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MINIMUM AREA CONVEX PACKING OF TWO CONVEXPOLYGONSKAI TANG�Department of Mehanial EngineeringHong Kong University of Siene and Tehnology, Clear Water BayKowloon, Hong Kong, P.R. Chinamektang�ust.hkCHARLIE C. L. WANGDepartment of Automation and Computer-Aided EngineeringChinese University of Hong Kong, Shatin, N.T., Hong Kong, P.R. Chinawang�aae.uhk.edu.hkDANNY Z. CHENDepartment of Computer Siene and EngineeringUniversity of Notre Dame, Notre Dame, IN 46556, USAhen�se.nd.eduReeived 11 August 2004Revised 22 November 2005Communiated by JSB MithellABSTRACTGiven two onvex polygons P and Q in the plane that are free to translate and rotate,a onvex paking of them is the onvex hull of a plaement of P and a plaement ofQ whose interiors do not interset. A minimum area onvex paking of P and Q is onewhose area is minimized. The problem of designing a deterministi algorithm for �ndinga minimum area onvex paking of two onvex polygons has remained open. We addressthis problem by �rst studying the ontat on�gurations between P and Q and theiralgebrai strutures. Cruial geometri and algebrai properties on the area funtion arethen derived and analyzed whih enable us to suessfully disretize the searh spae.This disretization, together with a deliate algorithmi design and areful omplexityanalysis, allows us to develop an eÆient O((n +m)nm) time deterministi algorithmfor �nding a true minimum area onvex paking of P and Q, where n and m are thenumbers of verties of P and Q, respetively.Keywords: Convex paking; minimum area; onvex polygon; ontat on�guration; on-�guration spae.�Corresponding author. 1
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2 K. Tang, C.C.L. Wang, and D.Z. Chen1. IntrodutionThis paper studies the problem of paking two onvex polygons by a minimum areaonvex polygon. Given two arbitrary onvex polygons P = hP0; P1; : : : ; Pn�1i andQ = hQ0; Q1; : : : ; Qm�1i in the plane, suh that P and Q are free to translate androtate, a onvex paking (or paking for brevity) of them is the onvex hull of aplaement of P and a plaement of Q whose interiors do not interset. A minimumarea onvex paking (or minimum paking) of P and Q then is one whose areais minimized. When ast with di�erent objetives and onstraints, this minimumpaking problem �nds appliations in a variety of problems, suh as the Pallet Load-ing problem,6;17;8;19 the Cutting-Stok problem,1;9 the Bin-Paking problem,3;13;4and the Assortment problem.5;11;12;10 From a theoretial point of view, it will bemeritorious if an exat and deterministi algorithm an be found for omputing aminimum paking eÆiently. Earlier work on this problem all has a sub-optimalnature, suh as either �xing the orientation between P and Q7 or enlosing theobjets by retangular boxes.16;14 Whether there exists a deterministi algorithmfor �nding a true minimum paking of two arbitrary onvex polygons P and Q hasremained open.We present an O((n + m)nm) time deterministi algorithm for �nding a trueminimum paking of two onvex polygons P and Q, thus providing an aÆrmativeanswer to this open problem. Our algorithm is based on a areful geometri analysisof the on�gurations of the onvex paking whih leads to a haraterization of someritial geometri and algebrai properties on the area funtion of the paking.These properties disretize the searh spae and thus allow us to searh amongonly a �nite number of the paking on�gurations. An eÆient algorithm is thendeveloped to perform this searh to �nd a true minimum area paking, whih, basedon a areful omplexity analysis, takes O((n+m)nm) time and linear spae.The rest of the paper is organized as follows. After giving neessary de�nitionsand preliminaries, Setion 2 derives the analytial formation of a speial ontaton�guration spae alled mosai map, and determines the area funtion A(�; t)of the paking in a mosai map. Detailed mathematial desription of the areafuntion is given in Setion 3, whih helps lead to an important disovery on thearea funtion | the area funtion an obtain a minimum only at a �nite number ofspeial points in the mosai map. Setion 4 gives a deliate algorithm that eÆientlysearhes through these �nite speial points and �nds one with the minimum area.A areful analysis on the omputation and omplexity of the algorithm is presentedin Setions 5 and 6 that ensures the O((n +m)nm) upper-bound on the runningtime of the algorithm. Finally, we show some implementation results (Setion 7)and onlude the paper (Setion 8).2. PreliminaryLet a plaement of P and a plaement of Q be said to be in ontat of (or touh)eah other if they touh eah other on their boundaries only (i.e., their interiors do
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Fig. 1. Two onvex polygons in ontat at PC and QCLQCR.not interset). We an assume that Q is �xed, while P an move freely but keeps inontat with Q. The ontat on�guration spae of P and Q is the set of all possibleplaements of P that are in ontat with Q. Without loss of generality, it an befurther assumed that a minimum paking of P and Q is realized by a plaementof P that has a vertex in ontat with an edge of Q. Consider the on�gurationthat P and Q are required to be in ontat at a vertex PC and an edge QCLQCR,as shown in Fig. 1. There are two parameters, t and �, that ompletely determinesuh a ontat. The parameter t is used to speify the position of PC on QCLQCR,with t = kPCQCLkkQCRQCLk 2 [0; 1℄. The parameter � is used to determine the orientationbetween P and Q. When � hanges, P rotates around the point PC . Sine theinteriors of P and Q are not allowed to interset, all verties of P an be assumedto lie above the ontat edge of Q (when PC is at QCL or QCR), and � must satisfy� 2 [0; � � �℄, where � = \PC�1PCPC+1. The four speial verties, PL, PR, QL,and QR, are alled hull verties, and they form a hull-quadruple. The two speialedges on the paking | PLQL and PRQR | are alled link edges. The followingde�nition is in order.De�nition 1. A hull on�guration is a subspae in the ontat on�guration spaeof P and Q suh that the ontat vertex of P , the ontat edge of Q, and the hull-quadruple all remain the same.
