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ABSTRACT

Given two convex polygons P and @ in the plane that are free to translate and rotate,
a convex packing of them is the convex hull of a placement of P and a placement of
@ whose interiors do not intersect. A minimum area convex packing of P and @Q is one
whose area is minimized. The problem of designing a deterministic algorithm for finding
a minimum area convex packing of two convex polygons has remained open. We address
this problem by first studying the contact configurations between P and @ and their
algebraic structures. Crucial geometric and algebraic properties on the area function are
then derived and analyzed which enable us to successfully discretize the search space.
This discretization, together with a delicate algorithmic design and careful complexity
analysis, allows us to develop an efficient O((n + m)nm) time deterministic algorithm
for finding a true minimum area convex packing of P and @, where n and m are the
numbers of vertices of P and @, respectively.

Keywords: Convex packing; minimum area; convex polygon; contact configuration; con-
figuration space.
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1. Introduction

This paper studies the problem of packing two convex polygons by a minimum area
convex polygon. Given two arbitrary convex polygons P = (P, Py, ..., P,—1) and
Q ={Qo,Q1,...,Qm-1) in the plane, such that P and @ are free to translate and
rotate, a convex packing (or packing for brevity) of them is the convex hull of a
placement of P and a placement of ( whose interiors do not intersect. A minimum
area convex packing (or minimum packing) of P and @ then is one whose area
is minimized. When cast with different objectives and constraints, this minimum
packing problem finds applications in a variety of problems, such as the Pallet Load-
ing problem,%17:819 the Cutting-Stock problem,!® the Bin-Packing problem,13:4
and the Assortment problem.?'12:10 From a theoretical point of view, it will be
meritorious if an exact and deterministic algorithm can be found for computing a
minimum packing efficiently. Earlier work on this problem all has a sub-optimal
nature, such as either fixing the orientation between P and Q7 or enclosing the
objects by rectangular boxes.!%14 Whether there exists a deterministic algorithm
for finding a true minimum packing of two arbitrary convex polygons P and @) has
remained open.

We present an O((n + m)nm) time deterministic algorithm for finding a true
minimum packing of two convex polygons P and @), thus providing an affirmative
answer to this open problem. Our algorithm is based on a careful geometric analysis
of the configurations of the convex packing which leads to a characterization of some
critical geometric and algebraic properties on the area function of the packing.
These properties discretize the search space and thus allow us to search among
only a finite number of the packing configurations. An efficient algorithm is then
developed to perform this search to find a true minimum area packing, which, based
on a careful complexity analysis, takes O((n + m)nm) time and linear space.

The rest of the paper is organized as follows. After giving necessary definitions
and preliminaries, Section 2 derives the analytical formation of a special contact
configuration space called mosaic map, and determines the area function A(6,t)
of the packing in a mosaic map. Detailed mathematical description of the area
function is given in Section 3, which helps lead to an important discovery on the
area function — the area function can obtain a minimum only at a finite number of
special points in the mosaic map. Section 4 gives a delicate algorithm that efficiently
searches through these finite special points and finds one with the minimum area.
A careful analysis on the computation and complexity of the algorithm is presented
in Sections 5 and 6 that ensures the O((n + m)nm) upper-bound on the running
time of the algorithm. Finally, we show some implementation results (Section 7)
and conclude the paper (Section 8).

2. Preliminary

Let a placement of P and a placement of () be said to be in contact of (or touch)
each other if they touch each other on their boundaries only (i.e., their interiors do
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Fig. 1. Two convex polygons in contact at Pc and QcrQcr.-

not intersect). We can assume that @ is fixed, while P can move freely but keeps in
contact with Q). The contact configuration space of P and @ is the set of all possible
placements of P that are in contact with (). Without loss of generality, it can be
further assumed that a minimum packing of P and @ is realized by a placement
of P that has a vertex in contact with an edge of (). Consider the configuration
that P and @ are required to be in contact at a vertex Po and an edge QcrQcr,
as shown in Fig. 1. There are two parameters, ¢t and 6, that completely determine
such a contact. The parameter ¢ is used to specify the position of Po on QcrQcr,
with ¢ = % € [0,1]. The parameter 6 is used to determine the orientation
between P and ). When 6 changes, P rotates around the point Pc. Since the
interiors of P and @) are not allowed to intersect, all vertices of P can be assumed
to lie above the contact edge of @ (when Pr is at Q¢ or Qcr), and 6 must satisfy
6 € [0,7 — a], where &« = £ZPo_1PcPcyy. The four special vertices, Pr, Pr, Qr,
and Qg, are called hull vertices, and they form a hull-quadruple. The two special
edges on the packing — PrQp and PrQr — are called link edges. The following

definition is in order.

Definition 1. A hull configuration is a subspace in the contact configuration space
of P and @) such that the contact vertex of P, the contact edge of Q, and the hull-
quadruple all remain the same.
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Hereafter it will be assumed that the contact vertex Po and the contact edge
QcrQcr are fixed; consequently, a hull configuration is completely determined by
the hull-quadruple. The set of points in the § — ¢ domain [0,7 — a] x [0,1] that
realize a same hull configuration will be referred to as a cell. Conceivably, a cell
is a contiguous region. Since every (6,t) point in [0,7 — «] x [0,1] corresponds
to a hull configuration, the # — ¢ domain [0,7 — a] x [0,1] is thus a partitioning
made of cells, which will be called a mosaic map. As an example, for the contact
vertex P and the contact edge Qo@Q1 shown in Fig. 2(a), their mosaic map is
depicted in Fig. 2(b), where the hull-quadruple of each cell is shown embedded in
the cell. Note that a mosaic map, in fact, is conceptually a planar structure called
arrangement in computational geometry?; but as we will show later, by exploiting
the geometric properties of the problem, our algorithm is able to avoid computing
the entire structure of the arrangement. As clearly revealed in the above example,
excluding those points on the boundary of the domain [0, 7—«] x [0, 1], the boundary
of a cell consists of some continuous curves, which will be referred to as extreme
curves. Explicitly, all points on a same extreme curve correspond to an extreme hull
configuration where a current hull vertex is about to be replaced by a new vertex.
Geometrically, this designates a contact situation when an edge of P or () becomes
collinear with a link edge, as entailed below.

Definition 2. A point (6y,%o) € [0, 7 —a] x [0, 1] is called a Pp-extreme point in the
f — t plane if the hull vertex @y, is collinear with either the edge P Pr_1 or edge
Pp, Pry4. Similarly, (6o,%0) is a Qr-extreme point if the hull vertex Py, is collinear
with one of the two edges Qr,Qr—1 and Qr.Qr+1. Analogously, we define the other
two types of extreme hull configuration points, which are all listed in Table 1.

