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hellABSTRACTGiven two 
onvex polygons P and Q in the plane that are free to translate and rotate,a 
onvex pa
king of them is the 
onvex hull of a pla
ement of P and a pla
ement ofQ whose interiors do not interse
t. A minimum area 
onvex pa
king of P and Q is onewhose area is minimized. The problem of designing a deterministi
 algorithm for �ndinga minimum area 
onvex pa
king of two 
onvex polygons has remained open. We addressthis problem by �rst studying the 
onta
t 
on�gurations between P and Q and theiralgebrai
 stru
tures. Cru
ial geometri
 and algebrai
 properties on the area fun
tion arethen derived and analyzed whi
h enable us to su

essfully dis
retize the sear
h spa
e.This dis
retization, together with a deli
ate algorithmi
 design and 
areful 
omplexityanalysis, allows us to develop an eÆ
ient O((n +m)nm) time deterministi
 algorithmfor �nding a true minimum area 
onvex pa
king of P and Q, where n and m are thenumbers of verti
es of P and Q, respe
tively.Keywords: Convex pa
king; minimum area; 
onvex polygon; 
onta
t 
on�guration; 
on-�guration spa
e.�Corresponding author. 1
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tionThis paper studies the problem of pa
king two 
onvex polygons by a minimum area
onvex polygon. Given two arbitrary 
onvex polygons P = hP0; P1; : : : ; Pn�1i andQ = hQ0; Q1; : : : ; Qm�1i in the plane, su
h that P and Q are free to translate androtate, a 
onvex pa
king (or pa
king for brevity) of them is the 
onvex hull of apla
ement of P and a pla
ement of Q whose interiors do not interse
t. A minimumarea 
onvex pa
king (or minimum pa
king) of P and Q then is one whose areais minimized. When 
ast with di�erent obje
tives and 
onstraints, this minimumpa
king problem �nds appli
ations in a variety of problems, su
h as the Pallet Load-ing problem,6;17;8;19 the Cutting-Sto
k problem,1;9 the Bin-Pa
king problem,3;13;4and the Assortment problem.5;11;12;10 From a theoreti
al point of view, it will bemeritorious if an exa
t and deterministi
 algorithm 
an be found for 
omputing aminimum pa
king eÆ
iently. Earlier work on this problem all has a sub-optimalnature, su
h as either �xing the orientation between P and Q7 or en
losing theobje
ts by re
tangular boxes.16;14 Whether there exists a deterministi
 algorithmfor �nding a true minimum pa
king of two arbitrary 
onvex polygons P and Q hasremained open.We present an O((n + m)nm) time deterministi
 algorithm for �nding a trueminimum pa
king of two 
onvex polygons P and Q, thus providing an aÆrmativeanswer to this open problem. Our algorithm is based on a 
areful geometri
 analysisof the 
on�gurations of the 
onvex pa
king whi
h leads to a 
hara
terization of some
riti
al geometri
 and algebrai
 properties on the area fun
tion of the pa
king.These properties dis
retize the sear
h spa
e and thus allow us to sear
h amongonly a �nite number of the pa
king 
on�gurations. An eÆ
ient algorithm is thendeveloped to perform this sear
h to �nd a true minimum area pa
king, whi
h, basedon a 
areful 
omplexity analysis, takes O((n+m)nm) time and linear spa
e.The rest of the paper is organized as follows. After giving ne
essary de�nitionsand preliminaries, Se
tion 2 derives the analyti
al formation of a spe
ial 
onta
t
on�guration spa
e 
alled mosai
 map, and determines the area fun
tion A(�; t)of the pa
king in a mosai
 map. Detailed mathemati
al des
ription of the areafun
tion is given in Se
tion 3, whi
h helps lead to an important dis
overy on thearea fun
tion | the area fun
tion 
an obtain a minimum only at a �nite number ofspe
ial points in the mosai
 map. Se
tion 4 gives a deli
ate algorithm that eÆ
ientlysear
hes through these �nite spe
ial points and �nds one with the minimum area.A 
areful analysis on the 
omputation and 
omplexity of the algorithm is presentedin Se
tions 5 and 6 that ensures the O((n +m)nm) upper-bound on the runningtime of the algorithm. Finally, we show some implementation results (Se
tion 7)and 
on
lude the paper (Se
tion 8).2. PreliminaryLet a pla
ement of P and a pla
ement of Q be said to be in 
onta
t of (or tou
h)ea
h other if they tou
h ea
h other on their boundaries only (i.e., their interiors do
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Fig. 1. Two 
onvex polygons in 
onta
t at PC and QCLQCR.not interse
t). We 
an assume that Q is �xed, while P 
an move freely but keeps in
onta
t with Q. The 
onta
t 
on�guration spa
e of P and Q is the set of all possiblepla
ements of P that are in 
onta
t with Q. Without loss of generality, it 
an befurther assumed that a minimum pa
king of P and Q is realized by a pla
ementof P that has a vertex in 
onta
t with an edge of Q. Consider the 
on�gurationthat P and Q are required to be in 
onta
t at a vertex PC and an edge QCLQCR,as shown in Fig. 1. There are two parameters, t and �, that 
ompletely determinesu
h a 
onta
t. The parameter t is used to spe
ify the position of PC on QCLQCR,with t = kPCQCLkkQCRQCLk 2 [0; 1℄. The parameter � is used to determine the orientationbetween P and Q. When � 
hanges, P rotates around the point PC . Sin
e theinteriors of P and Q are not allowed to interse
t, all verti
es of P 
an be assumedto lie above the 
onta
t edge of Q (when PC is at QCL or QCR), and � must satisfy� 2 [0; � � �℄, where � = \PC�1PCPC+1. The four spe
ial verti
es, PL, PR, QL,and QR, are 
alled hull verti
es, and they form a hull-quadruple. The two spe
ialedges on the pa
king | PLQL and PRQR | are 
alled link edges. The followingde�nition is in order.De�nition 1. A hull 
on�guration is a subspa
e in the 
onta
t 
on�guration spa
eof P and Q su
h that the 
onta
t vertex of P , the 
onta
t edge of Q, and the hull-quadruple all remain the same.
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onta
t vertex PC and the 
onta
t edgeQCLQCR are �xed; 
onsequently, a hull 
on�guration is 
ompletely determined bythe hull-quadruple. The set of points in the � � t domain [0; � � �℄ � [0; 1℄ thatrealize a same hull 
on�guration will be referred to as a 
ell. Con
eivably, a 
ellis a 
ontiguous region. Sin
e every (�; t) point in [0; � � �℄ � [0; 1℄ 
orrespondsto a hull 
on�guration, the � � t domain [0; � � �℄ � [0; 1℄ is thus a partitioningmade of 
ells, whi
h will be 
alled a mosai
 map. As an example, for the 
onta
tvertex P6 and the 
onta
t edge Q0Q1 shown in Fig. 2(a), their mosai
 map isdepi
ted in Fig. 2(b), where the hull-quadruple of ea
h 
ell is shown embedded inthe 
ell. Note that a mosai
 map, in fa
t, is 
on
eptually a planar stru
ture 
alledarrangement in 
omputational geometry2; but as we will show later, by exploitingthe geometri
 properties of the problem, our algorithm is able to avoid 
omputingthe entire stru
ture of the arrangement. As 
learly revealed in the above example,ex
luding those points on the boundary of the domain [0; ���℄�[0; 1℄, the boundaryof a 
ell 
onsists of some 
ontinuous 
urves, whi
h will be referred to as extreme
urves. Expli
itly, all points on a same extreme 
urve 
orrespond to an extreme hull
on�guration where a 
urrent hull vertex is about to be repla
ed by a new vertex.Geometri
ally, this designates a 
onta
t situation when an edge of P or Q be
omes
ollinear with a link edge, as entailed below.De�nition 2. A point (�0; t0) 2 [0; ���℄� [0; 1℄ is 
alled a PL-extreme point in the� � t plane if the hull vertex QL is 
ollinear with either the edge PLPL�1 or edgePLPL+1. Similarly, (�0; t0) is a QL-extreme point if the hull vertex PL is 
ollinearwith one of the two edges QLQL�1 and QLQL+1. Analogously, we de�ne the othertwo types of extreme hull 
on�guration points, whi
h are all listed in Table 1.Table 1. Extreme hull 
on�guration points.Type of 
ollinear 
on�guration points Geometri
 