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4 K. Tang, C.C.L. Wang, and D.Z. ChenHereafter it will be assumed that the ontat vertex PC and the ontat edgeQCLQCR are �xed; onsequently, a hull on�guration is ompletely determined bythe hull-quadruple. The set of points in the � � t domain [0; � � �℄ � [0; 1℄ thatrealize a same hull on�guration will be referred to as a ell. Coneivably, a ellis a ontiguous region. Sine every (�; t) point in [0; � � �℄ � [0; 1℄ orrespondsto a hull on�guration, the � � t domain [0; � � �℄ � [0; 1℄ is thus a partitioningmade of ells, whih will be alled a mosai map. As an example, for the ontatvertex P6 and the ontat edge Q0Q1 shown in Fig. 2(a), their mosai map isdepited in Fig. 2(b), where the hull-quadruple of eah ell is shown embedded inthe ell. Note that a mosai map, in fat, is oneptually a planar struture alledarrangement in omputational geometry2; but as we will show later, by exploitingthe geometri properties of the problem, our algorithm is able to avoid omputingthe entire struture of the arrangement. As learly revealed in the above example,exluding those points on the boundary of the domain [0; ���℄�[0; 1℄, the boundaryof a ell onsists of some ontinuous urves, whih will be referred to as extremeurves. Expliitly, all points on a same extreme urve orrespond to an extreme hullon�guration where a urrent hull vertex is about to be replaed by a new vertex.Geometrially, this designates a ontat situation when an edge of P or Q beomesollinear with a link edge, as entailed below.De�nition 2. A point (�0; t0) 2 [0; ���℄� [0; 1℄ is alled a PL-extreme point in the� � t plane if the hull vertex QL is ollinear with either the edge PLPL�1 or edgePLPL+1. Similarly, (�0; t0) is a QL-extreme point if the hull vertex PL is ollinearwith one of the two edges QLQL�1 and QLQL+1. Analogously, we de�ne the othertwo types of extreme hull on�guration points, whih are all listed in Table 1.Table 1. Extreme hull on�guration points.Type of ollinear on�guration points Geometri onditionPL-extreme point QL is ollinear with PLPL�1 or PLPL+1PR-extreme point QR is ollinear with PRPR�1 or PRPR+1QL-extreme point PL is ollinear with QLQL�1 or QLQL+1QR-extreme point PR is ollinear with QRQR�1 or QRQR+1For instane, in the example given in Fig. 2, the ell of hull-quadruple P0 �P4 �Q7 �Q3 and the ell of P0 � P5 �Q7 �Q3 share an extreme urve of the PRtype; on this urve, both the verties P4 and P5 are the PR vertex. Also exempli�edby the example, whih will beome lear later, is the fat that every end point ofthe extreme urves, exept those on the boundary of [0; � � �℄ � [0; 1℄, is sharedby exatly four ells. We all the end points of the extreme urves ritial points.Obviously, at a ritial point in the open domain (0; � � �) � (0; 1), two edges ofP and/or Q are involved in the ollinearity ondition, e.g., the ritial point inFig. 2(b) shared by the ells of the four hull-quadruples | P0 � P4 � Q7 � Q3,
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Fig. 2. Example of the mosai map of a pair of ontat vertex and edge: (a) Two onvex polygons,and (b) Mosai map of pair P6 �Q0Q(1).P0�P5�Q7�Q3, P0�P4�Q8�Q3, and P0�P5�Q8�Q3 | de�nes a ontaton�guration as shown in Fig. 3(a), where the edges P4P5 of P and Q7Q8 of Qare ollinear with the QR vertex Q3 and the PL vertex P0, respetively. A hull-quadruple ould degenerate into a triangle, whih orresponds to the ase whentwo ritial points are oinident (e.g., the example in Fig. 3(b)).
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Fig. 3. Geometri interpretation of a ritial point: (a) a general ase, and (b) an extreme ase.The last item to be de�ned is the area funtion of the paking. For any point(�; t) 2 [0; � � �℄� [0; 1℄, let Ahull(�; t) denote the area of the paking of P and Qorresponding to the parameter (�; t). Referring to Fig. 1,Ahull(�; t) = A(PLPCQL) +A(PRPCQR) + A(PCQLQR)+A(PCPL : : : PR) +A(QLQL�1 : : :QR+1QR)where we use A(v1v2 : : : vn) to represent the area of a losed polygon with ver-ties v1; v2; : : : ; vn. When (�; t) is restrited to be within a ell, the hull-quadrupleremains the same, and hene the last two items in the above expression are on-stants. Therefore, as a funtion of (�; t), we only need to onsider the area of thethree triangles.Atri(�; t) = A(PLPCQL) +A(PRPCQR) +A(PCQLQR) (1)It is trivial to verify that the funtion Atri(�; t) is ontinuous in the entire domain[0; � � �℄� [0; 1℄. In addition, within eah single ell, Atri(�; t) is C1 ontinuous inboth � and t. In the next setion, a ruial property of Atri(�; t) will be shown: thefuntion Atri(�; t) an ahieve a minimum only at some ritial points in [0; � ��℄� [0; 1℄.3. Minimum Paking Area and Searh Spae DisretizationLet us de�ne two types of iso-parametri urves on the surfae Atri(�; t) given inEq. (1): the t-urve that is the funtion Atri(�; t) when parameter � is �xed atsome �0, and the �-urve, i.e., Atri(�; t0), for some �xed t0. The following propertyis introdued.
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Fig. 4. Proof of Property 1.Property 1. The surfaeAtri(�; t) is a ruled surfae and its t-urves are therulings.Proof. As shown in Fig. 4, �rst we �x �, and then move the ontat vertex PCalong the ontat edge QjQj+1to a new position P 0C by a distane �t, with the newtriangle areaA0tri(�; t) = A(P 0LP 0CQL) +A(P 0RP 0CQR) +A(P 0CQLQR)= A(PLPCQL) +A(P 0LPLPCP 0C) +A(P 0CPCQL)�A(P 0LPLQL) +A(PRPCQR) +A(P 0RPRQR)�A(P 0RPRPCP 0C)�A(P 0CPCQR) +A(PCQLQR) +A(P 0CPCQR)�A(P 0CPCQL)Sine kPLP 0Lk = kPRP 0Rk = kPCP 0C j = �t, we have�A = A0tri �Atri= A(P 0LPLPCP 0C) +A(P 0CPCQL)� A(P 0LPLQL) +A(P 0RPRQR)�A(P 0RPRPCP 0C)�A(P 0CPCQR) +A(P 0CPCQR)�A(P 0CPCQL)i.e., �A = hPL + hQR � hPR � hQL2 �t: (2)The above equation indiates that any t-urve is linear in t, and onsequently thesurfae Atri(�; t) is ruled.As a diret onsequene of Property 1, Atri(�; t) an ahieve its minimum onlyon the boundary of its parameter domain, as stipulated below.