Table 1. Extreme hull configuration points.

Type of collinear configuration points Geometric condition
Py -extreme point Q1 is collinear with Py, Pr,_y or PrPrq
Pgr-extreme point QR is collinear with PrPr_; or PpPry
Q1 -extreme point Py, is collinear with Q7 Qr—1 or QrQr 41
Q r-extreme point Pg is collinear with QrQr—1 or QrQRr+1

For instance, in the example given in Fig. 2, the cell of hull-quadruple P, —
P; — Q7 — Q3 and the cell of Py — Ps — ()7 — ()3 share an extreme curve of the Pgr
type; on this curve, both the vertices Py and Ps are the Pg vertex. Also exemplified
by the example, which will become clear later, is the fact that every end point of
the extreme curves, except those on the boundary of [0, 7 — a] x [0, 1], is shared
by exactly four cells. We call the end points of the extreme curves critical points.
Obviously, at a critical point in the open domain (0,7 — «) x (0,1), two edges of
P and/or @ are involved in the collinearity condition, e.g., the critical point in
Fig. 2(b) shared by the cells of the four hull-quadruples — Py — Py — Q7 — Qs,
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Fig. 2. Example of the mosaic map of a pair of contact vertex and edge: (a) Two convex polygons,
and (b) Mosaic map of pair Ps — QoQ(1).

Py—Ps—Q7—Q3, Py — Py — Qs — @3, and Py — P; — Qg — Q3 — defines a contact
configuration as shown in Fig. 3(a), where the edges PyPs; of P and Q7Qs of @
are collinear with the Qg vertex Q3 and the Pp vertex Py, respectively. A hull-
quadruple could degenerate into a triangle, which corresponds to the case when
two critical points are coincident (e.g., the example in Fig. 3(b)).
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Fig. 3. Geometric interpretation of a critical point: (a) a general case, and (b) an extreme case.

The last item to be defined is the area function of the packing. For any point
0,t) € [0,m —a] x [0,1], let Apu(,t) denote the area of the packing of P and Q

Y

corresponding to the parameter (6,t). Referring to Fig. 1,

Apun(0,t) = A(PLPcQr) + A(PrRPcQRr) + A(PcQLQR)
+A(PcPr,...Pr)+ A(QrQr-1...Qr+1QR)

where we use A(vivs...v,) to represent the area of a closed polygon with ver-
tices vy, va, .. .,v,. When (6,¢) is restricted to be within a cell, the hull-quadruple
remains the same, and hence the last two items in the above expression are con-
stants. Therefore, as a function of (,t), we only need to consider the area of the
three triangles.

Ai(0,t) = A(PLPcQr) + A(PrRPcQr) + A(PcQrLQr) (1)

It is trivial to verify that the function A;.;(#,t) is continuous in the entire domain
[0, 7 — a] x [0,1]. In addition, within each single cell, A;,;(0,t) is C' continuous in
both 6 and ¢. In the next section, a crucial property of Ay.;(#,t) will be shown: the
function Ay,.;(6,t) can achieve a minimum only at some critical points in [0, 7 —
a] x [0,1].

3. Minimum Packing Area and Search Space Discretization

Let us define two types of iso-parametric curves on the surface A4.;(8,t) given in
Eq. (1): the ¢-curve that is the function A;.;(6,t) when parameter 6 is fixed at
some 6, and the f-curve, i.e., As,.;(6,tp), for some fixed ¢y. The following property
is introduced.
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Fig. 4. Proof of Property 1.

Property 1. The surfaceA;,;(6,t) is a ruled surface and its t-curves are the
rulings.

Proof. Asshown in Fig. 4, first we fix 6, and then move the contact vertex Pc

along the contact edge Q;Q;+1to a new position P/, by a distance At, with the new
triangle area

At (0,1) = A(PLPLQL) + A(PRPCQR) + A(PLQLQR)
= A(PLPcQr) + A(PLPLPcPG) + A(PLPcQr) — A(PLPLQr) +
A(PrPcQr) + A(PRPrQRr) — A(PRrPrPcPl) — A(PCPcQR) +
A(PcQrQr) + A(PoPcQr) — A(PLPoQr)

Since ||PL Py || = ||PrPg|| = ||Pc PL| = At, we have
AA = Ay~ Aps
= A(P,PLPcPy) + A(PGPcQr) — A(PLPLQL) +
A(PrPrQr) — A(PRPrPcPl) — A(PLPcQR) +
A(PoPcQRr) — A(PLPoQr)

ie.,
h hgn, —hp, —h
e L Y) (2)
The above equation indicates that any ¢-curve is linear in ¢, and consequently the
surface A,;(6,t) is ruled. O

As a direct consequence of Property 1, Ay.;(6,t) can achieve its minimum only
on the boundary of its parameter domain, as stipulated below.
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Fig. 5. Rotating a triangle about a shared vertex.

Corollary 1. The minimum of function A4;(0,t) occurs only on the boundary of
the cell in which the function is defined.

Next, we provide a useful lemma on the area of the packing of two triangles
sharing a common vertex. Referring to Fig. 5, suppose initially the edge piv of
triangle Apypsv overlaps with edge giv of triangle Agigov, and the initial angle
Zpovgais @ (Fig. 5(a)). The triangle Apipav is then rotated clockwise about the
shared vertex v (Fig. 5(b)). Considering the sum A(f) of the areas of the two
triangles Apjvg; and Apsvgs as a function of the rotation angle 6, we have the
following lemma.

Lemma 1. The minimum of function A(6): 6 € [0, ®] occurs only at A(0) or A(D).

Proof. We have

A(9) = %lmvlqw sin(f) + %lpzvlqgv sin(® — 0) (3)
whose 1% derivative is
A(6) = Llpuular €05(6)  Llpuulisy cos(® —6) (4)
and we can also determine its 2"¢ derivative as
A(0) = ~ gyl Sin(6) — Llpsulyo sin(® —6) (5)

Since both 8 and ® — 6 are internal angles of two valid triangles Ap;q;v and Apaqqv,
we have 0 < 6 <7 and 0 < ® — 6 < 7. The second derivative of A(f) thus remains
negative in 6 € [0, ®], which means it cannot have a minimum in the open domain
6 € (0,®). There are two extreme cases: 1) § > rand0 < ?—0 < m,or2)0< 0 <7
and ® — 6 > 7. However, when such a case occurs, for case 1), the area function in
Eq. (1) degenerates to

Api(0,t) = A(PRPcQRr) + A(PcQrLQr)
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where A(f) =
case 2),

Lpyulgow sSin(® — 6) leads to A" (8) = —21, 4140 sin(® — ) < 0; for

1
2 2

Apri(0,t) = A(PLPcQr) + A(PcQrLQRr)

and similarly, A(8) = 315,404, sin(f) leads to A”(0) = =11, 0lg,vsin(d) < 0. 0

With Lemma 1, the following property on the other iso-parametric curve, the

f-curve, is established.

