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Error-Bound, Comparison and Sub-Sampling for
Closed-form HRBF Surface Reconstruction

Shengjun Liu and Charlie C. L. Wang

Abstract—This technical report is a supplementary document for our work [1] for the closed-form formulation of HRBF-based
surface reconstruction. Detail formulas can be found in [1]. Here the proof of Lemma for error-bound analysis is provided, and the
comparisons with other methods on sets of clear data are given. To support reconstruction on input with highly non-uniformity, a
center selection method is also developed.

F

1 PROOF OF LEMMA

E RRORS between the quasi-solution λ̃ and the exact
solution λ must be bounded to make the closed-form

formulation useful. The following lemmas can be derived.

Lemma 1 Defining ∆A = (A+ ηI)−D and ∆λ = λ− λ̃,
the error of approximation is bounded as

‖∆λ‖∞ ≤
‖D−1‖∞‖∆A‖∞

1− ‖D−1‖∞‖∆A‖∞
‖D−1y‖∞ (1)

when
‖D−1‖∞‖∆A‖∞ < 1. (2)

Proof: By (A + ηI)λ = y, we have

(D + ∆A)(λ̃+ ∆λ) = y.

With the quasi-solution that λ̃ = D−1y, this equation can
be converted to

∆λ = D−1[−(∆A)λ̃− (∆A)(∆λ)].

Then, we apply a maximum norm and get

‖∆λ‖∞ ≤ ‖D−1‖∞(‖∆A‖∞‖λ̃‖∞ + ‖∆A‖∞‖∆λ‖∞),

which is also

(1− ‖D−1‖∞‖∆A‖∞)‖∆λ‖∞ ≤ ‖D−1‖∞‖∆A‖∞‖λ̃‖∞.

By the given condition ‖D−1‖∞‖∆A‖∞ < 1, we have

‖∆λ‖∞ ≤
‖D−1‖∞‖∆A‖∞

1− ‖D−1‖∞‖∆A‖∞
‖λ̃‖∞.

Combining with λ̃ = D−1y, the lemma has been proved. �

Assuming there are at most m other centers falling in
the support region for each kernel, the error-bound of our
quasi-solution can be achieved on the Wendland’s CSRBFs.

Lemma 2 When Wendland’s CSRBFs are used, if their
support sizes ρi ∈ [ρmin,

√
20] and each support region

• S. Liu is with State Key Laboratory of High Performance Manufac-
turing Complex and Institute of Engineering Modeling and Scientific
Computing, Central South University, Changsha, Hunan 410083,
China. E-mail: shjliu.cg@gmail.com

• C.C.L. Wang is with Department of Design Engineering, Delft Uni-
versity of Technology, The Netherlands. E-mail: c.c.wang@tudelft.nl

contains at most m centers of other CSRBFs, the value of
‖∆λ‖∞ is bounded by a constant when

1 + η > m(
5

4ρmin
+

35

ρ2min

). (3)

Proof: By the definition of the diagonal matrix D as

D = (Di,j)n×n,

Di,i = diag(1,
20

ρ2i
,

20

ρ2i
,

20

ρ2i
) + ηI4, Di,j = 0 (i 6= j).

(4)

we can have

‖D−1‖∞ = max
j=1,...,n

{ 1

1 + η
,

ρ2j
20 + ηρ2j

}.

The upper bound of ‖D−1y‖∞ can also be obtained from

λ̃ = D−1y

= { c
1+η

,
ρ21n1

20+ηρ21
, · · · , c

1+η
,
ρ2nnn

20+ηρ2n
}.

(5)

as

‖D−1y‖∞ = ‖λ̃‖∞

= max
j=1,...,n

{0,
ρ2jn

x
j

20 + ηρ2j
,

ρ2jn
y
j

20 + ηρ2j
,

ρ2jn
z
j

20 + ηρ2j
}.

Here, superscripts denote the x-, y- and z-components of a
vector in <3. When ρi > ρj > 0 and η ≥ 0,

ρ2i
20 + ηρ2i

=
1

20/ρ2i + η
>

ρ2j
20 + ηρ2j

=
1

20/ρ2j + η
.

As a result

‖D−1‖∞ ≤ max(
1

1 + η
,

ρ2max

20 + ηρ2max

)

‖D−1y‖∞ ≤
ρ2max

20 + ηρ2max

.

When ρj ≤ ρmax <
√

20, we can further obtain

‖D−1‖∞ =
1

1 + η
.