onditionPL-extreme point QL is 
ollinear with PLPL�1 or PLPL+1PR-extreme point QR is 
ollinear with PRPR�1 or PRPR+1QL-extreme point PL is 
ollinear with QLQL�1 or QLQL+1QR-extreme point PR is 
ollinear with QRQR�1 or QRQR+1For instan
e, in the example given in Fig. 2, the 
ell of hull-quadruple P0 �P4 �Q7 �Q3 and the 
ell of P0 � P5 �Q7 �Q3 share an extreme 
urve of the PRtype; on this 
urve, both the verti
es P4 and P5 are the PR vertex. Also exempli�edby the example, whi
h will be
ome 
lear later, is the fa
t that every end point ofthe extreme 
urves, ex
ept those on the boundary of [0; � � �℄ � [0; 1℄, is sharedby exa
tly four 
ells. We 
all the end points of the extreme 
urves 
riti
al points.Obviously, at a 
riti
al point in the open domain (0; � � �) � (0; 1), two edges ofP and/or Q are involved in the 
ollinearity 
ondition, e.g., the 
riti
al point inFig. 2(b) shared by the 
ells of the four hull-quadruples | P0 � P4 � Q7 � Q3,
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Fig. 2. Example of the mosai
 map of a pair of 
onta
t vertex and edge: (a) Two 
onvex polygons,and (b) Mosai
 map of pair P6 �Q0Q(1).P0�P5�Q7�Q3, P0�P4�Q8�Q3, and P0�P5�Q8�Q3 | de�nes a 
onta
t
on�guration as shown in Fig. 3(a), where the edges P4P5 of P and Q7Q8 of Qare 
ollinear with the QR vertex Q3 and the PL vertex P0, respe
tively. A hull-quadruple 
ould degenerate into a triangle, whi
h 
orresponds to the 
ase whentwo 
riti
al points are 
oin
ident (e.g., the example in Fig. 3(b)).
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Fig. 3. Geometri
 interpretation of a 
riti
al point: (a) a general 
ase, and (b) an extreme 
ase.The last item to be de�ned is the area fun
tion of the pa
king. For any point(�; t) 2 [0; � � �℄� [0; 1℄, let Ahull(�; t) denote the area of the pa
king of P and Q
orresponding to the parameter (�; t). Referring to Fig. 1,Ahull(�; t) = A(PLPCQL) +A(PRPCQR) + A(PCQLQR)+A(PCPL : : : PR) +A(QLQL�1 : : :QR+1QR)where we use A(v1v2 : : : vn) to represent the area of a 
losed polygon with ver-ti
es v1; v2; : : : ; vn. When (�; t) is restri
ted to be within a 
ell, the hull-quadrupleremains the same, and hen
e the last two items in the above expression are 
on-stants. Therefore, as a fun
tion of (�; t), we only need to 
onsider the area of thethree triangles.Atri(�; t) = A(PLPCQL) +A(PRPCQR) +A(PCQLQR) (1)It is trivial to verify that the fun
tion Atri(�; t) is 
ontinuous in the entire domain[0; � � �℄� [0; 1℄. In addition, within ea
h single 
ell, Atri(�; t) is C1 
ontinuous inboth � and t. In the next se
tion, a 
ru
ial property of Atri(�; t) will be shown: thefun
tion Atri(�; t) 
an a
hieve a minimum only at some 
riti
al points in [0; � ��℄� [0; 1℄.3. Minimum Pa
king Area and Sear
h Spa
e Dis
retizationLet us de�ne two types of iso-parametri
 
urves on the surfa
e Atri(�; t) given inEq. (1): the t-
urve that is the fun
tion Atri(�; t) when parameter � is �xed atsome �0, and the �-
urve, i.e., Atri(�; t0), for some �xed t0. The following propertyis introdu
ed.
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Fig. 4. Proof of Property 1.Property 1. The surfa
eAtri(�; t) is a ruled surfa
e and its t-
urves are therulings.Proof. As shown in Fig. 4, �rst we �x �, and then move the 
onta
t vertex PCalong the 
onta
t edge QjQj+1to a new position P 0C by a distan
e �t, with the newtriangle areaA0tri(�; t) = A(P 0LP 0CQL) +A(P 0RP 0CQR) +A(P 0CQLQR)= A(PLPCQL) +A(P 0LPLPCP 0C) +A(P 0CPCQL)�A(P 0LPLQL) +A(PRPCQR) +A(P 0RPRQR)�A(P 0RPRPCP 0C)�A(P 0CPCQR) +A(PCQLQR) +A(P 0CPCQR)�A(P 0CPCQL)Sin
e kPLP 0Lk = kPRP 0Rk = kPCP 0C j = �t, we have�A = A0tri �Atri= A(P 0LPLPCP 0C) +A(P 0CPCQL)� A(P 0LPLQL) +A(P 0RPRQR)�A(P 0RPRPCP 0C)�A(P 0CPCQR) +A(P 0CPCQR)�A(P 0CPCQL)i.e., �A = hPL + hQR � hPR � hQL2 �t: (2)The above equation indi
ates that any t-
urve is linear in t, and 
onsequently thesurfa
e Atri(�; t) is ruled.As a dire
t 
onsequen
e of Property 1, Atri(�; t) 
an a
hieve its minimum onlyon the boundary of its parameter domain, as stipulated below.
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Fig. 5. Rotating a triangle about a shared vertex.Corollary 1. The minimum of fun
tion Atri(�; t) o

urs only on the boundary ofthe 
ell in whi
h the fun
tion is de�ned.Next, we provide a useful lemma on the area of the pa
king of two trianglessharing a 
ommon vertex. Referring to Fig. 5, suppose initially the edge p1v oftriangle �p1p2v overlaps with edge q1v of triangle �q1q2v, and the initial angle\p2vq2is � (Fig. 5(a)). The triangle �p1p2v is then rotated 
lo
kwise about theshared vertex v (Fig. 5(b)). Considering the sum A(�) of the areas of the twotriangles �p1vq1 and �p2vq2 as a fun
tion of the rotation angle �, we have thefollowing lemma.Lemma 1. The minimum of fun
tion A(�): � 2 [0;�℄ o

