µi = η2i , we can have λi = 1 at a point
vi. Then, the normalized radial basis function in Eq.2 has
a simpler form as

ϕi(x) =
φρ(λi‖x − vi‖)∑n

j=0
φρ(λj‖x − vj‖)

=
φρ(‖x − vi‖)∑n

j=0
φρ(‖x − vj‖)

.

(11)
As shown in Figs.3 and 4, the quality of surface recon-
structed in this way is similar to the exact RBF interpola-
tion when working on uniformly sampled points.

(a) (b) (c) (d) (e)

Figure 3: Comparisons between reconstructions by interpola-
tion and quasi-interpolation from the points of a sphere model:
(a) original points, (b) single-level CSRBF interpolation [28],
(c) single-level quasi-interpolation with adaptive shape param-
eters, (d) multi-level CSRBF interpolation [28], and (e) multi-
level quasi-interpolation with adaptive shape parameters.
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Table 1: Time statistics for models with large scale points.

Multi-Level Interpolation [28] Multi-Level Quasi-Interpolation
Fig. Model Number of Points Time (Sec.)

Time (Sec.)
One-core Eight-cores

6 Ramesses 570k 199.5 46.9 11
7 Budda 1,305k 1,004 110.8 25.3
8 Dancing children 2,174k 916 157 30.7
9 Statuette 5,000k failed 341.5 62.1
10 Dragon 7,219k failed 557.4 102.6

(a) (b) (c) (d) (e)

Figure 4: Comparisons between reconstructions by interpola-
tion and quasi-interpolation from points of Moai model: (a)
original points, (b) single-level CSRBF interpolation [28], (c)
single-level quasi-interpolation with adaptive shape parameters,
(d) multi-level CSRBF interpolation [28], and (e) multi-level
quasi-interpolation with adaptive shape parameters.

4.2 Adaptive support size

For points with high non-uniformity, as shown in Fig.5(b),
reconstruction fails when conducting the single-level quasi-
interpolation with a fixed support size for all points. Al-
though the multi-level quasi-interpolation method with
adaptive shape parameters can reconstruct surface suc-
cessfully, the surface is not smooth in regions with sparse
points (as shown in Fig.5(g)). This is because that the
support sizes at those sparse points are too small to have
enough points in its supporting field. Enlarging the sup-
port sizes globally is not reasonable as there will be too
many neighbors for the points in dense regions, which leads
to an expensive computation. In order to solve this prob-
lem, adaptive support sizes are adopted.

Based on the initial support size calculated by the
method described in Section 3.2, we adjust the support size
by considering the number of neighbors falling in a point’s
local support. Letting δ be the average number of points in
the initial support for every point (or setting the value of δ
by users), if the number of points falling in the support ρv
of a sample v is smaller than δ, we enlarge the support size
ρv by ρv = 1.1ρv and check the number of points in the
support again. The checking and enlarging are repeated
until there are not less than δ points in the local support ρv
of a sample point v. With adaptive support sizes, single-
level quasi-interpolation is immune to non-uniform sample
points while multi-level quasi-interpolation can reconstruct
smooth surfaces that successfully overcome the problem of
high non-uniformity in the given point set (see the exam-
ple shown in Fig.5). Note that, δ is the only parameter
needs to be specified by users in our approach. For highly
non-uniform noisy points, we always use δ = 16.

5 Results and Discusses

We have implemented the proposed method with Mir-
crosoft Visual C++ and OpenGL. Point sets having up
to several millions of points are used to test the method.
Mesh surfaces are generated from reconstructed implicit
surfaces by Bloomenthal’s method in [7]. All statistics pre-

(a) (b) (c) (d)

(e) (f)

(g) (h)

Figure 5: Reconstruction results by multi-level RBFs interpo-
lation and quasi-interpolation: (a) original mesh, (b) a non-
uniformly sampled point set from (a), (c) single-level CSRBF
interpolation [28], (d) single-level quasi-interpolation with adap-
tive shape parameters, (e) single-level quasi-interpolation with
adaptive shape parameters and adaptive support sizes (δ = 16),
(f) multi-level CSRBF interpolation [28], (g) multi-level quasi-
interpolation, and (h) multi-level quasi-interpolation with adap-
tive shape parameters and adaptive support sizes (δ = 16).

sented in this paper are obtained by tests running on a PC
with two Intel Xeon Quad E5440 CPUs at 2.83GHz plus
4GBytes RAM.