Now we derive the upper bound of ‖∆A‖∞. From Eq.(4)
and

A = (Ai,j)n×n,

Ai,j =

(
ϕ(pi − pj) −(∇ϕ(pi − pj))

T

∇ϕ(pi − pj) −Hϕ(pi − pj)

)
4×4

.
(6)
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using ϕi,j to denote ϕi(pj) = ϕ(pj −pi), we can also have

‖∆A‖∞ = max
j=1,...,n

{
m∑
i

(|ϕi,j |+ |
∂ϕi,j
∂x
|+ |∂ϕi,j

∂y
|+ |∂ϕi,j

∂z
|),

m∑
i

(|∂ϕi,j
∂x
|+ |∂

2ϕi,j
∂x2

|+ |∂
2ϕi,j
∂x∂y

|+ |∂
2ϕi,j
∂x∂z

|),

m∑
i

(|∂ϕi,j
∂y
|+ |∂

2ϕi,j
∂x∂y

|+ |∂
2ϕi,j
∂y2

|+ |∂
2ϕi,j
∂y∂z

|),

m∑
i

(|∂ϕi,j
∂z
|+ |∂

2ϕi,j
∂x∂z

|+ |∂
2ϕi,j
∂y∂z

|+ |∂
2ϕi,j
∂z2

|)}.

By the derivatives listed in Table 1 and their corresponding
upper bounds listed in Table 2, we can have

‖∆A‖∞ ≤ max
j
{m(1 +

15

4ρj
),m(

5

4ρj
+

35

ρ2j
)}

≤ max{m(1 +
15

4ρmin
),m(

5

4ρmin
+

35

ρ2min

)}.

When ρmin ≤ ρmax <
√

20, it can easily be further simplified
to

‖∆A‖∞ ≤ m(
5

4ρmin
+

35

ρ2min

) ≡ Ā.

Summarizing all the analysis together, we have

‖∆λ‖∞ ≤
Āρ2max

(1 + η − Ā)(20 + ηρ2max)
(7)

when ‖D−1‖∞‖∆A‖∞ ≤ Ā/(1 + η) < 1. To hold this, it
should have 1 +η > Ā – that is Eq.(3). The lemma has been
proved.

�

2 COMPARISONS ON CLEAN DATA

Here, we test the performance of our approach on sets of
clean points, which are uniformly sampled from polygonal
meshes. Four models, Ramesses, Raptor, Momento and
Neptune, are sampled into sets with 0.58M ∼ 4.98M
points. Our results are compared with three prior methods,
including the Multiple Partition of Unity (MPU) reconstruc-
tion [3], the Smooth Signed Distance (SSD) reconstruction [4]
and the Screened-Poisson reconstruction [5]. Comparisons are
shown in Fig.1. We employ the 10-th depth of octree in
the SSD and Screen-Poisson methods to generate results in
Fig.1. For MPU and our method, we adjust the resolutions
of polygonization methods to extract meshes with similar
numbers of triangles as SSD and Screened-Poisson. The
parameter Max Error of MPU is set as 0.001 times of the
model’s size. Default values are used for other parameters.
From observation, it can be found that geometric details
on the original mesh can be well preserved by our method
while being smoothed out in some prior methods. Publicly
available software, Metro tool [2], is employed to com-
pute the average shape approximation error between the
reconstructed surface and the original mesh. A bar chat of
errors is given in the upper-right of Fig.1. Our method can
always generate more accurate results than SSD and MPU.
Meanwhile, our results have similar accuracy comparing to
Screened-Poisson.

Table 3 gives the computational statistics of tests on
these models. We evaluate our methods on a PC with

TABLE 1
Derivatives of Wendsland’s CSRBF

ϕi(x) (1−
r

ρi
)4(4

r

ρi
+ 1)

∂ϕi(x)

∂x
−
20

ρ2i
(1−

r

ρi
)3(x− xi)

∂ϕi(x)

∂y
−
20

ρ2i
(1−

r

ρi
)3(y − yi)

∂ϕi(x)

∂z
−
20

ρ2i
(1−

r

ρi
)3(z − zi)

∂2ϕi(x)

∂x2
−
20

ρ2i
(1−

r

ρi
)3 +

60

ρ3i
(1−

r

ρi
)2

(x− xi)2

r

∂2ϕi(x)

∂y2
−
20

ρ2i
(1−

r

ρi
)3 +

60

ρ3i
(1−

r

ρi
)2

(y − yi)2

r

∂2ϕi(x)