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Fig. 5. Rotating a triangle about a shared vertex.Corollary 1. The minimum of funtion Atri(�; t) ours only on the boundary ofthe ell in whih the funtion is de�ned.Next, we provide a useful lemma on the area of the paking of two trianglessharing a ommon vertex. Referring to Fig. 5, suppose initially the edge p1v oftriangle �p1p2v overlaps with edge q1v of triangle �q1q2v, and the initial angle\p2vq2is � (Fig. 5(a)). The triangle �p1p2v is then rotated lokwise about theshared vertex v (Fig. 5(b)). Considering the sum A(�) of the areas of the twotriangles �p1vq1 and �p2vq2 as a funtion of the rotation angle �, we have thefollowing lemma.Lemma 1. The minimum of funtion A(�): � 2 [0;�℄ ours only at A(0) or A(�).Proof. We haveA(�) = 12 lp1vlq1v sin(�) + 12 lp2vlq2v sin(�� �) (3)whose 1st derivative isA0(�) = 12 lp1vlq1v os(�) � 12 lp2vlq2v os(�� �) (4)and we an also determine its 2nd derivative asA00(�) = �12 lp1vlq1v sin(�)� 12 lp2vlq2v sin(�� �) (5)Sine both � and ��� are internal angles of two valid triangles �p1q1v and �p2q2v,we have 0 � � � � and 0 � �� � � �. The seond derivative of A(�) thus remainsnegative in � 2 [0;�℄, whih means it annot have a minimum in the open domain� 2 (0;�). There are two extreme ases: 1) � > � and 0 < ��� < �, or 2) 0 < � < �and �� � > �. However, when suh a ase ours, for ase 1), the area funtion inEq. (1) degenerates toAtri(�; t) = A(PRPCQR) +A(PCQLQR)
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Minimum Area Convex Paking of Two Convex Polygons 9where A(�) = 12 lp2vlq2v sin(� � �) leads to A00(�) = � 12 lp2vlq2v sin(� � �) < 0; forase 2), Atri(�; t) = A(PLPCQL) +A(PCQLQR)and similarly, A(�) = 12 lp1vlq1v sin(�) leads to A00(�) = � 12 lp1vlq1v sin(�) < 0.With Lemma 1, the following property on the other iso-parametri urve, the�-urve, is established.Property 2. The �-urve of surfae Atri(�; t), i.e., Atri(�; t0) with � 2 [0; ���℄,is either stritly monotone, or �rst stritly inreases and then stritly dereases.Proof. Referring to Fig. 1, when t is �xed, only the areas of the two trianglesA(PLPCQL) and A(PRPCQR) hange when � varies. The geometri on�gurationof these two triangles is however idential to that given in Fig. 5. Due to Lemma1, thus, Atri(�; t) annot have a minimum in the open domain � 2 (0; � � �) with� = \PC+1PCPC�1 � \PLPCPR. Furthermore, sine � > 0, Atri(�; t) an have atmost one maximum in � 2 (0; � � �).Before proeeding further, it is imperative to ensure that the set of all mosaimaps overs the entire ontat on�guration spae. To illustrate the importane ofthis, Fig. 6(b) displays a partiular ontat on�guration in whih P and Q sharea ommon vertex v. By inferring from Fig. 6(a) and 6(), it is obvious that thison�guration belongs to neither the mosai map of v � e1 nor the mosai map ofv � e2. However, if we swith the roles between P and Q and let Q move aroundthe stationary P , then we an show that the ontat of Fig. 6(b) must lie in one ofthe mosai maps of v � E1 or v � E2. To see this, refer to Fig. 6(d); in order fora ontat on�guration (in whih the two polygons share the vertex v) not to beovered by any one of the mosai maps of v � e1 and v � e2, the inequality � < �must hold so that there exists a on�guration with P overing both sides of theedges e1 and e2. On the other hand, in order for this ontat on�guration to beovered by the mosai maps of neither v�E1 nor v�E2, we must have � > �. Theonly possibility is � = �, in whih ase the orresponding ontat on�guration isa orner point in a mosai map, as manifested in Fig. 6(e).Having assured the equivalene between the union of the mosai maps and theontat on�guration spae, we next prove that no orner point, i.e., (0; 0), (0; 1),(���; 0), and (���; 1) (the ases shown in Fig. 7), in any mosai map an ahievethe minimum area unless it is on some extreme urve. This relieves us from worryingabout those points at the orners of mosai maps, whih in turn will help reduethe time omplexity of the �nal algorithm tremendously. Hereafter, we use Amin todenote the area of a minimum paking of P and Q.Lemma 2. If the minimum area Amin is ahieved by a paking C orrespondingto a orner of a mosai map, then this orner point must be on an extreme urve.
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Fig. 6. Contat on�guration not overed by mosai maps.Proof. It is easily disernible that any of the four orners of a mosai mapan be geometrially ategorized as one of the two patterns, namely, \dangling"and \overlapping", shown as paking C in Fig. 7(a) and 7(b), respetively. In thease of a \dangling" C, aording to Lemma 1, we an rotate P about the sharedvertex v, either lokwise or ounter-lokwise depending on in whih diretion thearea funtion dereases, and have the omfort of knowing that after rotating asmall angle �� the resulting paking C 0 will have less area than that of C. For thelatter ase when C is of the \overlapping" pattern, by Property 1, we translate P ,either to the left or right (again depending on in whih diretion the area funtiondereases), by a small distane �t to get a new paking C 0 whose area is assuredto be smaller than that of C.The above analysis is valid as long as �� or �t exists; that is, during the move-ment of �� or �t, the hull-quadruple remains the same. Sine the hull-quadruplehanges only on extreme urves (for example, Fig. 7() and 7(d)), we have provedour lemma.We note on the proof of Lemma 2 that the example given in Fig. 7(d) for the\overlapping" ase is indeed of an extreme nature, albeit a degenerate one, as inthis ase the hull vertex PL of P oinides with the hull vertex QL of Q. (Notiethe important di�erene between (b) and (d) in Fig. 7: In (b), the hull vertex PLdoes not oinide with the hull vertex QL, whereas in (d) they do.) Also as theproperties 1 and 2 are held, the min-area paking annot be ahieved at a point onone of the 4 edges of a mosai map that is not on an extreme urve.We are now ready to present a key result that ompletes the task of the searhspae disretization, by eliminating the interior points on any extreme urves fromthe searh spae. We have the following lemma.Lemma 3. The minimum area paking annot be obtained in the interior of anyextreme urve.