urs only at A(0) or A(�).Proof. We haveA(�) = 12 lp1vlq1v sin(�) + 12 lp2vlq2v sin(�� �) (3)whose 1st derivative isA0(�) = 12 lp1vlq1v 
os(�) � 12 lp2vlq2v 
os(�� �) (4)and we 
an also determine its 2nd derivative asA00(�) = �12 lp1vlq1v sin(�)� 12 lp2vlq2v sin(�� �) (5)Sin
e both � and ��� are internal angles of two valid triangles �p1q1v and �p2q2v,we have 0 � � � � and 0 � �� � � �. The se
ond derivative of A(�) thus remainsnegative in � 2 [0;�℄, whi
h means it 
annot have a minimum in the open domain� 2 (0;�). There are two extreme 
ases: 1) � > � and 0 < ��� < �, or 2) 0 < � < �and �� � > �. However, when su
h a 
ase o

urs, for 
ase 1), the area fun
tion inEq. (1) degenerates toAtri(�; t) = A(PRPCQR) +A(PCQLQR)
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king of Two Convex Polygons 9where A(�) = 12 lp2vlq2v sin(� � �) leads to A00(�) = � 12 lp2vlq2v sin(� � �) < 0; for
ase 2), Atri(�; t) = A(PLPCQL) +A(PCQLQR)and similarly, A(�) = 12 lp1vlq1v sin(�) leads to A00(�) = � 12 lp1vlq1v sin(�) < 0.With Lemma 1, the following property on the other iso-parametri
 
urve, the�-
urve, is established.Property 2. The �-
urve of surfa
e Atri(�; t), i.e., Atri(�; t0) with � 2 [0; ���℄,is either stri
tly monotone, or �rst stri
tly in
reases and then stri
tly de
reases.Proof. Referring to Fig. 1, when t is �xed, only the areas of the two trianglesA(PLPCQL) and A(PRPCQR) 
hange when � varies. The geometri
 
on�gurationof these two triangles is however identi
al to that given in Fig. 5. Due to Lemma1, thus, Atri(�; t) 
annot have a minimum in the open domain � 2 (0; � � �) with� = \PC+1PCPC�1 � \PLPCPR. Furthermore, sin
e � > 0, Atri(�; t) 
an have atmost one maximum in � 2 (0; � � �).Before pro
eeding further, it is imperative to ensure that the set of all mosai
maps 
overs the entire 
onta
t 
on�guration spa
e. To illustrate the importan
e ofthis, Fig. 6(b) displays a parti
ular 
onta
t 
on�guration in whi
h P and Q sharea 
ommon vertex v. By inferring from Fig. 6(a) and 6(
), it is obvious that this
on�guration belongs to neither the mosai
 map of v � e1 nor the mosai
 map ofv � e2. However, if we swit
h the roles between P and Q and let Q move aroundthe stationary P , then we 
an show that the 
onta
t of Fig. 6(b) must lie in one ofthe mosai
 maps of v � E1 or v � E2. To see this, refer to Fig. 6(d); in order fora 
onta
t 
on�guration (in whi
h the two polygons share the vertex v) not to be
overed by any one of the mosai
 maps of v � e1 and v � e2, the inequality � < �must hold so that there exists a 
on�guration with P 
overing both sides of theedges e1 and e2. On the other hand, in order for this 
onta
t 
on�guration to be
overed by the mosai
 maps of neither v�E1 nor v�E2, we must have � > �. Theonly possibility is � = �, in whi
h 
ase the 
orresponding 
onta
t 
on�guration isa 
orner point in a mosai
 map, as manifested in Fig. 6(e).Having assured the equivalen
e between the union of the mosai
 maps and the
onta
t 
on�guration spa
e, we next prove that no 
orner point, i.e., (0; 0), (0; 1),(���; 0), and (���; 1) (the 
ases shown in Fig. 7), in any mosai
 map 
an a
hievethe minimum area unless it is on some extreme 
urve. This relieves us from worryingabout those points at the 
orners of mosai
 maps, whi
h in turn will help redu
ethe time 
omplexity of the �nal algorithm tremendously. Hereafter, we use Amin todenote the area of a minimum pa
king of P and Q.Lemma 2. If the minimum area Amin is a
hieved by a pa
king C 
orrespondingto a 
orner of a mosai
 map, then this 
orner point must be on an extreme 
urve.
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Fig. 6. Conta
t 
on�guration not 
overed by mosai
 maps.Proof. It is easily dis
ernible that any of the four 
orners of a mosai
 map
an be geometri
ally 
ategorized as one of the two patterns, namely, \dangling"and \overlapping", shown as pa
king C in Fig. 7(a) and 7(b), respe
tively. In the
ase of a \dangling" C, a

ording to Lemma 1, we 
an rotate P about the sharedvertex v, either 
lo
kwise or 
ounter-
lo
kwise depending on in whi
h dire
tion thearea fun
tion de
reases, and have the 
omfort of knowing that after rotating asmall angle �� the resulting pa
king C 0 will have less area than that of C. For thelatter 
ase when C is of the \overlapping" pattern, by Property 1, we translate P ,either to the left or right (again depending on in whi
h dire
tion the area fun
tionde
reases), by a small distan
e �t to get a new pa
king C 0 whose area is assuredto be smaller than that of C.The above analysis is valid as long as �� or �t exists; that is, during the move-ment of �� or �t, the hull-quadruple remains the same. Sin
e the hull-quadruple
hanges only on extreme 
urves (for example, Fig. 7(
) and 7(d)), we have provedour lemma.We note on the proof of Lemma 2 that the example given in Fig. 7(d) for the\overlapping" 
ase is indeed of an extreme nature, albeit a degenerate one, as inthis 
ase the hull vertex PL of P 
oin
ides with the hull vertex QL of Q. (Noti
ethe important di�eren
e between (b) and (d) in Fig. 7: In (b), the hull vertex PLdoes not 
oin
ide with the hull vertex QL, whereas in (d) they do.) Also as theproperties 1 and 2 are held, the min-area pa
king 
annot be a
hieved at a point onone of the 4 edges of a mosai
 map that is not on an extreme 
urve.We are now ready to present a key result that 
ompletes the task of the sear
hspa
e dis
retization, by eliminating the interior points on any extreme 
urves fromthe sear
h spa
e. We have the following lemma.Lemma 3. The minimum area pa
king 
annot be obtained in the interior of anyextreme 
urve.
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Fig. 7. Proof of Lemma 2: (a) \dangling", (b) \overlapping", (
) extreme \dangling", and (d)extreme \overlapping".Proof. We only prove the lemma for the QR-extreme 
ase, and the other threeextreme 
ases 
an be analyzed analogously. Let �(s) be aQR-extreme 
urve betweentwo 
ells �1 and �2, and A1 and A2 be the area fun
tion Ahull de�ned on thetwo 
ells respe
tively, where s is the ar
 length of 
urve �. Obviously, on �, A1and A2 agree with ea
h other, i.e., A1(s) = A2(s) for all points on �. Supposethat the univariate fun
tion A1(s) (A2(s)) obtains a lo
al minimum at an interiorpoint (t0; �0) = �(s0) of �. Without loss of generality, let Q1Q2 be the edge that
ontributes to the QR-extremity. To make a lo
al minimum, referring to Fig. 8(a)and (b), at point (t0; �0), a

ording to Eq. (2), we should have�A1�t ��(�0;t0) = d12 +K < 0and �A2�t ��(�0;t0) = d22 +K > 0where d1 and d2 are the hQR length for 
ells �1 and �2 respe
tively, and K is12 (hPL � hPR) + hQL . Sin
e d2 is always larger than d1, the above two inequalitiesindi
ate that there is a unique point Q�2 on edge Q1Q2 su
h that the hQR length d�of it leads to d�2 +K = 0, as shown in Fig. 8(
). Now, suppose we repla
e the originalpolygonQ with the new one Q� obtained fromQ by repla
ing its vertexQ2 with Q�2,whi
h also alters fun
tions A1 and A2 to A�1 and A�2 respe
tively. It is not diÆ
ult tosee that, as 
an be validated from the formulas in Se
tion 5.1| Eq. (13), for the newpolygon Q� the original QR-extreme 
urve � remains un
hanged lo
ally. Moreover,



