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Abstract—In this paper, we present a low-cost IMU-based requirement on the distance between the depth camera and
system, Pedalvatar, which can capture the full-body motion of the human body. Moreover, the success of motion capture is
users in real-time. Unlike the prior approaches using the hip- yary sensitive to the illuminance. These factors signifigan

joint as the root of forward kinematic model, a foot-rooted o . . .
kinematic model is developed in this work. A state change reduce the flexibility of using such technique for capturing

mechanism has also been investigated to allow dynamically Outdoor motions.

switching the root of kinematic trees between the left and Mechanical systems use wearable exoskeletons to directly
the right foot. Benefitted from this, full-body motions can be measure the joint angles between articulated body segments
well captured in our system as long as there is at least one instead of estimating the positions of points on the body.
static foot in the movement. The ‘floating’ artifact of hip- . .

joint rooted methods has been eliminated in our approach, These SyStemS offer good portability. Ong major qraWbaCk
and more complicated motions such as climbing stairs can be IS that the weight of exoskeletons can easily make it uncom-
successfully captured in real-time. Comparing to those vision- fortable to wear. Furthermore, mechanical systems usually
based systems, this IMU-based system provides more flexibility can only measure angles in one degree-of-freedom (DOF)
on capturing outdoor motions that are important for many 131 which limits the types of motions to be captured.
robotic applications. Acoustic systems usually compute the locations of markers

I. INTRODUCTION by using the time-of-flight of an acoustic signal. A number

The full-body motion capture technology has a variety off emitters are worn by the user and a set of receivers
applications in robotics, entertainment, virtual realigha- are installed at fixed positions around the environment of
bilitation and athletic training [1]-[9]. The major teclyies motion capture. The location of each emitter is determined
of full-body motion capture can be classified into a fewpy its distances to different receivers. These systemslysua
categories, including optical with active markers, opticahaVe high accuracy in tracking but the signal interference
markerless (also called image-based methods), inertad- m is serious when a large number of emitters are installed.
netic, mechanical and acoustic tracking systems. A Sur\,g}oreover, as the locations of receivers must be fixed and
of body motion capture technology in robotics can be foundetermined through a calibration procedure, such systems
in [10]. must be integrated with other types of sensors to capture a

Optical motion capture systems like Vicon [11] use activéarge-ranged outdoor motion (e.g., [3]). The inertial kiag
markers attached on the user’s body to capture the moti§¥Stem has become more popular recently because of its
in a specific indoor environment. This kind of system cadportability, which provides the capability of motion capu
accurately record both the posture and the position of usdfs@ large working envelope. An inertial motion capture sys-
when the markers are visible to the camera system. HowevgM usually has a combination of accelerometers, gyroscope
as the setup of camera system is not portable, the applisaticdnd magnetometers (e.g., [14]), and the data obtained from
are limited to indoor scenarios. Image-based approaches dlifferent sensors is then fused by sensor fusion algoritiams
tain motion data directly from video streams using compute?btain the orientation and the relative position. It is Uiyua
stereo vision techniques [12]. Although it is markerlesg t called Inertial Measurement Unit (IMU). Systems based on
reconstruction of body motion is less accurate than theeacti!MU do not need to install fixed cameras (or receivers)
marker based methods. Due to the huge amount of daound the environment of motion capture. Therefore, it has
to be processed, it is hard to capture full-body motion ifhe ability to capture the large-ranged outdoor motion with
real-time. Recently, the depth-image based techniqueg$] hlittle burden.
become popular in the entertainment applications, with the IMU-based sensors are initially designed to track the
help of which real-time motion capture and reconstructiofrientation of aerial vehicles. When being used in the motion
can be realized on a consumer-level PC. Nevertheless, ti§@pture of human bodies, they are not good at capturing
approach suffers from the same drawbacks of all visionébas@0sitions without the help of other devices. Ti@tobal
motion capture systems. When part of the human body RPsition System (GPS) and barometers are employed in

hidden by obstacles, the motion can only be predicted g§ior work, where GPS provides the absolute position and
that will have large errors. On the other aspect, there @& barometer can offer the absolute altitude. However, GPS
can only provide large-scale measurement of motions, which
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of our system is 50 frames/second). Floor-Westerdijk et a
[15] use inertial sensors to estimate the displacementeof tl

center of mass by integration of the acceleration. To corre
1Y

[16] is adopted to find the location while regular walking is |
practiced. It is not surprising to find that for an individual///
without any tool, he will never know where he is. All that can‘\{&
be known is how many steps he has moved forward or ho "
many stairs he has claimed up (or down). In other word:
we are measuring the earth by our feet. This observatic