Property 2. The 6-curve of surface As;(0,1), i.e., Ai(6,t0) with 8 € [0, 7 —q]
is either strictly monotone, or first strictly increases and then strictly decreases.

Y

Proof. Referring to Fig. 1, when ¢ is fixed, only the areas of the two triangles
A(Pr,PcQy) and A(PrPcoQR) change when 6 varies. The geometric configuration
of these two triangles is however identical to that given in Fig. 5. Due to Lemma
1, thus, A4;(0,t) cannot have a minimum in the open domain 6 € (0,7 — a) with
a = LPoy1PoPo_1 > £Pp, Pc Pg. Furthermore, since a > 0, Ay-4(0,t) can have at
most one maximum in 6 € (0,7 — «). O

Before proceeding further, it is imperative to ensure that the set of all mosaic
maps covers the entire contact configuration space. To illustrate the importance of
this, Fig. 6(b) displays a particular contact configuration in which P and @ share
a common vertex v. By inferring from Fig. 6(a) and 6(c), it is obvious that this
configuration belongs to neither the mosaic map of v — e; nor the mosaic map of
v — es. However, if we switch the roles between P and () and let () move around
the stationary P, then we can show that the contact of Fig. 6(b) must lie in one of
the mosaic maps of v — E; or v — Ey. To see this, refer to Fig. 6(d); in order for
a contact configuration (in which the two polygons share the vertex v) not to be
covered by any one of the mosaic maps of v — e; and v — es, the inequality a <
must hold so that there exists a configuration with P covering both sides of the
edges e; and e;. On the other hand, in order for this contact configuration to be
covered by the mosaic maps of neither v — E; nor v — E», we must have a > 3. The
only possibility is @ = 4, in which case the corresponding contact configuration is
a corner point in a mosaic map, as manifested in Fig. 6(e).

Having assured the equivalence between the union of the mosaic maps and the
contact configuration space, we next prove that no corner point, i.e., (0,0), (0,1),
(mr—a,0), and (7 — a, 1) (the cases shown in Fig. 7), in any mosaic map can achieve
the minimum area unless it is on some extreme curve. This relieves us from worrying
about those points at the corners of mosaic maps, which in turn will help reduce
the time complexity of the final algorithm tremendously. Hereafter, we use Ay, to
denote the area of a minimum packing of P and Q.

Lemma 2. If the minimum area Ap,;, is achieved by a packing C' corresponding
to a corner of a mosaic map, then this corner point must be on an extreme curve.
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€y €

(a) (c)

Fig. 6. Contact configuration not covered by mosaic maps.

Proof. It is easily discernible that any of the four corners of a mosaic map
can be geometrically categorized as one of the two patterns, namely, “dangling”
and “overlapping”, shown as packing C' in Fig. 7(a) and 7(b), respectively. In the
case of a “dangling” C, according to Lemma 1, we can rotate P about the shared
vertex v, either clockwise or counter-clockwise depending on in which direction the
area function decreases, and have the comfort of knowing that after rotating a
small angle Af the resulting packing C' will have less area than that of C. For the
latter case when C' is of the “overlapping” pattern, by Property 1, we translate P,
either to the left or right (again depending on in which direction the area function
decreases), by a small distance At to get a new packing C' whose area is assured
to be smaller than that of C.

The above analysis is valid as long as Af or At exists; that is, during the move-
ment, of Af or At, the hull-quadruple remains the same. Since the hull-quadruple
changes only on extreme curves (for example, Fig. 7(c) and 7(d)), we have proved
our lemma. O

We note on the proof of Lemma 2 that the example given in Fig. 7(d) for the
“overlapping” case is indeed of an extreme nature, albeit a degenerate one, as in
this case the hull vertex P, of P coincides with the hull vertex @, of Q. (Notice
the important difference between (b) and (d) in Fig. 7: In (b), the hull vertex Py,
does not coincide with the hull vertex @r, whereas in (d) they do.) Also as the
properties 1 and 2 are held, the min-area packing cannot be achieved at a point on
one of the 4 edges of a mosaic map that is not on an extreme curve.

We are now ready to present a key result that completes the task of the search
space discretization, by eliminating the interior points on any extreme curves from
the search space. We have the following lemma.

Lemma 3. The minimum area packing cannot be obtained in the interior of any
extreme curve.
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Fig. 7. Proof of Lemma 2: (a) “dangling”, (b) “overlapping”, (c) extreme “dangling”, and (d)
extreme “overlapping”.

Proof. We only prove the lemma for the () g-extreme case, and the other three
extreme cases can be analyzed analogously. Let o(s) be a () g-extreme curve between
two cells x1 and x2, and A; and Ay be the area function Aj,; defined on the
two cells respectively, where s is the arc length of curve o. Obviously, on o, A;
and A, agree with each other, i.e., A1(s) = Aa(s) for all points on o. Suppose
that the univariate function A;(s) (A2(s)) obtains a local minimum at an interior
point (tg,6p) = o(so) of 0. Without loss of generality, let (1Q2 be the edge that
contributes to the @ g-extremity. To make a local minimum, referring to Fig. 8(a)
and (b), at point (tg,6y), according to Eq. (2), we should have

A _d

Bt |(0,00) = 2 TH <0
and

A _d

8t2 (Bo.t0) = 72 +K>0

where d; and dy are the hg, length for cells x; and x» respectively, and K is
L(hp, — hpy,) + hg, - Since d» is always larger than d;, the above two inequalities
indicate that there is a unique point @3 on edge @1 Q2 such that the hg, length d*
of it leads to % + K =0, as shown in Fig. 8(c). Now, suppose we replace the original
polygon @ with the new one @* obtained from @ by replacing its vertex Q)2 with @3,
which also alters functions 4; and A, to A} and A} respectively. It is not difficult to
see that, as can be validated from the formulas in Section 5.1 — Eq. (13), for the new
polygon @Q* the original @) g-extreme curve o remains unchanged locally. Moreover,
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* . ]IQL = ]IPR =0

Fig. 8. Proof of Lemma 3.

function A only differs from A; by a constant (the area of the shaded triangle
in Fig. 8(c)). Therefore, (to,80) = 0(so) is still expected to be a local minimum
point of A5 (s). Since Aj(s) and A (s) are the same, (to,6p) = o(s¢) should also be
a local minimum point of A%(s). By classical optimization theory of multivariate
functions, the tangent to curve o at (¢, 6p) = o(so) thus should be perpendicular to

both the gradients of A and A3, which means 241 ) = o4
0,to

just some negative number. However, this equality cannot hold since 8;5

, where k is
(foto)

(B0,t0)
%* + K =0 but 8{;‘; Gt = 4 + K < 0 # 0. Therefore, point (t,6p) = o(so)
cannot be a local minimum on Aj(s) and A%(s), a contradiction. O

With Lemmas 2 and 3, and Properties 1 and 2, we conclude the section by
the following theorem, in which the critical points are the intersections of extreme
curves on the mosaic map.