∂z2
−
20

ρ2i
(1−

r

ρi
)3 +

60

ρ3i
(1−

r

ρi
)2

(z − zi)2

r

∂2ϕi(x)

∂x∂y

60

ρ3i
(1−

r

ρi
)2

(x− xi)(y − yi)
r

∂2ϕi(x)

∂x∂z

60

ρ3i
(1−

r

ρi
)2

(x− xi)(z − zi)
r

∂2ϕi(x)

∂y∂z

60

ρ3i
(1−

r

ρi
)2

(y − yi)(z − zi)
r

†Here, x = (x, y, z), r =
√

(x− xi)2 + (y − yi)2 + (z − zi)2 and
ρi is the support size of the radial basis function ϕi(x).

TABLE 2
Error Bounds of Derivatives

|ϕi(x)| ≤ 1

|
∂ϕi(x)

∂x
|, |

∂ϕi(x)

∂x
|, |

∂ϕi(x)

∂x
| ≤

20

ρi
(1−

r

ρi
)3
r

ρi

≤
5

4ρi
(with r = ρi

2
)

|
∂2ϕi(x)

∂x2
|, |

∂2ϕi(x)

∂y2
|, |

∂2ϕi(x)

∂z2
|, ≤

20

ρ2i
(1−

r

ρi
)2(1 + 2

r

ρi
)

≤
20

ρ2i
(with r = 0)

|
∂2ϕi(x)

∂x∂y
|, |

∂2ϕi(x)

∂x∂z
|, |

∂2ϕi(x)

∂x∂y
|, ≤

60

ρ2i
(1−

r

ρi
)2
r

ρi

≤
15

2ρ2i
(with r = ρi

2
)

‡The analysis is based on |x− xi| ≤ r, |y − yi| ≤ r and
|z − zi| ≤ r, and the bound is derived by using the inequality of
arithmetic and geometric means.

two Intel Core i7-2600K CPUs at 3.4GHz plus 16GB RAM.
Due to the close-form formulation, our method does not
need any global operation such as solving a large linear
system. Therefore, its computational time is only spent on
constructing an octree to computing the support size and
the step of function value evaluation in iso-surface extrac-
tion. Both SSD and Screened-Poisson need to solve linear
systems globally. In Poisson reconstruction, the multi-grid
solver performs a constant number of conjugate-gradient
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Fig. 1. Experimental tests on clean point cloud that is uniformly sampled from fours mesh models – (a) Ramesses (0.580M
pts.), (b) Raptor (1.00M pts.), (c) Momento (2.52M pts.) and (d) Neptune (4.98M pts.). For illustration, only 1/10 points are
displayed for the points of the first three models, and 1/20 points for the Neptune model. The reconstructions by different
methods including SSD, MPU, Screened-Poisson and ours are shown and compared in the left. A bar chat is also given to
report the average shape approximation errors on different reconstructions by the Metro tool [2]. We use sd̄ = 0.003 as the
support size and w = 0.001 for the grid width of polygonization in all examples here. To conduct a fair comparison, similar
number of triangles are generated through the polygonization for different approaches.

iterations at each level, which gives linear complexity w.r.t
to the number of nodes in the octree. The SSD reconstruction
uses conjugate-gradients to determine all the coefficients
simultaneously, which has a complexity of O(n1.5). This
leads to a significantly slower performance on models with
large number of points (see Table 3). In MPU reconstruction,
only local fitting is taken at leaf-nodes of an octree. These
surfaces are blended together to form the resultant surface,
which is fast but still slower than ours. Moreover, our
method generates results with smaller shape approximation
error than MPU (see Fig.1). In summary, our method is the
fastest method and can generate similar results as the best
of other three in terms of quality.

It is also interesting to study the error between λ̃ and
λ. We measure ‖λ̃ − λ‖∞ in examples shown above and
the results are listed in Table 4. The numerical solver for
computing the exact solution runs out of memory on the
two examples – Momento and Neptune in Fig.1. Thus, the
errors cannot be evaluated. The statistics on Ramesses and
Raptor show very small difference between λ̃ and λ.