motivates our research on developing a foot rooted kinemai

I
/1

drifting errors, thezero-velocity-updates (ZUPT) algorithm f(

model and applying it to realize an IMU-based real-time
motion capture system. Fig. 1: Our system consists of thirteen IMU modules (as
Our work presented in this paper has the technical contiijystrated by the black bars in the middle figure) that
bution in the following aspects: are worn at different parts of a human body. The IMU
« A foot rooted kinematic model to capture a variety ofmodules communicate with the host computer via bluetooth.
motions as long as there is a static foot; The sensor frames are associated with the body frames in
« A state machine to control the switch of roots toour system via a calibration procedure with human bodies
reconstruct full-body motions; standing at N-pose [5] — see the right figure for a human

« An IMU-based body motion capture system that can bbody in N-pose.
used outdoor to capture motions in real-time.

As a result, all motions with at least one static foot can be
captured and reconstructed in real-time by our system. motion capture. Therefore, we go through a procedure at
the very beginning to align the frames of sensors with the
I[I. OVERVIEW OF SYSTEM body frames.
This section briefs the devices and setup in our motion There are three different frames in our system:
capture system, Pedalvatar. We also introduce the method to, G; the frame of the world coordinate system;
align the frames of IMU sensors with the frames of a human , g the frame of an IMU-based sensor:

body. « B: the frame of a body part worn the above sensor.

A. System device and sensor data Without loss of generality, the orientation Bfin the world
. . ... coordinate systert (i.e., Rg‘) is pre-defined for a particular
Our motion capture system consists of thirtesrer posture (e.g., N-pose introduced in [5]). The orientatibs o

tial measurement units (IMU), where each IMU module . P . i
(CIMCU Nano-Ahrs) integrates a three-axis acceleromet G (."e" Rs) can be obtained by the aforemengoned DCM
algorithm. Therefore, we need to calcul®g, which maps

(ADXL345), a three-axis gyroscope (ITG-3200), a threesaxi the sensor frames to the body frames as
magnetometer (HMC5843) and a micro controller. The com- y
munication between IMU modules and the host computer is RC — RERg’. 1)
based on bluetooth. As shown in Fig.1, these IMU modules . . ) .
are attached at different parts of a human body with thEOT @ restrict rotational matrbR§, we obtainRg by
help of elastic belts. During the motion capture, each part RS — RCBE-(RS)—lz RS‘(RS)T )
of a human body is assumed to conduct a rigid motion, the
orientation of which will be sensed by an IMU module. Theas (RS)~1 = (RE)T. This calibration procedure is taken on
direct cosine matrix (DCM) algorithm presented in [17], [18] all the IMU modules, where every one is associated with a
is employed to fuse the data captured by multiple sensors ody part with predefined body frame in N-pose. In total,
an IMU module into a rotation matriRg, that indicates the thirteen Rg matrices can be obtained. They will be used
orientation of the sensor frangwith reference to the world in the real-time motion capture to generate the orientation
coordinate systeng. of body frames according to the sensor frames by Eq.(1).
The origins of body frames will be obtained by the forward
kinematic model introduced below.

The DCM algorithm computes the rotation matrix between
a sensor frame and the world coordinate system. Each sensor ll. FOOT ROOTED KINEMATIC MODEL
is associated with a body part. If the relationship between Poses of a human body during the motion capture can
a senors frame and its related body frame can be foune reconstructed by a forward kinematic model in the tree
we are able to use the rotation matrix generated from astructure (see Fig.3 for an example). Traditional methods
IMU module to obtain the rotation matrix of a body part.(e.g., [15], [19]) usually treat the center of hip as the robt
Note that, we assume an invariant relationship between tlaekinematic tree. They simulate the path of the hip’'s center
sensor frames and the body frames (uag) during the in certain moving patterns to reconstruct human motions.

B. Calibration of frames
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Fig. 2: An illustration for using forward kinematic model :I
to determine the ongm:B of a child componenB; from

the parent componef,’s origin, cB When different roots
(left-foot or right-foot) are employed the origin 8t should

be located at different places (i.€;,andc; respectively).