Theorem 1. A minimum area packing C of P and @ can be obtained only at
certain critical points in some mosaic maps.
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Fig. 9. Types of states: (a) and (c) General states; (b) singular state.

4. Details of the Algorithm

The successful discretization of the search space as stipulated by Theorem 1 enables
us to develop a deterministic method for finding a minimum packing — there are
only a finite number of critical points in all mosaic maps. Our next task is then to
design an efficient algorithm to perform this deterministic search.

Refer to Fig. 9. Again, suppose @ is fixed while P can be rotated and translated.
Also assume that the rightmost edge of @ is vertical (on line L). Consider all those
packings C' whose hull vertex Pg lies on line L. Then a general configuration of C'
can be specified by a 5-tuple:

< E.(P),E.(Q),vr(P),vr(P),vr(Q) >

where E.(P) and E.(Q) stand for the boundary entities (vertices or edges) on P
and ) that are in contact with each other, vz, (P) and vg(P) are respectively the
two hull vertices Pr, and Pgr on P, and vr,(Q) is the corresponding hull vertex @7,
on (. We call such a 5-tuple a state of C. A state is said to be singular if one or
more of the following types occur:

(1) both E.(P) and E.(Q) are vertices;

(2) both E.(P) and E.(Q) are edges;

(3) some vertex P;, in addition to vg(P), lies on line L;
(4) some vertex P; is collinear with vy, (P) and vy, (Q);
(5) some vertex @; is collinear with vy, (P) and v (Q).

A 5-tuple that is not singular is called a general state, e.g., the states shown in
Fig. 9(a) and 9(c), whereas the state given in Fig. 9(b) belongs to the singular type
(2). Geometrically, singular states of type (1) correspond to those critical points on
the boundary ¢ = 0 or ¢t = 1 of a mosaic map, and type (2) singular states pertain
to critical points on the boundary 8 = 0 or § = m — . All the last three types
are associated with the interior critical points in the mosaic map (i.e., the critical
points not on the 4 edges of a mosaic map), where an interior critical point is the
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vp(P) .Rm”_,,,, Q \

'.\x EQ -

Fig. 10. A state of bottom-support type.

intersection between the @ g-extreme curve and a Pg-extreme curve (type (3)), or
a Pr-extreme curve (type (4)), or a Qr-extreme curve (type (5)).

A state as exemplified by Fig. 9 actually belongs to the category of top-support
type, as the hull vertex Pg is above the hull vertex Qg on line L. Accordingly, a
state can also be in the bottom-support category, as shown in Fig. 10, where Pg
is below . With both top- and bottom-support types defined, and by switching
the roles between P and (), based on Theorem 1, it immediately follows that any
minimum packing must correspond to some singular state of the top-support or
bottom-support type.

We distinguish a state from its instances. An instance of a state is a specific
placement of P that meets the 5-tuple condition of that state. Obviously, a general
state has an infinite number of instances, whereas any singular state has exactly
one (isolated) instance. An instance of state S; thus can be represented as (S;,6),
where 6 is the f-value of the placement of P in the mosaic map associated with .S;.
The following lemma is then given.

Lemma 4. The set of all instances of any state S; forms exactly a contiguous
portion on an extreme curve in some Mosaic Map.

Consider using vertical lines (i.e., 6 is a constant) to cut the extreme curves in
a mosaic map; then the part between two intersections belongs to the same general
state, and the intersection points are on singular states. Similarly, when horizontal
lines are used (i.e., ¢ is a constant on the line), we can draw the same conclusion
— the part between two intersections represents the same general state. Together
with the definitions of extreme curves, the above lemma can be easily proved.

Next, let {Sp, S1,...,Sk—1} be the set of all distinct top-support general (non-
singular) states of C' (restricted with respect to the vertical line L), sorted according
to P’s orientations of their instances, in which the vertices of P touch the line L in
the counterclockwise order. State S; is called the successor state of state S;_1,
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and S;_; is called the predecessor state of state S; (i — 1 and i mod K). For
example, the state shown in Fig. 9(c) succeeds the state given in Fig. 9(a). We will
use next(S;) to denote the successor state of S;, i.e., S;11 = next(S;). It is easy
to see that between two consecutive states S; and S;41, there is one and only one
singular state, e.g., the state in Fig. 9(b) is the sole singular state between the two
states shown in Fig. 9(a) and 9(c). As to be shown in the next section, given S;, its
ensuing singular state is uniquely determined. Let us use singular(S;) to denote
the singular state between S; and next(S;).

We are now ready to present the outline of our algorithm for finding a minimum
area convex packing of P and @. The algorithm given below (in Table 2) only
considers the case of the top-support singular states; the treatment for the bottom-
supported case can be derived analogously. In the algorithm, we use Area_singular
(S) to denote the function that returns the area of the packing defined by the
singular state S. Two other procedures will be used, both taking as input an instance
(Si,6p): Get_singular (S;,0q) which returns the sole instance of the singular state
singular(S;), and Get_next (S;,6y) which returns the state next(S;).

Table 2. Algorithm Min_area_convex_hull_top (P,Q).

Algorithm Min_area_convex_hull_top (P,Q)
/* Find a top-supported minimum packing of P and Q */
Begin
Step 1. For every edge e of @ do {
Step 1.1. Rotate @ so that e becomes vertical and also its right-most edge;
Step 1.2. (So, o) < an instance of an arbitrary non-singular state of P;
S <« So;
Snezt < Get_next (S, 90);
Step 1.3. While (Snezt # So) do {
(Ss,05) <= Get_singular (S, 0p);
Am < Area_singular (Ss); /* the area of singular state Ss */
If (A, < Apmin) then { /* Apip is initialized to +oo */
{Smin: Amin} ~ {Ss:Am}
}
S <= Sheat;
0 < 0s;
Snezt < Get_next (S,00);
} /* end of While*/
} /* end of For statement*/

End.