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Fig. 7. Proof of Lemma 2: (a) \dangling", (b) \overlapping", () extreme \dangling", and (d)extreme \overlapping".Proof. We only prove the lemma for the QR-extreme ase, and the other threeextreme ases an be analyzed analogously. Let �(s) be aQR-extreme urve betweentwo ells �1 and �2, and A1 and A2 be the area funtion Ahull de�ned on thetwo ells respetively, where s is the ar length of urve �. Obviously, on �, A1and A2 agree with eah other, i.e., A1(s) = A2(s) for all points on �. Supposethat the univariate funtion A1(s) (A2(s)) obtains a loal minimum at an interiorpoint (t0; �0) = �(s0) of �. Without loss of generality, let Q1Q2 be the edge thatontributes to the QR-extremity. To make a loal minimum, referring to Fig. 8(a)and (b), at point (t0; �0), aording to Eq. (2), we should have�A1�t ��(�0;t0) = d12 +K < 0and �A2�t ��(�0;t0) = d22 +K > 0where d1 and d2 are the hQR length for ells �1 and �2 respetively, and K is12 (hPL � hPR) + hQL . Sine d2 is always larger than d1, the above two inequalitiesindiate that there is a unique point Q�2 on edge Q1Q2 suh that the hQR length d�of it leads to d�2 +K = 0, as shown in Fig. 8(). Now, suppose we replae the originalpolygonQ with the new one Q� obtained fromQ by replaing its vertexQ2 with Q�2,whih also alters funtions A1 and A2 to A�1 and A�2 respetively. It is not diÆult tosee that, as an be validated from the formulas in Setion 5.1| Eq. (13), for the newpolygon Q� the original QR-extreme urve � remains unhanged loally. Moreover,
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Fig. 8. Proof of Lemma 3.funtion A�1 only di�ers from A1 by a onstant (the area of the shaded trianglein Fig. 8()). Therefore, (t0; �0) = �(s0) is still expeted to be a loal minimumpoint of A�1(s). Sine A�2(s) and A�1(s) are the same, (t0; �0) = �(s0) should also bea loal minimum point of A�2(s). By lassial optimization theory of multivariatefuntions, the tangent to urve � at (t0; �0) = �(s0) thus should be perpendiular toboth the gradients of A�1 and A�2, whih means �A�1�t ���(�0;t0) = k �A�2�t ���(�0;t0), where k isjust some negative number. However, this equality annot hold sine �A�2�t ���(�0;t0) =d�2 +K = 0 but �A�1�t ���(�0;t0) = d12 + K < 0 6= 0. Therefore, point (t0; �0) = �(s0)annot be a loal minimum on A�1(s) and A�2(s), a ontradition.With Lemmas 2 and 3, and Properties 1 and 2, we onlude the setion bythe following theorem, in whih the ritial points are the intersetions of extremeurves on the mosai map.Theorem 1. A minimum area paking C of P and Q an be obtained only atertain ritial points in some mosai maps.
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Fig. 9. Types of states: (a) and () General states; (b) singular state.4. Details of the AlgorithmThe suessful disretization of the searh spae as stipulated by Theorem 1 enablesus to develop a deterministi method for �nding a minimum paking | there areonly a �nite number of ritial points in all mosai maps. Our next task is then todesign an eÆient algorithm to perform this deterministi searh.Refer to Fig. 9. Again, suppose Q is �xed while P an be rotated and translated.Also assume that the rightmost edge of Q is vertial (on line L). Consider all thosepakings C whose hull vertex PR lies on line L. Then a general on�guration of Can be spei�ed by a 5-tuple:< E(P ); E(Q); vL(P ); vR(P ); vL(Q) >where E(P ) and E(Q) stand for the boundary entities (verties or edges) on Pand Q that are in ontat with eah other, vL(P ) and vR(P ) are respetively thetwo hull verties PL and PR on P , and vL(Q) is the orresponding hull vertex QLon Q. We all suh a 5-tuple a state of C. A state is said to be singular if one ormore of the following types our:(1) both E(P ) and E(Q) are verties;(2) both E(P ) and E(Q) are edges;(3) some vertex Pi, in addition to vR(P ), lies on line L;(4) some vertex Pi is ollinear with vL(P ) and vL(Q);(5) some vertex Qi is ollinear with vL(P ) and vL(Q).A 5-tuple that is not singular is alled a general state, e.g., the states shown inFig. 9(a) and 9(), whereas the state given in Fig. 9(b) belongs to the singular type(2). Geometrially, singular states of type (1) orrespond to those ritial points onthe boundary t = 0 or t = 1 of a mosai map, and type (2) singular states pertainto ritial points on the boundary � = 0 or � = � � �. All the last three typesare assoiated with the interior ritial points in the mosai map (i.e., the ritialpoints not on the 4 edges of a mosai map), where an interior ritial point is the
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Fig. 10. A state of bottom-support type.intersetion between the QR-extreme urve and a PR-extreme urve (type (3)), ora PL-extreme urve (type (4)), or a QL-extreme urve (type (5)).A state as exempli�ed by Fig. 9 atually belongs to the ategory of top-supporttype, as the hull vertex PR is above the hull vertex QR on line L. Aordingly, astate an also be in the bottom-support ategory, as shown in Fig. 10, where PRis below QR. With both top- and bottom-support types de�ned, and by swithingthe roles between P and Q, based on Theorem 1, it immediately follows that anyminimum paking must orrespond to some singular state of the top-support orbottom-support type.We distinguish a state from its instanes. An instane of a state is a spei�plaement of P that meets the 5-tuple ondition of that state. Obviously, a generalstate has an in�nite number of instanes, whereas any singular state has exatlyone (isolated) instane. An instane of state Si thus an be represented as (Si; �),where � is the �-value of the plaement of P in the mosai map assoiated with Si.The following lemma is then given.Lemma 4. The set of all instanes of any state Si forms exatly a ontiguousportion on an extreme urve in some mosai map.Consider using vertial lines (i.e., � is a onstant) to ut the extreme urves ina mosai map; then the part between two intersetions belongs to the same generalstate, and the intersetion points are on singular states. Similarly, when horizontallines are used (i.e., t is a onstant on the line), we an draw the same onlusion| the part between two intersetions represents the same general state. Togetherwith the de�nitions of extreme urves, the above lemma an be easily proved.Next, let fS0; S1; : : : ; SK�1g be the set of all distint top-support general (non-singular) states of C (restrited with respet to the vertial line L), sorted aordingto P 's orientations of their instanes, in whih the verties of P touh the line L inthe ounterlokwise order. State Si is alled the suessor state of state Si�1,