Fig. 3: The forward kinematic trees rooted at different feet

Reasonable results can be obtained in walking. Howeverhere the root nodes are displayed in yellow.
apart from activities like walking in which the center of
hip moving in a repeating and obvious pattern, it is hard
to accurately describe the moving pattern of a human bodpplied to every points belonging to the same part as
at the center of hip in most general motions. Furthermore, RE° &°
even for walking, we cannot simulate the motions of différen Tg= ( OB ‘i ) , 4)
individuals with the same pattern. Another serious problem
of the hip rooted kinematic model is the ‘floating’ artifact,where
where the reconstructed motion behaves like a marionette Bo _ RG(RG) R(B;(RGO)T and CEO _G_ G
controlled by strings. To reconstruct a more realistic moti B
in real-time, we introduced the foot rooted kinematic modelwith Rgo andcgO being the orientation and the origin of body
in which the feet of human bodies are treated as the roofimme on the virtual avatar represented by a triangular mesh
of kinematic trees. Applying Tgs to the vertices on the virtual avatar can deform
Without loss of generality, we consider a comporptais it into the same pose as the user worn IMUs.
the parent of another compone¢ on the kinematic tree.  As will be explained, there are some moments that both
Their orientation matricesRS and RSC, can be obtained the left-foot and the right-foot are static. Our systemtgea
from the IMU modules by Eq.(1). We need to determine theuch case as both-root. The forward kinematic tree shown in
origin cB of the body frame orB. from the origin ofBy's  Fig.4 is employed. It can find that the position of joiry
body frame cB As illustrated in Fig.2, it can have can be determined both from the left-foot as
B: B: B,

CBC = CBp + RBp CBC (3) Cﬁl = Cgl + RglCBi + RSSCBg + RSSCBg
and from the right-foot as
for Bc being the child ofBp. The vectochp is relative : Be oG B
coordinate ofc§ in the coordinate system &, — the value 4 = o8, + R, ce + RS, cas + RS oo

of ch depends on the dimensions of human models. F@®bviously, there is no guarantee thef = c,. A S|mple
the same component of a human body, it may have differentethod to solve this contradiction is to assr@ =5( c’ +
origins when the kinematic trees with different roots aredus cj). A more sophisticated solution is to shghtly update
For example, ifB; in Fig.2 is the left thigh of a human body, the rotation matricesRSlms, to resolve the error orm‘B34.
the origin will bec if the root is left-foot and will bec, for  Specifically, letting
a right-foot rooted kinematic tree. &G
Rather than binding the root on a specific foot, the root of Bi.5
our kinematic model is dynamically switched between feafe can then try to determine the Va|uesﬁgR by
during the movement of human bodies. The state-machine

— RG

By..5

—|—ARBl 5

B B B
for dynamic root switch will be introduced in the next C31+RS‘1CBf+RE‘3CB§+RSSCB‘3‘

ion. When different r r | ifferent f G G B G B G B
sectio en different roots are selected, different fodwa :CB7+RBZCBS+RB4032+RBSCB4 (5)

kinematic trees are used to reconstruct the poses of a human
body. Fig.3 shows the trees rooted at left-foot and rightA least-norm solution ofARG can be obtained for this
foot, where the corresponding rotation matrices on differe under-determined problem. Accordmg to our experimental
body frames are also given. Following the order given by gests, the simple solution for determmmﬁ by averaging
forward kinematic tree, the origin of each body frame can b€, andc gives acceptable results in most case. The rarely
determined one by one. In our implementation, we convehappened abnormal cases can be quickly resolved after a few
the body frame (e.gB) into a transformation matrix to be steps as our system reconstructs the pose of a human body
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Fig. 4: The forward kinematic tree rooted at both the left- X ,
foot and the right-foot. The contradiction betwegnandc), NN S
should be resolved to determine the origin of upper body.

\ \ / ‘\ /
~\( Both-feet \/
rooted |

/
A -

Fig. 6: State-machine used in our system for switching the
roots of forward kinematic trees.
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Fig. 5: Magnitudes of angular velocities measured on IM
sensors mounted on feet — the data is captured while walkig =
slowly. The red line is the threshold used in our state-
machine for activating the root switch.

by applying transformation on the initial pose (i.e., theoes
will not be accumulated).

IV. DYNAMIC ROOT SWITCH

From the kinematic model introduced above, it is easy to
know that the detector of state-change plays a very impbrtan
role in our system. During the movement of a human bodyy minimizing the cases of both static (event 3 above) and
we need to dynamically switch the states of motion amonge cases of both moving (event 4 above). Neither overlap
the left-foot rooted mode, the right-foot rooted mode, anglor gap happens at this level. Here, overlap means both feet
the both-feet rooted mode. In gait analysis, tB®-velocity-  are moving and gap denotes both are static, which do not
updates (ZUPT) technique was used in [16] to correct thematch the real case of non-stop walking= 0.28 is obtained
drift in the integration of acceleration. We are motivatqd bfrom our tests and employed in the demo system. Note that,
this idea to determine the root switch of forward kinematinhen both feet's velocities are greater thanour system
trees. To detect the zero velocity event on feet, the angulgji|l alarm this abnormal case and keep the pose of human
velocities generated by gyroscopes on the two IMU sensopdy unchanged.
mounted on feet are transferred to the host computer to driveTg jmprove the robustness of our system, we introduce

the state machine for root switching. Fig.5 shows the sgna} window when monitoring the state change. Not only the
of angular velocity (in magnitude) measured on two IMWselocities at the current (i.e.f and wb) but also the
sensors mounted on feet in the example of walking. Thesgiocities in previous 1 2 time currents (i.eq %, w2,
signals will be used to drive the change of states. -2 and «j; ) are employed to activate the state change.