In the next section, details will be given on how to mathematically as well
as algorithmically perform the three functions Get_next(), Get_singular(), and
Area_singular(). As we will show, based on incremental updating, these three
operations all take constant time. In Section 6, we will prove that, with respect to
a vertical supporting line, P can have at most O(nm) distinct non-singular states
(top-supported). Consequently, the entire While loop at Step 1.3 takes O(nm) time.
All the other steps in the For loop at Step 1 obviously require no more than linear
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O(n +m) time. Therefore, the whole For loop at Step 1 takes O(nm?) time. Step 2
is easily seen to take O(n +m) time. Thus, algorithm Min_area_convex_hull_top
has a running time of O(nm?). In the same spirit, we can design an O(nm?) time
algorithm for those bottom-supported singular states. Adding the consideration
that we also need to switch the roles between P and () so as to capture all the
possible contact configurations, we arrive at the following result.

Theorem 2. A minimum area convex packing of two arbitrary convex polygons P
and Q, when both are allowed to translate and rotate, can be found in O(nm? +

n’m) = O((n + m)nm) time and linear space.

5. Algebraic Formulation and Computation of Singular and
Successor States

The core of the algorithm Min_area_convex_hull top consists of three func-
tions Get_next(), Get_singular(), and Area_singular(). They all depend on
the mathematical formulation of extreme curves. In this section, we first derive the
exact algebraic formulations for the extreme curves; we then elaborate on how the
two functions Get_next() and Get_singular() should be implemented; finally, we
describe the algorithmic mechanism that ensures a constant time for computing
Get_singular().

5.1. Mathematical formulation of extreme curves

There are exactly four kinds of extreme curves, each corresponding to one of the
four hull vertices in a hull configuration. As already alluded, an extreme curve is
a simple curve in a mosaic map. This curve can always be put in an explicit form
t = f(#), which we derive one by one next. In the following derivations, we use
L to denote the length of the contact edge Qcr.Qcr, h for the length ¢ - L, 3 for
ZPLPOPR, BL for ZPchpc_H, and BR for ZPRPcfPC_l.

5.1.1. Pp-configuration extreme curve

The Pr-configuration extreme curve consists of those points in the 8 — ¢ plane
for which the three hull vertices Pr, Pr_1, and @J; are collinear, as shown in
Fig. 11(a). To maintain this condition, the values of ¢ and # must ensure the equation

7@l ||PLeell .
B EREEAE which leads to
h=lgopQp cosp1—lp, Py cos(0+BL—a2)  h—lg,,q, cosgi—lp, Py cos(0+pr) (6)
Ip,_1 Pe SIN(01BL —a2)Hlagpay Siner g pe sin(048L) Hlag, @z SN @1

Simplifying the above equation, the Pp-configuration extreme curve t = fpy, () is
determined by

—_ 1
fPL (6) - E(lPL—lpc’ sin(agfﬂfﬁL)+lprc Sln(0+BL)) [
lPL—IPClPLPC sin s + lPLPClQCLQL Sin(a + Br — (,01) (7)
+lPL—1Pc lQCLQL Sin(a2 —-0-Br+ 901)]'
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Fig. 11. Conditions of Pr- and Pgr-extreme curves: (a) for Pr-extreme curve, and (b) for Pg-

extreme curve.
For the collinearity of P, Ppy1, and @, the formula is similar — by just replacing
Py, and Py, with Py and Pp44. The following three extreme curves have the same

property.

5.1.2. Pgr-configuration extreme curve

A point (6,t) is on the Pg-configuration extreme curve when Pgr_;, Pg, and
J@urel] _ J@nPial (oo
e

@R are collinear, which corresponds to the equation PrPall = TPrrPi]

Fig. 11(b)). Accordingly, we have
lPRpCCOS(W—B—H—BL)—[(I/_h)_ZQCRQRCOS(LP‘l] _
lPRpCSin(ﬁ—B—G—BL)+lQ_CRQRSintp4 -
lpp_1pPocos(m—B—0—Br+az)—[(L—h)—lqgsrqprcospal

lpnlpcsin( *B*9*5L+C!3)+ZQCRQRSimﬂ4

After simplification, the Pgr-configuration extreme curve ¢t = fpr(f) becomes
1

)P, P sin(B+6+5L)) (lPr_1 PolPr e Sin as
(9)

L(ZPR—lpc’ sin(agfﬁfb‘fBL

-HPRPCI_/Sin(ﬁ + 6 + 6L) + lPR_lpCESin(Oég, —p—-0-— ﬂL)
—lppPe lQCRQR Sin(ﬁ +ps+0+ BL)

frr(9)
—lpp_ipPc lQCRQR Sin(a3 —B—ps—0— BL)]

5.1.3. Qr.-configuration extreme curve

The @ -configuration extreme curve identifies the collinearity among the three hull
ler-1Qi|| _

2

vertices Pr, Qr, and Q1. This collinearity requires the equation
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Fig. 12. Conditions of Qr- and Qg-extreme curves: (a) for Qr-extreme curve, and (b) for Qgr-

(see Fig. 12(a)), which leads to

(h=lgracyp cosp1)—(h—lq, _;qcp cosps)  lpppo cos(04+BL)—(h—lg, _;qQcy €os¥3)
lQL—lQCL Sinépg—lQLQCL sinépl -
ical formulation

1

(10)

lPLPC Sin(0+BL)+lQL_1QCL sin @3
Thus, the Qr-configuration extreme curve t = for(#) has the following mathemat-
fQL (9) = E(ilQLQCL sin ¢1+ZQL—1QCL sin Lpg)

[_ZQLQC’LZQL—lQC’L Sin(% - 503)
_lPLPC lQLQCL Sin((pl -6 - BL) + lPLPClQL—lQCL sin(<p3 -6 - BL)]
5.1.4. Qg-configuration extreme curve

(11)

Finally, for a point (6,t) to be on the @) g-configuration extreme curve when Pg,
Q@ Rr_1, and Qg are collinear, it must maintain the equation I
(see Fig. 12(b)). It leads to

19~ Q%-]|
Q

_ JlorPx]|
BT |
[(i’_h)_lQRQCR003¢4]_[(i_h)_ZQR_1QCRCOSLP5]
lQRQCRSian4—lQR_1QCRSZ'nAps

(L—h)—19pacrcospa—lpgppcos(n—B—6—Pr)

T
loreorsinvatlpgp sin(r—B—0—5r)

(12)

Thus, the @ r-configuration extreme curve ¢ = for() is given by
for(0) = 7 !

lQRQCR sin ‘p4_lQR—1QCR sin ¢5) [lQRQCRL sin P4
_lQR—lQCRlQRQgR Sin(504 - 905) + Py Pe lQRQCR Sin(ﬂ +ps +0+ BL)
_lanchnL sin s — lPRPC lanchn Sin(ﬂ +¢s5 + 0+ BL)]

(13)

5.2. Determining singular(S;) and next(S;)

Given an instance (S;,6p), we want to identify the successor state next(S;) and
the in-between singular state singular(S;), which are found by the two procedures
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P(singular(S;))

Fig. 13. Geometric derivation of type I singular state.