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Minimum Area Convex Paking of Two Convex Polygons 15and Si�1 is alled the predeessor state of state Si (i � 1 and i mod K). Forexample, the state shown in Fig. 9() sueeds the state given in Fig. 9(a). We willuse next(Si) to denote the suessor state of Si, i.e., Si+1 = next(Si). It is easyto see that between two onseutive states Si and Si+1, there is one and only onesingular state, e.g., the state in Fig. 9(b) is the sole singular state between the twostates shown in Fig. 9(a) and 9(). As to be shown in the next setion, given Si, itsensuing singular state is uniquely determined. Let us use singular(Si) to denotethe singular state between Si and next(Si).We are now ready to present the outline of our algorithm for �nding a minimumarea onvex paking of P and Q. The algorithm given below (in Table 2) onlyonsiders the ase of the top-support singular states; the treatment for the bottom-supported ase an be derived analogously. In the algorithm, we useArea singular(S) to denote the funtion that returns the area of the paking de�ned by thesingular state S. Two other proedures will be used, both taking as input an instane(Si; �0): Get singular (Si; �0) whih returns the sole instane of the singular statesingular(Si), and Get next (Si; �0) whih returns the state next(Si).Table 2. Algorithm Min area onvex hull top (P ,Q).Algorithm Min area onvex hull top (P ,Q)/* Find a top-supported minimum paking of P and Q */BeginStep 1. For every edge e of Q do fStep 1.1. Rotate Q so that e beomes vertial and also its right-most edge;Step 1.2. (S0; �0)( an instane of an arbitrary non-singular state of P ;S ( S0;Snext ( Get next (S; �0);Step 1.3. While (Snext 6= S0) do f(Ss; �s)( Get singular (S; �0);Am ( Area singular (Ss); /* the area of singular state Ss */If (Am < Amin) then f /* Amin is initialized to +1 */fSmin; Aming ( fSs; AmggS ( Snext;�( �s;Snext ( Get next (S; �0);g /* end of While*/g /* end of For statement*/End.In the next setion, details will be given on how to mathematially as wellas algorithmially perform the three funtions Get next(), Get singular(), andArea singular(). As we will show, based on inremental updating, these threeoperations all take onstant time. In Setion 6, we will prove that, with respet toa vertial supporting line, P an have at most O(nm) distint non-singular states(top-supported). Consequently, the entire While loop at Step 1.3 takes O(nm) time.All the other steps in the For loop at Step 1 obviously require no more than linear



November 24, 2005 15:25 WSPC/Guidelines MinAreaPaking-ijga
16 K. Tang, C.C.L. Wang, and D.Z. ChenO(n+m) time. Therefore, the whole For loop at Step 1 takes O(nm2) time. Step 2is easily seen to take O(n+m) time. Thus, algorithmMin area onvex hull tophas a running time of O(nm2). In the same spirit, we an design an O(nm2) timealgorithm for those bottom-supported singular states. Adding the onsiderationthat we also need to swith the roles between P and Q so as to apture all thepossible ontat on�gurations, we arrive at the following result.Theorem 2. A minimum area onvex paking of two arbitrary onvex polygons Pand Q, when both are allowed to translate and rotate, an be found in O(nm2 +n2m) = O((n +m)nm) time and linear spae.5. Algebrai Formulation and Computation of Singular andSuessor StatesThe ore of the algorithm Min area onvex hull top onsists of three fun-tions Get next(), Get singular(), and Area singular(). They all depend onthe mathematial formulation of extreme urves. In this setion, we �rst derive theexat algebrai formulations for the extreme urves; we then elaborate on how thetwo funtions Get next() and Get singular() should be implemented; �nally, wedesribe the algorithmi mehanism that ensures a onstant time for omputingGet singular().5.1. Mathematial formulation of extreme urvesThere are exatly four kinds of extreme urves, eah orresponding to one of thefour hull verties in a hull on�guration. As already alluded, an extreme urve isa simple urve in a mosai map. This urve an always be put in an expliit formt = f(�), whih we derive one by one next. In the following derivations, we use�L to denote the length of the ontat edge QCLQCR, h for the length t � �L, � for\PLPCPR, �L for \PLPCPC+1, and �R for \PRPCPC�1.5.1.1. PL-on�guration extreme urveThe PL-on�guration extreme urve onsists of those points in the � � t planefor whih the three hull verties PL, PL�1, and QL are ollinear, as shown inFig. 11(a). To maintain this ondition, the values of t and � must ensure the equationkP 0L�1QLkkPL�1P 0L�1k = kP 0LQLkkPLP 0Lk , whih leads toh�lQCLQL os'1�lPL�1PC os(�+�L��2)lPL�1PC sin(�+�L��2)+lQCLQL sin'1 = h�lQCLQL os'1�lPLPC os(�+�L)lPLPC sin(�+�L)+lQCLQL sin'1 : (6)Simplifying the above equation, the PL-on�guration extreme urve t = fPL(�) isdetermined by fPL(�) = 1�L(lPL�1PC sin(�2����L)+lPLPC sin(�+�L)) [lPL�1PC lPLPC sin�2 + lPLPC lQCLQL sin(� + �L � '1)+lPL�1PC lQCLQL sin(�2 � � � �L + '1)℄: (7)
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Fig. 11. Conditions of PL- and PR-extreme urves: (a) for PL-extreme urve, and (b) for PR-extreme urve.For the ollinearity of PL, PL+1, and QL, the formula is similar | by just replaingPL�1 and PL with PL and PL+1. The following three extreme urves have the sameproperty.5.1.2. PR-on�guration extreme urveA point (�; t) is on the PR-on�guration extreme urve when PR�1, PR, andQR are ollinear, whih orresponds to the equation kQRP 0RkkPRP 0Rk = kQRP 0R�1kkPR�1P 0R�1k (seeFig. 11(b)). Aordingly, we havelPRPC os(�������L)�[(�L�h)�lQCRQRos('4℄lPRPC sin(�������L)+lQCRQRsin'4 =lPR�1PC os(�������L+�3)�[(�L�h)�lQCRQRos'4℄lPR1PC sin(�������L+�3)+lQCRQRsin'4 : (8)After simpli�ation, the PR-on�guration extreme urve t = fPR(�) beomesfPR(�) = 1�L(lPR�1PC sin(�3������L)+lPRPC sin(�+�+�L)) [lPR�1PC lPRPC sin�3+lPRPC �L sin(� + � + �L) + lPR�1PC �L sin(�3 � � � � � �L)�lPRPC lQCRQR sin(� + '4 + � + �L)�lPR�1PC lQCRQR sin(�3 � � � '4 � � � �L)℄: (9)
5.1.3. QL-on�guration extreme urveThe QL-on�guration extreme urve identi�es the ollinearity among the three hullverties PL, QL, and QL�1. This ollinearity requires the equation kQL�1Q0LkkQLQ0Lk =
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Fig. 12. Conditions of QL- and QR-extreme urves: (a) for QL-extreme urve, and (b) for QR-extreme urve.kQL�1P 0LkkPLP 0Lk (see Fig. 12(a)), whih leads to(h�lQLQCL os'1)�(h�lQL�1QCL os'3)lQL�1QCL sin'3�lQLQCL sin'1 = lPLPC os(�+�L)�(h�lQL�1QCL os'3)lPLPC sin(�+�L)+lQL�1QCL sin'3 : (10)Thus, the QL-on�guration extreme urve t = fQL(�) has the following mathemat-ial formulationfQL(�) = 1�L(�lQLQCL sin'1+lQL�1QCL sin'3) [�lQLQCL lQL�1QCL sin('1 � '3)�lPLPC lQLQCL sin('1 � � � �L) + lPLPC lQL�1QCL sin('3 � � � �L)℄: (11)5.1.4. QR-on�guration extreme urveFinally, for a point (�; t) to be on the QR-on�guration extreme urve when PR,QR�1, and QR are ollinear, it must maintain the equation kQRQ0R�1kkQR�1Q0R�1k = kQRP 0RkkPRP 0Rk(see Fig. 12(b)). It leads to[(�L�h)�lQRQCRos'4℄�[(�L�h)�lQR�1QCRos'5℄lQRQCRsin'4�lQR�1QCRsin'5 =(�L�h)�lQRQCRos'4�lPRPC os(�������L)lQRQCRsin'4+lPRPC sin(�������L) : (12)Thus, the QR-on�guration extreme urve t = fQR(�) is given byfQR(�) = 1�L(lQRQCR sin'4�lQR�1QCR sin'5) [lQRQCR �L sin'4�lQR�1QCR lQRQCR sin('4 � '5) + lPRPC lQRQCR sin(� + '4 + � + �L)�lQR�1QCR �L sin'5 � lPRPC lQR�1QCR sin(� + '5 + � + �L)℄: (13)5.2. Determining singular(Si) and next(Si)Given an instane (Si; �0), we want to identify the suessor state next(Si) andthe in-between singular state singular(Si), whih are found by the two proedures