Figures 6, 7, 8 show the reconstruction results obtained
by our method proposed in this paper and the results of
exact RBF interpolation obtained by the method in [28].
We can hardly observe any visual difference between the
reconstructed surfaces. The numbers of points in these ex-
amples are around 0.57 million, 1.3 million, and 2.2 million
respectively. The statistics of computing times are listed
in Table 1. It is easy to find that our method is much faster
than the exact interpolation method in [28]. Moreover, as
the method presented in this paper can be parallelized, the
computing time can be further reduced when running on
a PC with multi-cores (see Table 1). Figures 9, 10 are two
other examples. There are around 5 million and 7.2 million
points respectively which illustrate that our method can
address large data. The computing times are 56.2 seconds
and 102.6 seconds respectively while the method in [28] is
failed for them.
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Figure 8: Reconstructions from the points of a dancing-children model: (left) input point cloud, (middle) surface reconstructed
by the interpolation method in [28], and (right) surface reconstructed by our quasi-interpolation method.

Figure 6: Reconstructions from the points of Ramesses: (left)
input point cloud with 570k points, (middle) surface recon-
structed by the interpolation method in [28], and (right) sur-
face reconstructed by our quasi-interpolation method. For the
illustration purpose, only 1/10 points are displayed in (left).

5.1 Quasi-interpolation with a given shape parameter

Figure 1 presents the result of applying our quasi-
interpolation method (single-level) to a small and simple
point set by using different shape parameters. When hav-
ing a smaller µ, there are obvious bump-like artifacts. It is
mainly due to the local approximation nature of this ap-
proach. Along with the increase of the shape parameter,
the surface becomes smoother and smoother. However, a
too large shape parameter makes the influence of a RBF
center abruptly decrease when the distance value is greater
than the support size. This results in a failed reconstruc-
tion. Figures 2 and 11 also demonstrate the same facts ap-
peared in multi-level quasi-interpolation. In our implemen-
tation, a good reconstruction surface was obtained when
the shape parameter was set as around 1/10 of the square
of the support size for a model, such as Fig.1(e), Fig.2(c),
and Fig.11(d). In practice, by the method presented in
Section 4.1, the shape parameter can be hidden for the
end-users of our surface reconstruction method.

5.2 Comparison with the exact CSRBF interpolation

To compare our quasi-interpolation method with the ex-
act interpolation method in [28], we apply both meth-
ods to a few models (see Figs.3, 4, 5 and 12). The re-
lated statistics are listed in Table 2. Figures 3, 4, 12
show the reconstructions by single-level CSRBF interpo-
lation [28], multi-level CSRBF interpolation [28], single-
level quasi-interpolation with adaptive shape parameters,
and multi-level quasi-interpolation with adaptive shape pa-

Figure 7: Reconstructions from the points of Buddha: (left)
input point cloud, (middle) surface reconstructed by the inter-
polation method in [28], and (right) surface reconstructed by
our quasi-interpolation method.

rameters. No obvious visual difference among them can be
observed. As shown in Table 2 where the shape approx-
imation errors are generated by the method presented in
[33], the reconstruction results obtained by [28] and ours
have shape errors in similar levels. However, our method
is much faster. Figure 5 shows the reconstruction results
from non-uniform points by multi-level quasi-interpolation
with adaptive shape parameters or/and adaptive support
sizes. If only adaptive shape parameters are adopted, the
quasi-interpolation method will generate a surface that is
not smooth in regions with highly sparse points. However,
a smooth surface can be obtained by using adaptive sup-
port sizes in our quasi-interpolation approach. Figure 5
also shows the results from single-level CSRBF interpo-
lation (Fig.5(b)) and single-level quasi-interpolation with
adaptive support sizes (Fig.5(c)), where the reconstruction
with a fixed support size is failed.

From the statistics of computing time listed in Table 2,
quasi-interpolation is about 2-4 times faster than exact
interpolation [28] even after using adaptive support sizes
(which can slow down the computation). In fact, paral-
lelizing the quasi-interpolation procedure on multi-cores
can further improve its efficiency – see the statistics shown
in Table 2.