November 24, 2005 15:25 WSPC/Guidelines MinAreaPa
king-ij
ga
12 K. Tang, C.C.L. Wang, and D.Z. Chen

Fig. 8. Proof of Lemma 3.fun
tion A�1 only di�ers from A1 by a 
onstant (the area of the shaded trianglein Fig. 8(
)). Therefore, (t0; �0) = �(s0) is still expe
ted to be a lo
al minimumpoint of A�1(s). Sin
e A�2(s) and A�1(s) are the same, (t0; �0) = �(s0) should also bea lo
al minimum point of A�2(s). By 
lassi
al optimization theory of multivariatefun
tions, the tangent to 
urve � at (t0; �0) = �(s0) thus should be perpendi
ular toboth the gradients of A�1 and A�2, whi
h means �A�1�t ���(�0;t0) = k �A�2�t ���(�0;t0), where k isjust some negative number. However, this equality 
annot hold sin
e �A�2�t ���(�0;t0) =d�2 +K = 0 but �A�1�t ���(�0;t0) = d12 + K < 0 6= 0. Therefore, point (t0; �0) = �(s0)
annot be a lo
al minimum on A�1(s) and A�2(s), a 
ontradi
tion.With Lemmas 2 and 3, and Properties 1 and 2, we 
on
lude the se
tion bythe following theorem, in whi
h the 
riti
al points are the interse
tions of extreme
urves on the mosai
 map.Theorem 1. A minimum area pa
king C of P and Q 
an be obtained only at
ertain 
riti
al points in some mosai
 maps.
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Fig. 9. Types of states: (a) and (
) General states; (b) singular state.4. Details of the AlgorithmThe su

essful dis
retization of the sear
h spa
e as stipulated by Theorem 1 enablesus to develop a deterministi
 method for �nding a minimum pa
king | there areonly a �nite number of 
riti
al points in all mosai
 maps. Our next task is then todesign an eÆ
ient algorithm to perform this deterministi
 sear
h.Refer to Fig. 9. Again, suppose Q is �xed while P 
an be rotated and translated.Also assume that the rightmost edge of Q is verti
al (on line L). Consider all thosepa
kings C whose hull vertex PR lies on line L. Then a general 
on�guration of C
an be spe
i�ed by a 5-tuple:< E
(P ); E
(Q); vL(P ); vR(P ); vL(Q) >where E
(P ) and E
(Q) stand for the boundary entities (verti
es or edges) on Pand Q that are in 
onta
t with ea
h other, vL(P ) and vR(P ) are respe
tively thetwo hull verti
es PL and PR on P , and vL(Q) is the 
orresponding hull vertex QLon Q. We 
all su
h a 5-tuple a state of C. A state is said to be singular if one ormore of the following types o

ur:(1) both E
(P ) and E
(Q) are verti
es;(2) both E
(P ) and E
(Q) are edges;(3) some vertex Pi, in addition to vR(P ), lies on line L;(4) some vertex Pi is 
ollinear with vL(P ) and vL(Q);(5) some vertex Qi is 
ollinear with vL(P ) and vL(Q).A 5-tuple that is not singular is 
alled a general state, e.g., the states shown inFig. 9(a) and 9(
), whereas the state given in Fig. 9(b) belongs to the singular type(2). Geometri
ally, singular states of type (1) 
orrespond to those 
riti
al points onthe boundary t = 0 or t = 1 of a mosai
 map, and type (2) singular states pertainto 
riti
al points on the boundary � = 0 or � = � � �. All the last three typesare asso
iated with the interior 
riti
al points in the mosai
 map (i.e., the 
riti
alpoints not on the 4 edges of a mosai
 map), where an interior 
riti
al point is the



November 24, 2005 15:25 WSPC/Guidelines MinAreaPa
king-ij
ga
14 K. Tang, C.C.L. Wang, and D.Z. Chen

Fig. 10. A state of bottom-support type.interse
tion between the QR-extreme 
urve and a PR-extreme 
urve (type (3)), ora PL-extreme 
urve (type (4)), or a QL-extreme 
urve (type (5)).A state as exempli�ed by Fig. 9 a
tually belongs to the 
ategory of top-supporttype, as the hull vertex PR is above the hull vertex QR on line L. A

ordingly, astate 
an also be in the bottom-support 
ategory, as shown in Fig. 10, where PRis below QR. With both top- and bottom-support types de�ned, and by swit
hingthe roles between P and Q, based on Theorem 1, it immediately follows that anyminimum pa
king must 
orrespond to some singular state of the top-support orbottom-support type.We distinguish a state from its instan
es. An instan
e of a state is a spe
i�
pla
ement of P that meets the 5-tuple 
ondition of that state. Obviously, a generalstate has an in�nite number of instan
es, whereas any singular state has exa
tlyone (isolated) instan
e. An instan
e of state Si thus 
an be represented as (Si; �),where � is the �-value of the pla
ement of P in the mosai
 map asso
iated with Si.The following lemma is then given.Lemma 4. The set of all instan
es of any state Si forms exa
tly a 
ontiguousportion on an extreme 
urve in some mosai
 map.Consider using verti
al lines (i.e., � is a 
onstant) to 
ut the extreme 
urves ina mosai
 map; then the part between two interse
tions belongs to the same generalstate, and the interse
tion points are on singular states. Similarly, when horizontallines are used (i.e., t is a 
onstant on the line), we 
an draw the same 
on
lusion| the part between two interse
tions represents the same general state. Togetherwith the de�nitions of extreme 
urves, the above lemma 
an be easily proved.Next, let fS0; S1; : : : ; SK�1g be the set of all distin
t top-support general (non-singular) states of C (restri
ted with respe
t to the verti
al line L), sorted a

ordingto P 's orientations of their instan
es, in whi
h the verti
es of P tou
h the line L inthe 
ounter
lo
kwise order. State Si is 
alled the su

essor state of state Si�1,
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alled the prede
essor state of state Si (i � 1 and i mod K). Forexample, the state shown in Fig. 9(
) su