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Fig. 13. Geometri derivation of type I singular state.Get next(Si; �0) and Get singular(Si; �0), respetively. As to be seen soon, statenext(Si) is readily derivable one singular(Si) is available. Therefore, we fous onGet singular(Si; �0) �rst.By de�nition, state Si falls on a QR-on�guration extreme urve t = fQR(�) insome mosai map; that is, the three hull verties PR, QR�1, and QR are ollinear(on the vertial line L) for all instanes of Si. Given an instane (Si; �0), the singularstate singular(Si) an be of any of the �ve types; we analyze them one by one.5.2.1. Type I singular stateIf singular(Si) is of type I, then P and Q are in vertex-vertex ontat atsingular(Si). Assume that E(P ) is a vertex and E(Q) is an edge in Si. Con-eivably, at singular(Si), vertex E(P ) oinides with an end point of edge E(Q).Therefore, the t value of the single orresponding point of singular(Si) in the mo-sai map must be 0 or 1, and its � value is determined by solving the following twoequations: f0 = fQR(�)1 = fQR(�) (14)The solution to the above two equations (whih are simple sinusoidal equations)will be at most two � values �1 and �2. They must, however, be validated to bewithin the �-domain [0; �� �℄ of the mosai map. Assuming the most general asethat both are valid, then the one whih is smaller than �0 of the given instane(Si; �0), along with the orresponding t value (0 or 1), identi�es the singular statesingular(Si). Refer to Fig. 13 for an example.
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Fig. 14. Type II singular state: (a) valid singular(Si), (b) � = � � � ase, and () t out of [0; 1℄ase.5.2.2. Type II singular stateA type II singular state requires that P and Q must be in edge-edge ontat atsingular(Si). The only possible ��t solution in the mosai map is point (0; fQR(0)),whose t-value fQR(0) should be validated against the interval [0; 1℄. Note that theother possible singular state (���; fQR(���)) annot be singular(Si), as ��� >�0. To illustrate our analysis, Fig. 14 depits three singular states of type II; onlythe one in Fig. 14(a) is singular(Si).5.2.3. Type III singular stateBy de�nition, at a type III singular state, an adjaent vertex of PR, i.e. PR�1 orPR+1, also falls on the vertial line L through PR, QR;, and QR�1. Vertex PR�1must be ruled out, sine it is assumed that the states are ordered aording to theorientations of the instanes they represent. Let t = fPR(�) be the PR-on�gurationextreme urve for PR and PR+1 as de�ned in Eq. (9). The (�; t) point representingthe state singular(Si) then is the solution to the following two equations:ffPR(�) = fQR(�)t = fQR(�) (15)After the validity heking (i.e. � 2 [0; pi � �℄ and t 2 [0; 1℄), the sole solution tothe above two equations, if it exists, is the singular state singular(Si). Fig. 15(a)shows an example for a type III singular(Si).5.2.4. Type IV singular stateThe analysis for a type IV singular state is similar to that of type III, exept thatthis time the (�; t) point of singular(Si) is the intersetion of the two urves:ffPL(�) = fQR(�)t = fQR(�) (16)
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Fig. 15. Type III (a) and type IV (b) singular states.

Fig. 16. Type V singular states.where t = fPL(�) is the PL-on�guration extreme urve for PL and PL+1 as de�nedin Eq. (7). Refer to Fig. 15(b) for an example.5.2.5. Type V singular stateFinally, for our last type of singularity, type V, the (�; t) point of singular(Si) anbe shown to be the intersetion of the two urves:ffQL(�) = fQR(�)t = fQR(�) (17)Care however must be taken when seleting the QL-on�guration extreme urvet = fQL(�). Unlike types III and IV, in the ase of type V, both the adjaentverties of the urrent hull vertex QL an ontribute to singular(Si). Fig. 16 showstwo examples to illustrate this point: in Fig. 16(a), the singular state singular(Si) isontributed by QL and QL+1, whereas in Fig. 16(b) it is QL and QL�1. Regardlessof whih one, however, the atual geometry of P and Q ditates that only one of
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22 K. Tang, C.C.L. Wang, and D.Z. ChenQL+1 and QL�1 will ontribute to singular(Si). Algebraially, this implies that weshould try both t = fQL(�) urves in Eq. (17) and take the sole solution, if it exists,that meets the validity heking of � 2 [0; � � �℄ and t 2 [0; 1℄.Having established geometrially the analysis for a singular state on all the �vetypes, the proedure Get singular(Si; �0) is now easy to de�ne. Basially, givenan instane (Si; �0), we hek its ensuing singular(Si) for all the �ve types, and theone with the largest � � value < �0 is the orret singular(Si). Sine all extremeurves are in the forms of some expliit and simple sinusoidal funtions of � (seeEqs. (7), (9), (11), and (13)), it is easily seen that solving Eqs. (14) { (17) all takesonstant time. As a result, proedure Get singular(Si; �0) takes onstant time.One singular(Si) is available, state next(Si) an then be derived. For the lastthree types of singularity, namely, types III { V, the derivation is straightforward{ only one hull vertex in the 5-tuple of state Si needs to be replaed. For instane,referring to Fig. 15(b), if singular(Si) is of type IV, then next(Si) agrees withSi exept the PL vertex; that is, if vertex Pi is the PL vertex of Si, then the PLvertex of next(Si) should be Pi+1. The treatments for the �rst two types thoughrequire some geometri insight. These two types only alter the ontat elements, andhene the mosai map, in the state { the four hull verties will remain the same onnext(Si). First, onsider type I and suppose the ontat in state Si is Pi�Qj�1Qj ,and at singular(Si) vertex Pi beomes oinidental with Qj . Fig. 17 shows twopossible senarios: (a) the next ontat is Pi � QjQj+1, and (b) the next ontatis Qj � PiPi+1. We stipulate that the deision on hoosing the orret one an bemade by omparing the orientations of edge PiPi+1 and edge QjQj+1. Expliitly,assuming that the positive z-axis points to the reader's eyes from this paper, atstate singular(Si), if the vetor PiPi+1 �QjQj+1 is in the +z-axis diretion, thenthe next ontat is Pi�QjQj+1 (e.g., Fig. 17(a)); otherwise, the next ontat shouldbe Qj � PiPi+1, as shown in Fig. 17(b). To see the rational behind this riterion,onsider the new plaement of PiPi+1 after it undergoes an in�nitesimal �� motion(ounterlokwise) from the singular state singular(Si). Suppose one walks fromPi+1 �rst to Pi and then to Qj+1. If this walk makes a left turn at Pi, then edgePiPi+1 annot ontain vertex Qj sine this would ause PiPi+1 to ut into Q. Onthe other hand, if the walk makes a right turn at Pi, then edge QjQj+1 must belear of Pi in order to satisfy the non-interferene riterion. The analysis for typeII is similar.In summary, we have the following lemma for omputing the states singular(Si)and next(Si).Lemma 5. Given an instane (Si; �0), both singular(Si) and next(Si) an be om-puted in onstant time.