5.3 Processing noisy point data

In order to illustrate the robustness of our method, we
tested it with a non-uniform and noisy point set shown
in Fig.13. To process noisy data, we extended our quasi-
interpolation scheme by introducing a regularization pa-
rameter Tk, the value of which depends on the hierarchy
level k. With this parameter Tk, the coefficients ci of our
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(a) original mesh (b) the samples from (a) (c) µ
M

= 0.001 (d) µ
M

= 0.0125 (e) µ
M

= 0.07

Figure 11: Reconstructions of a Bimba model by multi-level quasi-interpolation with different shape parameters µ. In d, we set
µM = 0.1(ρM )2

(a) (b) (c) (d) (e) (f)

Figure 12: Comparisons between reconstructions by interpolation and quasi-interpolation from points of a dog model: (a)
original mesh, (b) the sampling points from (a), (c) single-level CSRBF interpolation [28], (d) single-level quasi-interpolation with
adaptive shape parameters, (e) multi-level CSRBF interpolation [28], and (f) multi-level quasi-interpolation with adaptive shape
parameters.

Figure 9: Reconstructions from the points of a statuette model:
(left) input point cloud with 5M points, and (right) surface re-
constructed by our quasi-interpolation method. For illustration,
only 1/100 points are displayed in (left).

quasi-interpolation are determined by ci = fi/(1 + Tk).
From experimental tests, we found that good reconstruc-
tion results are obtained if setting Tk = 0.5k. For a noisy
and non-uniform point set, the method in [28] reconstructs
the surface (Fig. 13(b)) in 8.5 seconds. We apply our
adaptive multi-level quasi-interpolation to this data. The
threshold value for the adaptive support size was set as 10
(Fig. 13(c)) and 16 (Fig. 13(d)). The corresponding quasi-
interpolation is slower than the method in [28] on single
core (taking 9.5 and 12.8 seconds) but faster on eight cores
(with 2.3 and 2.9 seconds respectively). The larger the
threshold value is, the smoother the reconstructed surface
is and the longer reconstruction time is needed.

For a point set with large noises, a preprocessing pro-
cedure (e.g., [24]) can be applied to remove the outliers.
The resultant set retains only small noisy. A surface can
be reconstructed from it by our method proposed in this

Figure 10: Reconstructions from the points of a dragon model:
(top) input point cloud with 7.2M points, and (bottom) surface
reconstructed by our quasi-interpolation method. For illustra-
tion, only 1/100 points are displayed in (left).

paper. An example is shown in Fig.14.

5.4 Comparison with Poisson reconstruction and MPU

We also compared our results with Poisson reconstruc-
tion [21] and MPU method [27] on an Igea model (Fig.15)
with highly non-uniform points. As shown in Fig.15(c),
Poisson method can reconstruct very smooth surfaces.
However, the details can not be preserved well in sparse
regions. Some time the surface reconstructed by Poisson
reconstruction needs to be further process by mesh pro-
cessing techniques. In the implementation of Poisson re-
construction provided by authors, they adapt the octree to
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Table 2: The statistics for interpolation and quasi-interpolation methods.

Number Interpolation Quasi-interpolation Shape Approximation
Fig. Model Scale of Time(sec.) Error†

Points Time (Sec.) One core Eight cores µ δ Average Maximal
5(e) 5.8 1 Adaptive 16 0.0011 0.027
5(f) Max- 18 0.0011 0.023
5(g) Planck 3 0.7 Adaptive 0.00099 0.023
5(h)

3.12 67.4k

11 1.9 Adaptive 16 0.0011 0.027
11(b) 3.7 0.8 0.001 0.0076 0.12
11(c) Bimba 10 74.8k 3.6 0.8 0.01 0.0017 0.067
11(d) 3.2 0.7 0.07 0.015 1.19
12(c) 28 0.00067 0.013
12(d) 2.2 0.5 Adaptive 0.00018 0.0063
12(e) 31 0.00022 0.011
12(f)

Dog 1 195.6k

8.1 1.7 Adaptive 0.00021 0.011

†Note that the errors between the reconstructed results and the original mesh are generated by the method in [33].

(a) (b) (c) (d)

Figure 13: Reconstruction results on a noisy and non-uniform
point set: (a) original noisy points, (b) multi-level CSRBF
fitting result [28], (c) and (d) results from multi-level quasi-
interpolation with an adaptive shape parameter and adaptive
support sizes with different factors δ = 10 and δ = 16 respec-
tively.