Get_next(S;,00) and Get_singular(S;,6y), respectively. As to be seen soon, state
next(S;) is readily derivable once singular(S;) is available. Therefore, we focus on
Get_singular(S;,0p) first.

By definition, state S; falls on a @ g-configuration extreme curve t = for(f) in
some mosaic map; that is, the three hull vertices Pr, Qr_1, and Qg are collinear
(on the vertical line L) for all instances of S;. Given an instance (S;, fo), the singular
state singular(S;) can be of any of the five types; we analyze them one by one.

5.2.1. Type I singular state

If singular(S;) is of type I, then P and @ are in vertex-vertex contact at
singular(S;). Assume that E.(P) is a vertex and E.(Q) is an edge in S;. Con-
ceivably, at singular(S;), vertex E.(P) coincides with an end point of edge E.(Q).
Therefore, the ¢ value of the single corresponding point of singular(S;) in the mo-
saic map must be 0 or 1, and its 6 value is determined by solving the following two
equations:

0= for(f)
{_ Fon(®) (14)

The solution to the above two equations (which are simple sinusoidal equations)
will be at most two # values 8, and 6>. They must, however, be validated to be
within the #-domain [0, 7 — a] of the mosaic map. Assuming the most general case
that both are valid, then the one which is smaller than 6y of the given instance
(Si,00), along with the corresponding ¢ value (0 or 1), identifies the singular state
singular(S;). Refer to Fig. 13 for an example.
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P(singulai(S;))

P(S,. 6,)

P(S,. 6¢)

(a) (b) (c)

Fig. 14. Type II singular state: (a) valid singular(S;), (b) 6 = m — a case, and (c) ¢ out of [0,1]
case.

5.2.2. Type II singular state

A type II singular state requires that P and () must be in edge-edge contact at
singular(S;). The only possible § —¢ solution in the mosaic map is point (0, for(0)),
whose t-value fgr(0) should be validated against the interval [0, 1]. Note that the
other possible singular state (7 — «, for(m —a)) cannot be singular(S;), as 7 —a >
fo. To illustrate our analysis, Fig. 14 depicts three singular states of type II; only
the one in Fig. 14(a) is singular(S;).

5.2.3. Type III singular state

By definition, at a type III singular state, an adjacent vertex of Pg, i.e. Pr_; or
Ppy1, also falls on the vertical line L through Pgr, Qr,, and Qr—_1. Vertex Pr_;
must be ruled out, since it is assumed that the states are ordered according to the
orientations of the instances they represent. Let ¢ = fpgr(6) be the Pgr-configuration
extreme curve for Pr and Pr4q as defined in Eq. (9). The (6,¢) point representing
the state singular(S;) then is the solution to the following two equations:

fer(8) = for(f)
{7 fon(®) (15)

After the validity checking (i.e. 8 € [0,pi — a] and ¢ € [0, 1]), the sole solution to
the above two equations, if it exists, is the singular state singular(S;). Fig. 15(a)
shows an example for a type III singular(S;).

5.2.4. Type IV singular state

The analysis for a type IV singular state is similar to that of type III, except that
this time the (,¢) point of singular(S;) is the intersection of the two curves:

fri(0) = for(0)
{7 for(®) (16)
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P(singular(S;))

P(singular(s;))

P(S,. 6;)

(a)

Fig. 15. Type III (a) and type IV (b) singular states.
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Fig. 16. Type V singular states.

where t = fpy,(0) is the Pr-configuration extreme curve for Py, and Pr as defined
in Eq. (7). Refer to Fig. 15(b) for an example.

5.2.5. Type V singular state

Finally, for our last type of singularity, type V, the (6,t) point of singular(S;) can
be shown to be the intersection of the two curves:

= for(f)
Care however must be taken when selecting the Jr-configuration extreme curve
t = for(#). Unlike types III and IV, in the case of type V, both the adjacent
vertices of the current hull vertex Q1 can contribute to singular(S;). Fig. 16 shows
two examples to illustrate this point: in Fig. 16(a), the singular state singular(S;) is
contributed by @, and @Q14+1, whereas in Fig. 16(b) it is @1, and Q1. Regardless
of which one, however, the actual geometry of P and @ dictates that only one of
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Qr+1 and Q1 will contribute to singular(S;). Algebraically, this implies that we
should try both t = fgr(6) curves in Eq. (17) and take the sole solution, if it exists,
that meets the validity checking of # € [0,7 — a] and t € [0, 1].

Having established geometrically the analysis for a singular state on all the five
types, the procedure Get_singular(S;,0y) is now easy to define. Basically, given
an instance (S;, 6o), we check its ensuing singular(S;) for all the five types, and the
one with the largest 6 — value < 6y is the correct singular(S;). Since all extreme
curves are in the forms of some explicit and simple sinusoidal functions of 6 (see
Egs. (7), (9), (11), and (13)), it is easily seen that solving Eqs. (14) — (17) all takes
constant time. As a result, procedure Get_singular(S;,6y) takes constant time.