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Fig. 17. Two senarios of the next ontat for type I singularity.

Fig. 18. Computing the area of C: (a) ell �, and (b) ell �0 .5.3. Area alulationEarlier, it was stated that the area alulation funtion Area singular() for a sin-gular state alled in algorithm Min area onvex hull top() takes only onstanttime. Instead of showing our statement for this extreme ase, we explain next whythe area alulation for an arbitrary general state takes only onstant time, if basedon a simple inremental updating.Referring to Fig. 18, the area of the paking C orresponding to a general point
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24 K. Tang, C.C.L. Wang, and D.Z. Chenin a ell � is de�ned as:AC(�; t) = A(PLPCQL) +A(PRPCQR) +A(QLPCQR)+A(PC ; PL; PL+1; � � � ; PR) +A(QL; QR; QR+1; � � � ; QL�1):In the above equation, only the �rst three items, i.e., the areas of the three triangles,are dependent on (�, t), while the last two items are onstants. Let's all the lasttwo items in the above formula | the residual areas of P and Q, respetively.Obviously, given (�; t), the areas of the three triangles an be alulated in onstanttime. Hene, the alulation time for AC(�; t) is dominated by the omputation ofthe residual areas. Now, onsider the residual areas in a neighboring ell �0 of �.Sine only one of the four hull verties di�ers in any two neighboring ells, onlyone residual area will hange between �0 and � and their di�erene is a triangle(shaded in Fig. 18(b)). Obviously, it takes onstant time to ompute the area ofthis triangle. As a result, one the residual areas of �0 are known, the area AC(�; t)an be alulated in onstant time.Now, onsider any two suessive singular states Ss and S0s in algorithmMin area onvex hull top. They an be viewed as belonging to two neighbor-ing ells, albeit at extreme ondition | they lie on the boundaries of the ells.Therefore, based on the above reasoning, if the residual areas of the �rst singularstate enountered in algorithmMin area onvex hull top are available, then allthe subsequent alls Area singular (Ss) take onstant time eah. This result issummarized in the lemma below.Lemma 6. Given the residual areas of the ell orresponding to a state Si, the areaof the paking for any instane of state next(Si) an be omputed in onstant time.6. Complexity AnalysisIn this setion, we prove the laim made at the end of Setion 4 that the total num-ber of all distint singular states of P with respet to the vertial line L ontaininga given rightmost edge of Q is O(nm). This result is needed for ompleting theproof of Theorem 2. More preisely, we prove the following theorem.Theorem 3. For two arbitrary onvex polygons P and Q of n and m verties,respetively, there are O((n +m)nm) distint singular states in the worst ase.Proof. Without loss of generality, we only onsider the top-supported singularstates. First, assume that we �x Q with its rightmost edge lying on the vertialline L and let P rotate and translate while keeping its rightmost vertex tangent tothe vertial line L and maintaining ontat with the upper boundary of Q as well.Further, assume that the motion of P is ounterlokwise in terms of the order ofits verties touhing line L.We begin with proving the following lower bound: For a given rightmost edgeof Q lying on the vertial line L, the number of all distint singular states of P
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Fig. 19. Illustrating the proof of Theorem 3.is at least 
(nm) in the worst ase. We prove this by onstruting a pair of Pand Q that ahieves this lower bound. Refer to Fig. 19. In our onstrution, P isroughly a regular N -gon, and Q is roughly a regular M -gon, where N = f(n) andM = g(m) (the funtions f(�) and g(�) will be determined later). By \roughly", wemean that (say) P is similar to a regular N -gon but its edge lengths may di�er fromeah other by some small values. (Note that suh length di�erenes are neessaryfor rotating and translating P to searh for a minimum paking C | otherwise, itwould be suÆient to simply onsider one edge of a perfet regular N -gon in orderto �nd a minimum paking C.) Suh a roughly regular N -gon an be generated asfollows: First generate a perfet regular N -gon from a irle, and then randomlymove eah vertex of the N -gon inside a small irular region ontaining that vertex(see Fig. 19).We generate both P andQ in this manner. Next, we modify Q as follows. Choosetwo arbitrary \symmetri" verties of Q, say Qi and Qj . Position Q suh that Qiand Qj are the leftmost and rightmost verties of Q respetively. Modify Q byadding two verties a and b to Q suh that a and b are adjaent and very lose toQi; similarly add two other verties  and d near to vertex Qj . Furthermore, let thethree verties a, Qi, and b (resp., , Qj , and d) be on a irular ar (see Fig. 19(a)).Note that we an make the di�erene between the x-oordinates of vertex b and Qi
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26 K. Tang, C.C.L. Wang, and D.Z. Chen(resp.,  and Qj) as small as we want; this implies that the two irular ars are twonearly \at" segments, whih allow us to ontrol the angle of the wedge bounded bythe two rays Rl and Rr in Fig. 19(a) (where Rl passes through Qi and PL, and Rrpasses through Qi and b). Now, let M = g(m) = m=2 (i.e., Q was �rst generated asa roughly regular (m=2)-gon). Randomly put m=4 points on the ar ontaining a,Qi, and b (resp., , Qj , and d), and onnet these points by edges along the orderof the ar. These are the verties of Q from vertex a (resp., ) lokwise to vertex b(resp., d). Q thus onstruted has m verties. Without loss of generality, we assumethat the vertial line L in Fig. 19 passes through the right most edge of Q.Suppose we rotate P ounterlokwise, say from the plaement of Fig. 19(a) tothe plaement of Fig. 19(b). Assume that all the dashed rays between the two raysRl and Rr are ollinear with a subset of the m=4 edges of Q from vertex a lokwiseto vertex b. Then, there are O(m) suh dashed rays between Rl and Rr. During therotation of P from the plaement in Fig. 19(a) to the one in Fig. 19(b), the vertex uof P is �rst the PL vertex for a while, and then the vertex v beomes the PL vertex.In this rotation, PL = u in Fig. 19(a) uts through eah of the orresponding O(m)dashed rays from Q, meaning that u forms a distint type V singular state witheah of the orresponding edges of Q (i.e., u is ollinear with eah suh edge of Qwhile being the PL vertex). Similarly, PL = v in Fig. 19(b) also uts through eahof the O(m) rays from Q. In fat, a omplete rotation of P in Fig. 19 will makeevery vertex z of P (when PL = z) ut through eah of these O(m) rays of Q atmost twie, one as z moves from right to left, and one as it moves from left toright in this example.Note that given any roughly regular N -gon P , we an always make a wedgebetween the two rays Rl and Rr suÆiently