In our system, four states are presented. The event $hen, the conditions of state-change presented in Eq.€7) ar
state change is activated by checking the norm of angulgfodified to

velocities according to the following conditions

Fig. 7: Example of dancing captured by our system.
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where each event is mapped to a state-change shownViiih k=0,1,2 for each condition. The state-machine runs

Fig.6.|---|| gets the norm of angular velocity vector. TheM°'® robustly when these conditions are used.
value of thresholdr, used to determine whether one foot is
moving can be obtained by studying the walking pattern of
two feet as shown in Fig.5. When the tester walks slowly to We have implemented the proposed approach by using
generate a walking pattern, we can determine the value ofProcessing [20], an open-source language and environment,

V. RESULTS AND VERIFICATION
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Fig. 9: Example of outdoor motion — climbing up stairs thah ¢& successfully captured and reconstructed by our system.

movement. A video of motions captured by our system can
be accessed alt t p: / / yout u. be/ Exsc6gCDi 3E/ .

The verification is taken at both the level of sensors and the
level of systems. To conduct the verification of IMU sensor’s
performance, the rotation matrix obtained from the DCM
algorithm is decomposed into Euler angles (i.e., yaw, pitch
and roll). The three angles are then verified respectively. A
horizontal table equipped with a compass as shown in the top
row of Fig.10 is employed to provide the ground truth. The
error measurements on yaw, pitch and roll are shown in the
bottom row of Fig.10. It can be found that the angles in yaw
Fig. 8: Example of walking and turning around captured byontains larger errors than pitch and roll as the measuremen
our system. in yaw is more sensitive to the magnetic interference in the

testing environment.

For the verification taken at the system level, we measure

the positions of hand and feet in the motions along specific
running on Windows 7 OS. The IMU modules are pro+rajectories. In the test using hand, we let the tip of hand
grammed by Arduino [21]. The communication betweefmove along the boundary of a 50cm x 50cm foam board.
IMU modules and the host computer is realized by bluetootithe result is compared with the ground truth in Fig.11. The
The system can capture the full-body motions based on 18st on feet is taken by walking along a straight line with
sensors in real-time (i.e., around 50 frames/second). T€71m and then turning around to walk back to the starting
tests are all taken on a PC with Intel Core i5-4570 CPWoint. As can be see in Fig.12, the trajectory measured by our
at 3.20GHz + 8GB RAM. A variety of motions have beensystem has been drifted with a distance around 0.4m, which
tested by our system. It is found that many human activitieg mainly caused by the interference of magnetic fields and
can fulfill the condition of at least one foot being static —the detection errors of foot switch. We will develop a more
for example, dancing, Kongfu and walking (with turningrobust state-machine in the future research.
around) motions shown in Figs.7-8. These motions can
generate many cases with vision obstacles in vision-based VI. CONCLUSION
systems (e.g., Vicon and Kinect), which cause challenging In this paper, we presents, Pedalvatar, a low-cost IMU-
problems for motion capture in real-time. Our system doedsased motion capture system that can capture six degrees-
not suffer from vision obstacles. A more challenging outdooof-freedom full body motion in real-time as long as there
motion — climbing up the stairs has also been tested. As at least one static foot at each time step. A foot-rooted
shown in Fig.9, the motion reconstructed by our system cainematic model and the dynamic switching algorithm has
fully realize the position and the altitude change during thbeen developed to reconstruct the motion of human bodies




[ [ Yaw | Pitch [ Rall ]

L2-Error | 0.5681 deg.| 0.1595 deg.| 0.2414 deg.
L*-Error | 4.150 deg. | 1.140 deg. | 1.740 deg.

Fig. 10: Verifications for the accuracy of sensors — the setu;
for measuring yaw (left), pitch (middle) and roll (right)ear
shown in the top row. The bottom table lists the error
measured on yaw, pitch and roll respectively.

?—ig. 12: The trajectory of walking forward along a straight
line with 4.74m, turning around and walking back to the
origin, where the accumulated location error is around 0.4m
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