Once singular(S;) is available, state next(S;) can then be derived. For the last
three types of singularity, namely, types IIT — V, the derivation is straightforward
— only one hull vertex in the 5-tuple of state S; needs to be replaced. For instance,
referring to Fig. 15(b), if singular(S;) is of type IV, then next(S;) agrees with
S; except the Py, vertex; that is, if vertex P; is the P, vertex of S;, then the P,
vertex of next(S;) should be P;y;. The treatments for the first two types though
require some geometric insight. These two types only alter the contact elements, and
hence the mosaic map, in the state — the four hull vertices will remain the same on
next(S;). First, consider type I and suppose the contact in state S; is P; — Q;-1Q;,
and at singular(S;) vertex P; becomes coincidental with @);. Fig. 17 shows two
possible scenarios: (a) the next contact is P; — Q;Q;+1, and (b) the next contact
is Q; — P;P;y1. We stipulate that the decision on choosing the correct one can be
made by comparing the orientations of edge P;P;y; and edge Q;Q;+1. Explicitly,
assuming that the positive z-axis points to the reader’s eyes from this paper, at
state singular(S;), if the vector P;Pi11 X Q;Q ;41 is in the +z-axis direction, then
the next contact is P;—Q;Q 41 (e.g., Fig. 17(a)); otherwise, the next contact should
be Q; — P;P;it1, as shown in Fig. 17(b). To see the rational behind this criterion,
consider the new placement of P;P;1; after it undergoes an infinitesimal Af motion
(counterclockwise) from the singular state singular(S;). Suppose one walks from
Piyq first to P; and then to @;41. If this walk makes a left turn at P;, then edge
P; P, cannot contain vertex (); since this would cause P;P;;; to cut into @J. On
the other hand, if the walk makes a right turn at P;, then edge ;@ ;+1 must be
clear of P; in order to satisfy the non-interference criterion. The analysis for type
IT is similar.

In summary, we have the following lemma for computing the states singular(S;)
and next(S;).

Lemma 5. Given an instance (S;,6o), both singular(S;) and next(S;) can be com-
puted in constant time.
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P(next(S;)) \\\‘,}/*ﬁ

P(S;, )

Fig. 17. Two scenarios of the next contact for type I singularity.

Fig. 18. Computing the area of C: (a) cell x, and (b) cell x’ .

5.3. Area calculation

Earlier, it was stated that the area calculation function Area_singular() for a sin-
gular state called in algorithm Min_area_convex_hull top() takes only constant
time. Instead of showing our statement for this extreme case, we explain next why
the area calculation for an arbitrary general state takes only constant time, if based
on a simple incremental updating.

Referring to Fig. 18, the area of the packing C' corresponding to a general point
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in a cell x is defined as:

Ac(0,t) = A(PLPcQr) + A(PrRPcQRr) + A(QLPcQRr)
+A(Pc, Pr,, Pry1,-++, Pr) + A(Qr,Qr,QRr41, -+, QL 1)

In the above equation, only the first three items, i.e., the areas of the three triangles,
are dependent on (6, t), while the last two items are constants. Let’s call the last
two items in the above formula — the residual areas of P and (), respectively.
Obviously, given (6, t), the areas of the three triangles can be calculated in constant
time. Hence, the calculation time for A¢(6,t) is dominated by the computation of
the residual areas. Now, consider the residual areas in a neighboring cell x’ of .
Since only one of the four hull vertices differs in any two neighboring cells, only
one residual area will change between x’' and y and their difference is a triangle
(shaded in Fig. 18(b)). Obviously, it takes constant time to compute the area of
this triangle. As a result, once the residual areas of x’ are known, the area A (6, 1t)
can be calculated in constant time.

Now, consider any two successive singular states Ss; and S, in algorithm
Min_area_convex_hull_top. They can be viewed as belonging to two neighbor-
ing cells, albeit at extreme condition — they lie on the boundaries of the cells.
Therefore, based on the above reasoning, if the residual areas of the first singular
state encountered in algorithm Min_area_convex_hull_top are available, then all
the subsequent calls Area_singular (Ss) take constant time each. This result is
summarized in the lemma below.

Lemma 6. Given the residual areas of the cell corresponding to a state S;, the area
of the packing for any instance of state next(S;) can be computed in constant time.

6. Complexity Analysis

In this section, we prove the claim made at the end of Section 4 that the total num-
ber of all distinct singular states of P with respect to the vertical line L containing
a given rightmost edge of @ is O(nm). This result is needed for completing the
proof of Theorem 2. More precisely, we prove the following theorem.

Theorem 3. For two arbitrary convex polygons P and Q of n and m vertices,
respectively, there are O((n + m)nm) distinct singular states in the worst case.

Proof. Without loss of generality, we only consider the top-supported singular
states. First, assume that we fix () with its rightmost edge lying on the vertical
line L and let P rotate and translate while keeping its rightmost vertex tangent to
the vertical line L and maintaining contact with the upper boundary of @) as well.
Further, assume that the motion of P is counterclockwise in terms of the order of
its vertices touching line L.

We begin with proving the following lower bound: For a given rightmost edge
of @ lying on the vertical line L, the number of all distinct singular states of P
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Fig. 19. llustrating the proof of Theorem 3.

is at least Q(nm) in the worst case. We prove this by constructing a pair of P
and @ that achieves this lower bound. Refer to Fig. 19. In our construction, P is
roughly a regular N-gon, and @) is roughly a regular M-gon, where N = f(n) and
M = g(m) (the functions f(-) and g(-) will be determined later). By “roughly”, we
mean that (say) P is similar to a regular N-gon but its edge lengths may differ from
each other by some small values. (Note that such length differences are necessary
for rotating and translating P to search for a minimum packing C' — otherwise, it
would be sufficient to simply consider one edge of a perfect regular N-gon in order
to find a minimum packing C'.) Such a roughly regular N-gon can be generated as
follows: First generate a perfect regular N-gon from a circle, and then randomly
move each vertex of the N-gon inside a small circular region containing that vertex
(see Fig. 19).

We generate both P and @ in this manner. Next, we modify @) as follows. Choose
two arbitrary “symmetric” vertices of @), say @); and @;. Position @) such that @);
and @; are the leftmost and rightmost vertices of () respectively. Modify @ by
adding two vertices a and b to @ such that a and b are adjacent and very close to
Q;; similarly add two other vertices ¢ and d near to vertex ();. Furthermore, let the
three vertices a, @;, and b (resp., ¢, ), and d) be on a circular arc (see Fig. 19(a)).
Note that we can make the difference between the xz-coordinates of vertex b and Q);
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(resp., c and @);) as small as we want; this implies that the two circular arcs are two
nearly “flat” segments, which allow us to control the angle of the wedge bounded by
the two rays R; and R, in Fig. 19(a) (where R; passes through @; and Pr,, and R,
passes through Q; and b). Now, let M = g(m) = m/2 (i.e.,  was first generated as
a roughly regular (m/2)-gon). Randomly put m/4 points on the arc containing a,
Qi, and b (resp., ¢, @;, and d), and connect these points by edges along the order
of the arc. These are the vertices of @ from vertex a (resp., ¢) clockwise to vertex b
(resp., d). @ thus constructed has m vertices. Without loss of generality, we assume
that the vertical line L in Fig. 19 passes through the right most edge of @.