eeds the state given in Fig. 9(a). We willuse next(Si) to denote the su

essor state of Si, i.e., Si+1 = next(Si). It is easyto see that between two 
onse
utive states Si and Si+1, there is one and only onesingular state, e.g., the state in Fig. 9(b) is the sole singular state between the twostates shown in Fig. 9(a) and 9(
). As to be shown in the next se
tion, given Si, itsensuing singular state is uniquely determined. Let us use singular(Si) to denotethe singular state between Si and next(Si).We are now ready to present the outline of our algorithm for �nding a minimumarea 
onvex pa
king of P and Q. The algorithm given below (in Table 2) only
onsiders the 
ase of the top-support singular states; the treatment for the bottom-supported 
ase 
an be derived analogously. In the algorithm, we useArea singular(S) to denote the fun
tion that returns the area of the pa
king de�ned by thesingular state S. Two other pro
edures will be used, both taking as input an instan
e(Si; �0): Get singular (Si; �0) whi
h returns the sole instan
e of the singular statesingular(Si), and Get next (Si; �0) whi
h returns the state next(Si).Table 2. Algorithm Min area 
onvex hull top (P ,Q).Algorithm Min area 
onvex hull top (P ,Q)/* Find a top-supported minimum pa
king of P and Q */BeginStep 1. For every edge e of Q do fStep 1.1. Rotate Q so that e be
omes verti
al and also its right-most edge;Step 1.2. (S0; �0)( an instan
e of an arbitrary non-singular state of P ;S ( S0;Snext ( Get next (S; �0);Step 1.3. While (Snext 6= S0) do f(Ss; �s)( Get singular (S; �0);Am ( Area singular (Ss); /* the area of singular state Ss */If (Am < Amin) then f /* Amin is initialized to +1 */fSmin; Aming ( fSs; AmggS ( Snext;�( �s;Snext ( Get next (S; �0);g /* end of While*/g /* end of For statement*/End.In the next se
tion, details will be given on how to mathemati
ally as wellas algorithmi
ally perform the three fun
tions Get next(), Get singular(), andArea singular(). As we will show, based on in
remental updating, these threeoperations all take 
onstant time. In Se
tion 6, we will prove that, with respe
t toa verti
al supporting line, P 
an have at most O(nm) distin
t non-singular states(top-supported). Consequently, the entire While loop at Step 1.3 takes O(nm) time.All the other steps in the For loop at Step 1 obviously require no more than linear
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onvex hull tophas a running time of O(nm2). In the same spirit, we 
an design an O(nm2) timealgorithm for those bottom-supported singular states. Adding the 
onsiderationthat we also need to swit
h the roles between P and Q so as to 
apture all thepossible 
onta
t 
on�gurations, we arrive at the following result.Theorem 2. A minimum area 
onvex pa
king of two arbitrary 
onvex polygons Pand Q, when both are allowed to translate and rotate, 
an be found in O(nm2 +n2m) = O((n +m)nm) time and linear spa
e.5. Algebrai
 Formulation and Computation of Singular andSu

essor StatesThe 
ore of the algorithm Min area 
onvex hull top 
onsists of three fun
-tions Get next(), Get singular(), and Area singular(). They all depend onthe mathemati
al formulation of extreme 
urves. In this se
tion, we �rst derive theexa
t algebrai
 formulations for the extreme 
urves; we then elaborate on how thetwo fun
tions Get next() and Get singular() should be implemented; �nally, wedes
ribe the algorithmi
 me
hanism that ensures a 
onstant time for 
omputingGet singular().5.1. Mathemati
al formulation of extreme 
urvesThere are exa
tly four kinds of extreme 
urves, ea
h 
orresponding to one of thefour hull verti
es in a hull 
on�guration. As already alluded, an extreme 
urve isa simple 
urve in a mosai
 map. This 
urve 
an always be put in an expli
it formt = f(�), whi
h we derive one by one next. In the following derivations, we use�L to denote the length of the 
onta
t edge QCLQCR, h for the length t � �L, � for\PLPCPR, �L for \PLPCPC+1, and �R for \PRPCPC�1.5.1.1. PL-
on�guration extreme 
urveThe PL-
on�guration extreme 
urve 
onsists of those points in the � � t planefor whi
h the three hull verti
es PL, PL�1, and QL are 
ollinear, as shown inFig. 11(a). To maintain this 
ondition, the values of t and � must ensure the equationkP 0L�1QLkkPL�1P 0L�1k = kP 0LQLkkPLP 0Lk , whi
h leads toh�lQCLQL 
os'1�lPL�1PC 
os(�+�L��2)lPL�1PC sin(�+�L��2)+lQCLQL sin'1 = h�lQCLQL 
os'1�lPLPC 
os(�+�L)lPLPC sin(�+�L)+lQCLQL sin'1 : (6)Simplifying the above equation, the PL-
on�guration extreme 
urve t = fPL(�) isdetermined by fPL(�) = 1�L(lPL�1PC sin(�2����L)+lPLPC sin(�+�L)) [lPL�1PC lPLPC sin�2 + lPLPC lQCLQL sin(� + �L � '1)+lPL�1PC lQCLQL sin(�2 � � � �L + '1)℄: (7)
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Fig. 11. Conditions of PL- and PR-extreme 
urves: (a) for PL-extreme 
urve, and (b) for PR-extreme 
urve.For the 
ollinearity of PL, PL+1, and QL, the formula is similar | by just repla
ingPL�1 and PL with PL and PL+1. The following three extreme 
urves have the sameproperty.5.1.2. PR-
on�guration extreme 
urveA point (�; t) is on the PR-
on�guration extreme 
urve when PR�1, PR, andQR are 
ollinear, whi
h 
orresponds to the equation kQRP 0RkkPRP 0Rk = kQRP 0R�1kkPR�1P 0R�1k (seeFig. 11(b)). A

ordingly, we havelPRPC 
os(�������L)�[(�L�h)�lQCRQR
os('4℄lPRPC sin(�������L)+lQCRQRsin'4 =lPR�1PC 
os(�������L+�3)�[(�L�h)�lQCRQR
os'4℄lPR1PC sin(�������L+�3)+lQCRQRsin'4 : (8)After simpli�
ation, the PR-
on�guration extreme 
urve t = fPR(�) be
omesfPR(�) = 1�L(lPR�1PC sin(�3������L)+lPRPC sin(�+�+�L)) [lPR�1PC lPRPC sin�3+lPRPC �L sin(� + � + �L) + lPR�1PC �L sin(�3 � � � � � �L)�lPRPC lQCRQR sin(� + '4 + � + �L)�lPR�1PC lQCRQR sin(�3 � � � '4 � � � �L)℄: (9)
5.1.3. QL-
on�guration extreme 
urveThe QL-
on�guration extreme 
urve identi�es the 
ollinearity among the three hullverti
es PL, QL, and QL�1. This 
ollinearity requires the equation kQL�1Q0LkkQLQ0Lk =
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Fig. 12. Conditions of QL- and QR-extreme 
urves: (a) for QL-extreme 
urve, and (b) for QR-extreme 
urve.kQL�1P 0LkkPLP 0Lk (see Fig. 12(a)), whi
h leads to(h�lQLQCL 
os'1)�(h�lQL�1QCL 
os'3)lQL�1QCL sin'3�lQLQCL sin'1 = lPLPC 
os(�+�L)�(h�lQL�1QCL 
os'3)lPLPC sin(�+�L)+lQL�1QCL sin'3 : (10)Thus, the QL-
on�guration extreme 
urve t = fQL(�) has the following mathemat-i
al formulationfQL(�) = 1�L(�lQLQCL sin'1+lQL�1QCL sin'3) [�lQLQCL lQL�1QCL sin('1 � '3)�lPLPC lQLQCL sin('1 � � � �L) + lPLPC lQL�1QCL sin('3 � � � �L)℄: (11)5.1.4. QR-
on�guration extreme 
urveFinally, for a point (�; t) to be on the QR-
on�guration extreme 
urve when PR,QR�1, and QR are 
ollinear, it must maintain the equation kQRQ0R�1kkQR�1Q0R�1k = kQRP 0RkkPRP 0Rk(see Fig. 12(b)). It leads to[(�L�h)�lQRQCR
os'4℄�[(�L�h)�lQR�1QCR
os'5℄lQRQCRsin'4�lQR�1QCRsin'5 =(�L�h)�lQRQCR
os'4�lPRPC 
os(�������L)lQRQCRsin'4+lPRPC sin(�������L) : (12)Thus, the QR-
on�guration extreme 
urve t = fQR(�) is given byfQR(�) = 1�L(lQRQCR sin'4�lQR�1QCR sin'5) [lQRQCR �L sin'4�lQR�1QCR lQRQCR sin('4 � '5) + lPRPC lQRQCR sin(� + '4 + � + �L)�lQR�1QCR �L sin'5 � lPRPC lQR�1QCR sin(� + '5 + � + �L)℄: (13)5.2. Determining singular(Si) and next(Si)Given an instan
e (Si; �0), we want to identify the su