small so that the above argumentremains valid.For the time being, let N = f(n) = n. Then the above argument implies thatfor a given rightmost vertial edge of Q from vertex  lokwise to vertex d, eahof the n verties of P an partiipate in O(m) distint type V singular states. Thisimplies a total of O(nm) distint type V singular states (over the n verties of P )for the given rightmost vertial edge of Q.Next, observe that the above situation an be repeated O(m) times, one foreah of the m=4 very short edges lose to the urrent rightmost vertial edge ofQ, sine every suh edge of Q an in turn be used as its rightmost edge lying onthe vertial line L. Thus, the same proess an be repeated for eah of these m=4edges Q lose to its urrent leftmost edge. This means that there an be altogetherO(nm2) distint type V singular states.On the other hand, we an also establish the following upper bound: For agiven rightmost edge of Q lying on the vertial line L, the number of all distintsingular states of P is at most O(nm). For example, it is easy to see that everyvertex of P , while it is being the hull vertex PL, an be ollinear with at mostO(m) di�erent edges of Q that are inident to the urrent hull vertex QL, implying
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Minimum Area Convex Paking of Two Convex Polygons 27that there an be at most O(nm) distint type V singular states. In general, notethat there are O(n) boundary entities of P and O(m) boundary entities of Q, andeah pair between them may de�ne a singular state of a ertain type (out of the�ve singularity types). There an be at most O(nm) suh boundary entity pairsbetween P and Q in the worst ase. Eah of them may \realize" a distint singularstate, one pair after another, as P is in motion. Therefore, there an be no morethan O(nm) distint singular states for a given rightmost edge of Q.Letting eah of the m edges of Q in turn be the right most vertial edge, theabove argument leads to that there are no more than O(nm2) distint singularstates for the given roles of P and Q (i.e., �xing the rightmost edge of Q andletting P rotate and translate).We an swith the roles of P and Q (i.e., �x the rightmost edge of P and let Qrotate and translate). Before doing that, we let N = f(n) = n=2 (i.e., P was �rst aroughly regular (n/2)-gon) and apply the desribed modi�ation on Q to P , thatis, we add n/4 verties respetively lose to the leftmost and rightmost verties ofP . P thus onstruted has n verties. Note that the struture of Q is similar tothat of P (i.e., Q is still like a roughly regular (m=2)-gon but has m verties, withm/4 verties lose to eah of the two hosen \symmetri" verties). Then the aboveanalysis an be applied to this setting of P and Q, proving that the lower and upperbounds of all distint singular states for this ase are both O(mn2).In summary, there are O(nm2) + O(mn2) = O((n + m)nm) distint singularstates between two arbitrary onvex polygons P and Q in the worst ase.7. Implementation and ExamplesThe algorithm presented above has been implemented on a PC platform with amodest on�guration and tested on a number of examples. When \designing" thetest examples, we onsiously looked for ases that an verify all the �ve singularitytypes. Expliitly, we wanted to answer the question \an a minimum paking be ofany of the �ve singularity types?". Our answer is \yes", and Fig. 20 through Fig. 24give one example for eah type.The last example (given in Fig. 25) demonstrates the robustness of the algorithm(and our implementation). In this example, a link edge shrinks to a single point;geometrially, this indiates a singular state of multiple types (e.g., types I, II, andIII in Fig. 25). The orret minimum paking is suessfully aptured in our test.8. ConlusionIn this paper, we have presented an eÆient deterministi algorithm for omputinga minimum area onvex paking of two arbitrary onvex polygons P and Q, thussettling this open problem. Our algorithm is based on a novel haraterization of thegeometri and algebrai strutures of the problem, whih enables us to suessfullydisretize the searh spae to only a �nite number of speial points alled ritial
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Fig. 20. A minimum paking of type I: (a) the given two onvex polygons, (b) the mosai mapontaining the result, () 3D display of the area funtion of the mosai map of the result, and (d)the minimum paking onvex hull.points. A areful omplexity analysis shows that our algorithm runs in O((n +m)nm) time, where n and m are the numbers of verties of P and Q, respetively.Along the diretion of this work, some interesting open problems still remain.The �rst one is either to prove that our O((n+m)nm) time algorithm is optimal,or to design a faster algorithm for solving this problem. The seond problem is toextend our method to solving the problem of omputing a minimum area onvexpaking of more than two arbitrary onvex polygons. The third problem is to on-sider paking polygons that are not neessary onvex. Paking geometri objets inthe 3-dimensional spae is also a very interesting and useful topi.
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Fig. 21. A minimum paking of type II: (a) the given two onvex polygons, (b) the mosai mapontaining the result, () 3D display of the area funtion of the mosai map of the result, and (d)the minimum paking onvex hull.AknowledgementsThe �rst author, Kai Tang, was partially supported by Hong Kong RGC Grant05/06.EG.620105. The researh of the third author, Danny Z. Chen, was supportedin part by the National Siene Foundation under Grants CCR-9988468 and CCF-0515203; this work was partially done while D.Z. Chen was visiting the Departmentof Computer Siene, Hong Kong University of Siene and Tehnology.
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Fig. 22. A minimum paking of type III: (a) the given two onvex polygons, (b) the mosai mapontaining the result, () 3D display of the area funtion of the mosai map of the result, and (d)the minimum paking onvex hull.
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Fig. 23. A minimum paking of type IV: (a) the given two onvex polygons, (b) the mosai mapontaining the result, () 3D display of the area funtion of the mosai map of the result, and (d)the minimum paking onvex hull.
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Fig. 24. A minimum paking of type V: (a) the given two onvex polygons, (b) the mosai mapontaining the result, () 3D display of the area funtion of the mosai map of the result, and (d)the minimum paking onvex hull.
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Fig. 25. Degenerate singular state: (a) the given two onvex polygons, (b) the mosai map on-taining the �nal result, () 3D display of the area funtion of the mosai map of the �nal result,and (d) the minimum paking onvex hull.
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