Suppose we rotate P counterclockwise, say from the placement of Fig. 19(a) to
the placement of Fig. 19(b). Assume that all the dashed rays between the two rays
R; and R, are collinear with a subset of the m /4 edges of ) from vertex a clockwise
to vertex b. Then, there are O(m) such dashed rays between R; and R,. During the
rotation of P from the placement in Fig. 19(a) to the one in Fig. 19(b), the vertex u
of P is first the Pr, vertex for a while, and then the vertex v becomes the Pj, vertex.
In this rotation, P;, = u in Fig. 19(a) cuts through each of the corresponding O(m)
dashed rays from ), meaning that u forms a distinct type V singular state with
each of the corresponding edges of @) (i.e., u is collinear with each such edge of @
while being the Pr vertex). Similarly, P, = v in Fig. 19(b) also cuts through each
of the O(m) rays from . In fact, a complete rotation of P in Fig. 19 will make
every vertex z of P (when Pp = z) cut through each of these O(m) rays of @ at
most twice, once as z moves from right to left, and once as it moves from left to
right in this example.

Note that given any roughly regular N-gon P, we can always make a wedge
between the two rays R; and R, sufficiently small so that the above argument
remains valid.

For the time being, let N = f(n) = n. Then the above argument implies that
for a given rightmost vertical edge of @ from vertex ¢ clockwise to vertex d, each
of the n vertices of P can participate in O(m) distinct type V singular states. This
implies a total of O(nm) distinct type V singular states (over the n vertices of P)
for the given rightmost vertical edge of Q.

Next, observe that the above situation can be repeated O(m) times, one for
each of the m/4 very short edges close to the current rightmost vertical edge of
@, since every such edge of () can in turn be used as its rightmost edge lying on
the vertical line L. Thus, the same process can be repeated for each of these m/4
edges @ close to its current leftmost edge. This means that there can be altogether
O(nm?) distinct type V singular states.

On the other hand, we can also establish the following upper bound: For a
given rightmost edge of @ lying on the vertical line L, the number of all distinct
singular states of P is at most O(nm). For example, it is easy to see that every
vertex of P, while it is being the hull vertex Pj, can be collinear with at most
O(m) different edges of @ that are incident to the current hull vertex Qr,, implying
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that there can be at most O(nm) distinct type V singular states. In general, note
that there are O(n) boundary entities of P and O(m) boundary entities of @), and
each pair between them may define a singular state of a certain type (out of the
five singularity types). There can be at most O(nm) such boundary entity pairs
between P and @ in the worst case. Each of them may “realize” a distinct singular
state, one pair after another, as P is in motion. Therefore, there can be no more
than O(nm) distinct singular states for a given rightmost edge of Q.

Letting each of the m edges of ) in turn be the right most vertical edge, the
above argument leads to that there are no more than O(nm?) distinct singular
states for the given roles of P and @ (i.e., fixing the rightmost edge of ) and
letting P rotate and translate).

We can switch the roles of P and @ (i.e., fix the rightmost edge of P and let @
rotate and translate). Before doing that, we let N = f(n) =n/2 (i.e., P was first a
roughly regular (n/2)-gon) and apply the described modification on @ to P, that
is, we add n/4 vertices respectively close to the leftmost and rightmost vertices of
P. P thus constructed has n vertices. Note that the structure of () is similar to
that of P (i.e., @ is still like a roughly regular (m/2)-gon but has m vertices, with
m /4 vertices close to each of the two chosen “symmetric” vertices). Then the above
analysis can be applied to this setting of P and @, proving that the lower and upper
bounds of all distinct singular states for this case are both O(mn?).

In summary, there are O(nm?) + O(mn?) = O((n + m)nm) distinct singular
states between two arbitrary convex polygons P and @ in the worst case. O

7. Implementation and Examples

The algorithm presented above has been implemented on a PC platform with a
modest configuration and tested on a number of examples. When “designing” the
test examples, we consciously looked for cases that can verify all the five singularity
types. Explicitly, we wanted to answer the question “can a minimum packing be of
any of the five singularity types?”. Our answer is “yes”, and Fig. 20 through Fig. 24
give one example for each type.

The last example (given in Fig. 25) demonstrates the robustness of the algorithm
(and our implementation). In this example, a link edge shrinks to a single point;
geometrically, this indicates a singular state of multiple types (e.g., types I, II, and
III in Fig. 25). The correct minimum packing is successfully captured in our test.

8. Conclusion

In this paper, we have presented an efficient deterministic algorithm for computing
a minimum area convex packing of two arbitrary convex polygons P and @, thus
settling this open problem. Our algorithm is based on a novel characterization of the
geometric and algebraic structures of the problem, which enables us to successfully
discretize the search space to only a finite number of special points called critical
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Q4 3

(© | (d)

Fig. 20. A minimum packing of type I: (a) the given two convex polygons, (b) the mosaic map
containing the result, (c¢) 3D display of the area function of the mosaic map of the result, and (d)
the minimum packing convex hull.

points. A careful complexity analysis shows that our algorithm runs in O((n +
m)nm) time, where n and m are the numbers of vertices of P and @, respectively.

Along the direction of this work, some interesting open problems still remain.
The first one is either to prove that our O((n + m)nm) time algorithm is optimal,
or to design a faster algorithm for solving this problem. The second problem is to
extend our method to solving the problem of computing a minimum area convex
packing of more than two arbitrary convex polygons. The third problem is to con-
sider packing polygons that are not necessary convex. Packing geometric objects in
the 3-dimensional space is also a very interesting and useful topic.
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Fig. 21. A minimum packing of type II: (a) the given two convex polygons, (b) the mosaic map
containing the result, (c) 3D display of the area function of the mosaic map of the result, and (d)
the minimum packing convex hull.
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P +
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Fig. 22. A minimum packing of type III: (a) the given two convex polygons, (b) the mosaic map
containing the result, (c¢) 3D display of the area function of the mosaic map of the result, and (d)
the minimum packing convex hull.
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Fig. 23. A minimum packing of type IV: (a) the given two convex polygons, (b) the mosaic map
containing the result, (c) 3D display of the area function of the mosaic map of the result, and (d)
the minimum packing convex hull.
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Pz_Pﬁ_Q3_Q2

Q-

(©

Fig. 24. A minimum packing of type V: (a) the given two convex polygons, (b) the mosaic map
containing the result, (c¢) 3D display of the area function of the mosaic map of the result, and (d)
the minimum packing convex hull.
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Fig. 25. Degenerate singular state: (a) the given two convex polygons, (b) the mosaic map con-
taining the final result, (c) 3D display of the area function of the mosaic map of the final result,
and (d) the minimum packing convex hull.
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