essor state next(Si) andthe in-between singular state singular(Si), whi
h are found by the two pro
edures
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Fig. 13. Geometri
 derivation of type I singular state.Get next(Si; �0) and Get singular(Si; �0), respe
tively. As to be seen soon, statenext(Si) is readily derivable on
e singular(Si) is available. Therefore, we fo
us onGet singular(Si; �0) �rst.By de�nition, state Si falls on a QR-
on�guration extreme 
urve t = fQR(�) insome mosai
 map; that is, the three hull verti
es PR, QR�1, and QR are 
ollinear(on the verti
al line L) for all instan
es of Si. Given an instan
e (Si; �0), the singularstate singular(Si) 
an be of any of the �ve types; we analyze them one by one.5.2.1. Type I singular stateIf singular(Si) is of type I, then P and Q are in vertex-vertex 
onta
t atsingular(Si). Assume that E
(P ) is a vertex and E
(Q) is an edge in Si. Con-
eivably, at singular(Si), vertex E
(P ) 
oin
ides with an end point of edge E
(Q).Therefore, the t value of the single 
orresponding point of singular(Si) in the mo-sai
 map must be 0 or 1, and its � value is determined by solving the following twoequations: f0 = fQR(�)1 = fQR(�) (14)The solution to the above two equations (whi
h are simple sinusoidal equations)will be at most two � values �1 and �2. They must, however, be validated to bewithin the �-domain [0; �� �℄ of the mosai
 map. Assuming the most general 
asethat both are valid, then the one whi
h is smaller than �0 of the given instan
e(Si; �0), along with the 
orresponding t value (0 or 1), identi�es the singular statesingular(Si). Refer to Fig. 13 for an example.
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Fig. 14. Type II singular state: (a) valid singular(Si), (b) � = � � � 
ase, and (
) t out of [0; 1℄
ase.5.2.2. Type II singular stateA type II singular state requires that P and Q must be in edge-edge 
onta
t atsingular(Si). The only possible ��t solution in the mosai
 map is point (0; fQR(0)),whose t-value fQR(0) should be validated against the interval [0; 1℄. Note that theother possible singular state (���; fQR(���)) 
annot be singular(Si), as ��� >�0. To illustrate our analysis, Fig. 14 depi
ts three singular states of type II; onlythe one in Fig. 14(a) is singular(Si).5.2.3. Type III singular stateBy de�nition, at a type III singular state, an adja
ent vertex of PR, i.e. PR�1 orPR+1, also falls on the verti
al line L through PR, QR;, and QR�1. Vertex PR�1must be ruled out, sin
e it is assumed that the states are ordered a

ording to theorientations of the instan
es they represent. Let t = fPR(�) be the PR-
on�gurationextreme 
urve for PR and PR+1 as de�ned in Eq. (9). The (�; t) point representingthe state singular(Si) then is the solution to the following two equations:ffPR(�) = fQR(�)t = fQR(�) (15)After the validity 
he
king (i.e. � 2 [0; pi � �℄ and t 2 [0; 1℄), the sole solution tothe above two equations, if it exists, is the singular state singular(Si). Fig. 15(a)shows an example for a type III singular(Si).5.2.4. Type IV singular stateThe analysis for a type IV singular state is similar to that of type III, ex
ept thatthis time the (�; t) point of singular(Si) is the interse
tion of the two 
urves:ffPL(�) = fQR(�)t = fQR(�) (16)
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Fig. 15. Type III (a) and type IV (b) singular states.

Fig. 16. Type V singular states.where t = fPL(�) is the PL-
on�guration extreme 
urve for PL and PL+1 as de�nedin Eq. (7). Refer to Fig. 15(b) for an example.5.2.5. Type V singular stateFinally, for our last type of singularity, type V, the (�; t) point of singular(Si) 
anbe shown to be the interse
tion of the two 
urves:ffQL(�) = fQR(�)t = fQR(�) (17)Care however must be taken when sele
ting the QL-
on�guration extreme 
urvet = fQL(�). Unlike types III and IV, in the 
ase of type V, both the adja
entverti
es of the 
urrent hull vertex QL 
an 
ontribute to singular(Si). Fig. 16 showstwo examples to illustrate this point: in Fig. 16(a), the singular state singular(Si) is
ontributed by QL and QL+1, whereas in Fig. 16(b) it is QL and QL�1. Regardlessof whi
h one, however, the a
tual geometry of P and Q di
tates that only one of



November 24, 2005 15:25 WSPC/Guidelines MinAreaPa
king-ij
ga
22 K. Tang, C.C.L. Wang, and D.Z. ChenQL+1 and QL�1 will 
ontribute to singular(Si). Algebrai
ally, this implies that weshould try both t = fQL(�) 
urves in Eq. (17) and take the sole solution, if it exists,that meets the validity 
he
king of � 2 [0; � � �℄ and t 2 [0; 1℄.Having established geometri
ally the analysis for a singular state on all the �vetypes, the pro
edure Get singular(Si; �0) is now easy to de�ne. Basi
ally, givenan instan
e (Si; �0), we 
he
k its ensuing singular(Si) for all the �ve types, and theone with the largest � � value < �0 is the 
orre
t singular(Si). Sin
e all extreme
urves are in the forms of some expli
it and simple sinusoidal fun
tions of � (seeEqs. (7), (9), (11), and (13)), it is easily seen that solving Eqs. (14) { (17) all takes
onstant time. As a result, pro
edure Get singular(Si; �0) takes 
onstant time.On
e singular(Si) is available, state next(Si) 
an then be derived. For the lastthree types of singularity, namely, types III { V, the derivation is straightforward{ only one hull vertex in the 5-tuple of state Si needs to be repla
ed. For instan
e,referring to Fig. 15(b), if singular(Si) is of type IV, then next(Si) agrees withSi ex
ept the PL vertex; that is, if vertex Pi is the PL vertex of Si, then the PLvertex of next(Si) should be Pi+1. The treatments for the �rst two types thoughrequire some geometri
 insight. These two types only alter the 
onta
t elements, andhen
e the mosai
 map, in the state { the four hull verti
es will remain the same onnext(Si). First, 
onsider type I and suppose the 
onta
t in state Si is Pi�Qj�1Qj ,and at singular(Si) vertex Pi be
omes 
oin
idental with Qj . Fig. 17 shows twopossible s
enarios: (a) the next 
onta
t is Pi � QjQj+1, and (b) the next 
onta
tis Qj � PiPi+1. We stipulate that the de
ision on 
hoosing the 
orre
t one 
an bemade by 
omparing the orientations of edge PiPi+1 and edge QjQj+1. Expli
itly,assuming that the positive z-axis points to the reader's eyes from this paper, atstate singular(Si), if the ve
tor PiPi+1 �QjQj+1 is in the +z-axis dire
tion, thenthe next 
onta
t is Pi�QjQj+1 (e.g., Fig. 17(a)); otherwise, the next 
onta
t shouldbe Qj � PiPi+1, as shown in Fig. 17(b). To see the rational behind this 
riterion,
onsider the new pla
ement of PiPi+1 after it undergoes an in�nitesimal �� motion(
ounter
lo
kwise) from the singular state singular(Si). Suppose one walks fromPi+1 �rst to Pi and then to Qj+1. If this walk makes a left turn at Pi, then edgePiPi+1 
annot 
ontain vertex Qj sin
e this would 
ause PiPi+1 to 
ut into Q. Onthe other hand, if the walk makes a right turn at Pi, then edge QjQj+1 must be
lear of Pi in order to satisfy the non-interferen
e 
riterion. The analysis for typeII is similar.In summary, we have the following lemma for 
omputing the states singular(Si)and next(Si).Lemma 5. Given an instan
e (Si; �0), both singular(Si) and next(Si) 
an be 
om-puted in 
onstant time.
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Fig. 17. Two s
enarios of the next 
onta
t for type I singularity.