3 CENTER SELECTION

This is an optional step to be applied when high non-
uniformity is observed on the input points. For such a
point set, the direct reconstruction by using all points as
centers of CSRBFs results in a reconstruction with holes in
the sparse regions (see Fig.2(b) for an example). Here, we

TABLE 3
Runtime performance of different reconstruction approaches

on clean point sets†

Time in Seconds∗
Model Pts. SSD MPU Poisson Ours
Ramesses 0.58M 14,314 61.2 40.8 8.3
Raptor 1.00M 1,799 47.2 31.6 6.8
Memento 2.52M 24,195 138.8 92.6 20.4
Neptune 4.98M 6,772 139.4 114.0 18.9
∗Note that, the time reported here includes both the surface
reconstruction and the mesh extraction.
†To have a fair comparison, similar number of triangles are
generated for different approaches.

TABLE 4
Error Statistics of Quasi-Solution

Model η ‖λ‖∞ ‖λ̃‖∞ ‖λ̃− λ‖∞
Ramesses 4.57E + 5 2.15E − 6 2.16E − 6 9.52E − 8

Raptor 1.67E + 6 6.06E − 7 5.98E − 7 1.98E − 8

adaptively select samples from P and N to form a subset C.
The Hermite points in C will be used as centers of HRBF in
the above method to obtain a better surface reconstruction.
Each center, ck, is also associated with a radius, rk, which
therefore forms a local spherical cover of the given points.
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Fig. 2. Adaptive HRBF implicits are generated by our method with the help of center selection: (a) the input set with 100, 371
points in high non-uniformity, (b) the reconstruction using all points as centers of HRBF implicits will lead to holes in the
sparse regions, (c) the spherical cover – the spheres are displayed in radii as 1/4 of the real ones, (d) the selected 13, 446
centers of RBFs, and (e) reconstruction from the selected centers – no hole will be generated as the densities of centers in
the left and the right are similar to each other.

Definition 2 The degree of coverage (DoC) at a point x ∈ <3

is defined as a function

g(x) =

l∑
k=1

φrk (‖x− ck‖) (8)

according to a set of down-sampled Hermite points, C =
{c1,n1, · · · , cl,nl}.

We wish to generate a minimal spherical cover by control-
ling DoC in an iterative procedure.

The basic idea of center selection is to form spherical
covers by letting DoC at every point in P not less than
a criterion gmin (i.e., ∀pj ∈ P, g(pj) ≥ gmin). To this end,
the following steps are iteratively run until the criterion is
satisfied at all points.

1) In the initial step, C = ∅ and gj = 0 is assigned to all
points pj ∈ P .

2) Randomly selecting $ points with their DoCs less than
gmin. Among these $ points, the point with the smallest
g(·) is chosen as a center ck to add into C together with
its normal vector.

3) The radius rk of sphere centered at ck is then deter-
mined by a quadric-error function

q(ck, rk) =

∑
j δjφrk (‖pj − ck‖)(nj · (ck − pj))

2∑
j δjφrk (‖pj − ck‖)

,

which evaluates how curved the surface inside the
sphere is – the shape is represented by sample points in
P . In other words, for a highly curved region, a sphere
with smaller rk should be used to reduce the error.
Here, δj is the average of the squared distances between
a point pj and its 15 nearest neighboring points. The
value of δj indicates a weight of point density. The bi-
sectional search is taken to obtain a maximal rk that
still satisfies

q(ck, rk) ≤ qerrL̄
with L̄ being the diagonal length of the input points’
bounding box.

4) Updating DoC at all points pj within the range ‖pj −
ck‖ < rk while g(pj) < gmin. DoC of ck is assigned
as gmin to avoid being selected as candidates of centers
once again.

5) Go back to step 2) until DoC at all points are not less
than gmin.

Note that, this iterative procedure is a variant of our prior
work in [6] with certain modification to fit the formulation
of CSRBF. The efficiency of computation has also been
improved. An example result of our minimal spherical
covering is shown in Fig.2(c), where the selected centers of
RBFs are displayed as spheres. Colors are used to represent
the sizes of spheres with red for the smallest and blue for the
biggest ones. Samples adaptive to the geometric details have
been illustrated as Fig.2(d). In all examples of this paper,
gmin = 1.5, qerr = 5× 10−4 and $ = 15 work well.

With the centers selected above, a reduced implicit func-
tion can be obtained by

f̃(x) = −
n∑
j=1

〈
ρ2j

20 + ηρ2j
nj ,∇ϕ(x− pj)〉. (9)

but with fewer centers of CSRBFs. After applying the center
selection step, the density of centers at each region becomes
compatible to its neighboring regions – i.e., no sharp change.
As a result, a better reconstruction can be obtained (see the
result shown in Fig.2(e)).
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