Figure 14: Reconstruction results on a large noisy point set:
(left) original noisy points, (middle) the resultant point set af-
ter removing outliers [24], (right) result from multi-level quasi-
interpolation with an adaptive shape parameter.

the sampling density. Therefore, the refinement stops au-
tomatically when there are few points in a cell of the tree.
Based on this reason, the result of Poisson reconstruction
shows no significant difference even if the required levels
of refinement are assigned large. The results shown in this
paper are generated by the program provided by Kazhdan
et al. [21]. The reconstruction result of MPU method is
good but not as good as ours – see the color map of shape
approximation error generated by [33]. The statistics are
shown in Table 3. The surfaces reconstructed by Poisson
method and MPU method have already been the best re-
sults by choosing quite a few different parameters. During
contouring, we try to generate mesh surfaces with a similar
number of triangles.

Our method is similar to MPU method as both meth-
ods are based on local computation. A hierarchy of space

(a) Original (b) Points (c) Poisson recon. [21]

(d) MPU [27] (e) Our method

Figure 15: Reconstruction results on the points non-uniformly
sampled from an Igea model. The color maps show the shape
approximation errors on the results w.r.t. the original model.
The blue color is for zero error, the red color is for the errors
larger than 0.0067, and other colors denote the errors from 0.0
to 0.0067.

subdivision, partitions of unity, and local shape functions
are the common characteristics of these two methods.
There are also some differences between MPU method and
ours.

• MPU method is only a partition of unity method
while our method combines partition of unity method
(providing a basic approximation) with RBF fitting
(presenting more local details).

• MPU method adopts an adaptive subdivision based
on an octree hierarchy. It computes local approxima-
tions only at the leaf cells of the octree; therefore, it
is a local method. However, our method constructs a
group of multi-scale functions from coarse to fine lev-
els, and computes approximations at all levels which
lead to a global fitting result. An implicit function is
constructed in a bounding volume of a given point set,
rather than just being in a narrow band around the
surface as MPU. In Fig.16, there are cross sections of
three implicit functions created from points, Bimba
in Fig.11(d), Dog in Fig.12(f), and Igea in Fig.15(e).

6 Conclusion

In this paper, we present a CSRBF based quasi-
interpolation approach for reconstructing an implicit sur-
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Table 3: The statistics for three methods on an Igea model.

Number of Number of Shape Approximation Error‡
Fig. Model Scale

Points
Method

Resultant Triangles
Time† (Sec.)

Average Maximal
Poisson 751,498 39.1 (16.8) 0.0022 0.019

15 Igea 1 100.4k MPU 751,416 total 14 0.00081 0.0098
Our method 750,120 2.1 (42.8) 0.00062 0.0067

†The numbers in bracket refer to the time taken for the mesh generation from implicit surfaces. A method similar to the
adaptations of the Marching Cubes [25] to octree representations is used in Poisson reconstruction while the method [7] is used
in MPU and our reconstruction method. The mesh generation time for MPU is combined in its total reconstruction time.
‡Note that the errors between the reconstructed results and the original mesh are generated by the method in [33].

Figure 16: The cross sections of three signed distance fields:
(left) Fig.11(d) in the front view, (middle) Fig.12(f) in the front
view, and (right) Fig.15(e) in the right view. The colors show
different field values where blue denotes negative maximum and
red represents positive maximum.

face from scattered points. Our method is simple and
stable as it does not need to solve large linear equation
systems, which is a common step for almost all varia-
tional computation based surface reconstruction methods.
Quasi-interpolation based surface reconstruction method
demonstrates good performance on point sets with non-
uniformity and noises. The quasi-interpolation on every
data point can be computed independently so that the
surface reconstruction procedure can be easily parallelized
and run on a modern PC with multi-cores.

The limitations of our method are discussed below,
which relates to the plan of our future work. Our method
needs to construct a multi-scale hierarchy point sets which
consumes a lot of memory. As a result, the scalability
of our approach is not as good as MLS-based methods
(e.g., [1,5,17]). From Fig.15 and Tab.3, considering the as-
pects of computation time, accuracy and recovery of sharp
features, our method has not obvious advantage comparing
with the MPU method. When applying the current imple-
mentation of our method to a point set with sharp features,
all the sharp features are blurred on the reconstructed sur-
faces – therefore introducing large shape approximation
errors in the relevant regions. How to reconstruct more
accurate surfaces when the scattered data points contain
sharp features will be one of our near future works. The
strategy of prior work in [6] and [32] will be exploited.
Another possible work is to implement this reconstruction
method on the highly parallel architecture of GPUs. For
those data with large noises, our method can deal with it
after applying a preprocessing step (like [24]) on the input
data.
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