Fig. 18. Computing the area of C: (a) 
ell �, and (b) 
ell �0 .5.3. Area 
al
ulationEarlier, it was stated that the area 
al
ulation fun
tion Area singular() for a sin-gular state 
alled in algorithm Min area 
onvex hull top() takes only 
onstanttime. Instead of showing our statement for this extreme 
ase, we explain next whythe area 
al
ulation for an arbitrary general state takes only 
onstant time, if basedon a simple in
remental updating.Referring to Fig. 18, the area of the pa
king C 
orresponding to a general point
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ell � is de�ned as:AC(�; t) = A(PLPCQL) +A(PRPCQR) +A(QLPCQR)+A(PC ; PL; PL+1; � � � ; PR) +A(QL; QR; QR+1; � � � ; QL�1):In the above equation, only the �rst three items, i.e., the areas of the three triangles,are dependent on (�, t), while the last two items are 
onstants. Let's 
all the lasttwo items in the above formula | the residual areas of P and Q, respe
tively.Obviously, given (�; t), the areas of the three triangles 
an be 
al
ulated in 
onstanttime. Hen
e, the 
al
ulation time for AC(�; t) is dominated by the 
omputation ofthe residual areas. Now, 
onsider the residual areas in a neighboring 
ell �0 of �.Sin
e only one of the four hull verti
es di�ers in any two neighboring 
ells, onlyone residual area will 
hange between �0 and � and their di�eren
e is a triangle(shaded in Fig. 18(b)). Obviously, it takes 
onstant time to 
ompute the area ofthis triangle. As a result, on
e the residual areas of �0 are known, the area AC(�; t)
an be 
al
ulated in 
onstant time.Now, 
onsider any two su

essive singular states Ss and S0s in algorithmMin area 
onvex hull top. They 
an be viewed as belonging to two neighbor-ing 
ells, albeit at extreme 
ondition | they lie on the boundaries of the 
ells.Therefore, based on the above reasoning, if the residual areas of the �rst singularstate en
ountered in algorithmMin area 
onvex hull top are available, then allthe subsequent 
alls Area singular (Ss) take 
onstant time ea
h. This result issummarized in the lemma below.Lemma 6. Given the residual areas of the 
ell 
orresponding to a state Si, the areaof the pa
king for any instan
e of state next(Si) 
an be 
omputed in 
onstant time.6. Complexity AnalysisIn this se
tion, we prove the 
laim made at the end of Se
tion 4 that the total num-ber of all distin
t singular states of P with respe
t to the verti
al line L 
ontaininga given rightmost edge of Q is O(nm). This result is needed for 
ompleting theproof of Theorem 2. More pre
isely, we prove the following theorem.Theorem 3. For two arbitrary 
onvex polygons P and Q of n and m verti
es,respe
tively, there are O((n +m)nm) distin
t singular states in the worst 
ase.Proof. Without loss of generality, we only 
onsider the top-supported singularstates. First, assume that we �x Q with its rightmost edge lying on the verti
alline L and let P rotate and translate while keeping its rightmost vertex tangent tothe verti
al line L and maintaining 
onta
t with the upper boundary of Q as well.Further, assume that the motion of P is 
ounter
lo
kwise in terms of the order ofits verti
es tou
hing line L.We begin with proving the following lower bound: For a given rightmost edgeof Q lying on the verti
al line L, the number of all distin
t singular states of P
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Fig. 19. Illustrating the proof of Theorem 3.is at least 
(nm) in the worst 
ase. We prove this by 
onstru
ting a pair of Pand Q that a
hieves this lower bound. Refer to Fig. 19. In our 
onstru
tion, P isroughly a regular N -gon, and Q is roughly a regular M -gon, where N = f(n) andM = g(m) (the fun
tions f(�) and g(�) will be determined later). By \roughly", wemean that (say) P is similar to a regular N -gon but its edge lengths may di�er fromea
h other by some small values. (Note that su
h length di�eren
es are ne
essaryfor rotating and translating P to sear
h for a minimum pa
king C | otherwise, itwould be suÆ
ient to simply 
onsider one edge of a perfe
t regular N -gon in orderto �nd a minimum pa
king C.) Su
h a roughly regular N -gon 
an be generated asfollows: First generate a perfe
t regular N -gon from a 
ir
le, and then randomlymove ea
h vertex of the N -gon inside a small 
ir
ular region 
ontaining that vertex(see Fig. 19).We generate both P andQ in this manner. Next, we modify Q as follows. Choosetwo arbitrary \symmetri
" verti
es of Q, say Qi and Qj . Position Q su
h that Qiand Qj are the leftmost and rightmost verti
es of Q respe
tively. Modify Q byadding two verti
es a and b to Q su
h that a and b are adja
ent and very 
lose toQi; similarly add two other verti
es 
 and d near to vertex Qj . Furthermore, let thethree verti
es a, Qi, and b (resp., 
, Qj , and d) be on a 
ir
ular ar
 (see Fig. 19(a)).Note that we 
an make the di�eren
e between the x-
oordinates of vertex b and Qi
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 and Qj) as small as we want; this implies that the two 
ir
ular ar
s are twonearly \
at" segments, whi
h allow us to 
ontrol the angle of the wedge bounded bythe two rays Rl and Rr in Fig. 19(a) (where Rl passes through Qi and PL, and Rrpasses through Qi and b). Now, let M = g(m) = m=2 (i.e., Q was �rst generated asa roughly regular (m=2)-gon). Randomly put m=4 points on the ar
 
ontaining a,Qi, and b (resp., 
, Qj , and d), and 
onne
t these points by edges along the orderof the ar
. These are the verti
es of Q from vertex a (resp., 
) 
lo
kwise to vertex b(resp., d). Q thus 
onstru
ted has m verti
es. Without loss of generality, we assumethat the verti
al line L in Fig. 19 passes through the right most edge of Q.Suppose we rotate P 
ounter
lo
kwise, say from the pla
ement of Fig. 19(a) tothe pla
ement of Fig. 19(b). Assume that all the dashed rays between the two raysRl and Rr are 
ollinear with a subset of the m=4 edges of Q from vertex a 
lo
kwiseto vertex b. Then, there are O(m) su
h dashed rays between Rl and Rr. During therotation of P from the pla
ement in Fig. 19(a) to the one in Fig. 19(b), the vertex uof P is �rst the PL vertex for a while, and then the vertex v be
omes the PL vertex.In this rotation, PL = u in Fig. 19(a) 
uts through ea
h of the 
orresponding O(m)dashed rays from Q, meaning that u forms a distin
t type V singular state withea
h of the 
orresponding edges of Q (i.e., u is 
ollinear with ea
h su
h edge of Qwhile being the PL vertex). Similarly, PL = v in Fig. 19(b) also 
uts through ea
hof the O(m) rays from Q. In fa
t, a 
omplete rotation of P in Fig. 19 will makeevery vertex z of P (when PL = z) 
ut through ea
h of these O(m) rays of Q atmost twi
e, on
e as z moves from right to left, and on
e as it moves from left toright in this example.Note that given any roughly regular N -gon P , we 
an always make a wedgebetween the two rays Rl and Rr suÆ
iently small so that the above argumentremains valid.For the time being, let N = f(n) = n. Then the above argument implies thatfor a given rightmost verti
al edge of Q from vertex 
 
lo
kwise to vertex d, ea
hof the n verti
es of P 
an parti
ipate in O(m) distin
t type V singular states. Thisimplies a total of O(nm) distin
t type V singular states (over the n verti
es of P )for the given rightmost verti
al edge of Q.Next, observe that the above situation 
an be repeated O(m) times, one forea
h of the m=4 very short edges 
lose to the 
urrent rightmost verti
al edge ofQ, sin
e every su
h edge of Q 
an in turn be used as its rightmost edge lying onthe verti
al line L. Thus, the same pro
ess 
an be repeated for ea
h of these m=4edges Q 
lose to its 
urrent leftmost edge. This means that there 
an be altogetherO(nm2) distin
t type V singular states.On the other hand, we 
an also establish the following upper bound: For agiven rightmost edge of Q lying on the verti
al line L, the number of all distin
tsingular states of P is at most O(nm). For example, it is easy to see that everyvertex of P , while it is being the hull vertex PL, 
an be 
ollinear with at mostO(m) di�erent edges of Q that are in
ident to the 
urrent hull vertex QL, implying
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an be at most O(nm) distin
t type V singular states. In general, notethat there are O(n) boundary entities of P and O(m) boundary entities of Q, andea
h pair between them may de�ne a singular state of a 
ertain type (out of the�ve singularity types). There 
an be at most O(nm) su
h boundary entity pairsbetween P and Q in the worst 
ase. Ea
h of them may \realize" a distin
t singularstate, one pair after another, as P is in motion. Therefore, there 
an be no morethan O(nm) distin
t singular states for a given rightmost edge of Q.Letting ea
h of the m edges of Q in turn be the right most verti
al edge, theabove argument leads to that there are no more than O(nm2) distin
t singularstates for the given roles of P and Q (i.e., �xing the rightmost edge of Q andletting P rotate and translate).We 
an swit
h the roles of P and Q (i.e., �x the rightmost edge of P and let Qrotate and translate). Before doing that, we let N = f(n) = n=2 (i.e., P was �rst aroughly regular (n/2)-gon) and apply the des
ribed modi�
ation on Q to P , thatis, we add n/4 verti
es respe
tively 
lose to the leftmost and rightmost verti
es ofP . P thus 
onstru
ted has n verti
es. Note that the stru
ture of Q is similar tothat of P (i.e., Q is still like a roughly regular (m=2)-gon but has m verti
es, withm/4 verti
es 
lose to ea
h of the two 
hosen \symmetri
" verti
es). Then the aboveanalysis 
an be applied to this setting of P and Q, proving that the lower and upperbounds of all distin
t singular states for this 
ase are both O(mn2).In summary, there are O(nm2) + O(mn2) = O((n + m)nm) distin
t singularstates between two arbitrary 
onvex polygons P and Q in the worst 
ase.7. Implementation and ExamplesThe algorithm presented above has been implemented on a PC platform with amodest 
on�guration and tested on a number of examples. When \designing" thetest examples, we 
ons
iously looked for 
ases that 
an verify all the �ve singularitytypes. Expli
itly, we wanted to answer the question \
an a minimum pa
king be ofany of the �ve singularity types?". Our answer is \yes", and Fig. 20 through Fig. 24give one example for ea
h type.The last example (given in Fig. 25) demonstrates the robustness of the algorithm(and our implementation). In this example, a link edge shrinks to a single point;geometri
ally, this indi
ates a singular state of multiple types (e.g., types I, II, andIII in Fig. 25). The 
orre
t minimum pa
king is su

essfully 
aptured in our test.8. Con
lusionIn this paper, we have presented an eÆ
ient deterministi
 algorithm for 
omputinga minimum area 
onvex pa
king of two arbitrary 
onvex polygons P and Q, thussettling this open problem. Our algorithm is based on a novel 
hara
terization of thegeometri
 and algebrai
 stru
tures of the problem, whi
h enables us to su

essfullydis
retize the sear
h spa
e to only a �nite number of spe
ial points 
alled 
riti
al
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Fig. 20. A minimum pa
king of type I: (a) the given two 
onvex polygons, (b) the mosai
 map
ontaining the result, (
) 3D display of the area fun
tion of the mosai
 map of the result, and (d)the minimum pa
king 
onvex hull.points. A 
areful 
omplexity analysis shows that our algorithm runs in O((n +m)nm) time, where n and m are the numbers of verti
es of P and Q, respe
tively.Along the dire
tion of this work, some interesting open problems still remain.The �rst one is either to prove that our O((n+m)nm) time algorithm is optimal,or to design a faster algorithm for solving this problem. The se
ond problem is toextend our method to solving the problem of 
omputing a minimum area 
onvexpa
king of more than two arbitrary 
onvex polygons. The third problem is to 
on-sider pa
king polygons that are not ne
essary 
onvex. Pa
king geometri
 obje
ts inthe 3-dimensional spa
e is also a very interesting and useful topi
.
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Fig. 21. A minimum pa
king of type II: (a) the given two 
onvex polygons, (b) the mosai
 map
ontaining the result, (
) 3D display of the area fun
tion of the mosai
 map of the result, and (d)the minimum pa
king 
onvex hull.A
knowledgementsThe �rst author, Kai Tang, was partially supported by Hong Kong RGC Grant05/06.EG.620105. The resear
h of the third author, Danny Z. Chen, was supportedin part by the National S
ien
e Foundation under Grants CCR-9988468 and CCF-0515203; this work was partially done while D.Z. Chen was visiting the Departmentof Computer S
ien
e, Hong Kong University of S
ien
e and Te
hnology.



November 24, 2005 15:25 WSPC/Guidelines MinAreaPa
king-ij
ga
30 K. Tang, C.C.L. Wang, and D.Z. Chen

Fig. 22. A minimum pa
king of type III: (a) the given two 
onvex polygons, (b) the mosai
 map
ontaining the result, (
) 3D display of the area fun
tion of the mosai
 map of the result, and (d)the minimum pa
king 
onvex hull.
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Fig. 23. A minimum pa
king of type IV: (a) the given two 
onvex polygons, (b) the mosai
 map
ontaining the result, (
) 3D display of the area fun
tion of the mosai
 map of the result, and (d)the minimum pa
king 
onvex hull.
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Fig. 24. A minimum pa
king of type V: (a) the given two 
onvex polygons, (b) the mosai
 map
ontaining the result, (
) 3D display of the area fun
tion of the mosai
 map of the result, and (d)the minimum pa
king 
onvex hull.
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Fig. 25. Degenerate singular state: (a) the given two 
onvex polygons, (b) the mosai
 map 
on-taining the �nal result, (
) 3D display of the area fun
tion of the mosai
 map of the �nal result,and (d) the minimum pa
king 
onvex hull.
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