

Min Li

State Key Lab of CAD&CG
Zhejiang University

Hangzhou, 310027, P.R.China
(Current address:

Department of Mechanical Engineering
National University of Singapore

10 Kent Ridge Crescent,
Singapore 119260

e-mail: limin@nus.edu.sg)

Shuming Gao
(Corresponding author)

State Key Lab of CAD&CG
Zhejiang University

Hangzhou, 310027, P.R.China
e-mail: smgao@cad.zju.edu.cn

Charlie C. L. Wang
Department of Automation and

Computer-Aided Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong, P.R.China
e-mail: cwang@acae.cuhk.edu.hk

Real-Time Collaborative Design with
Heterogeneous CAD Systems Based on
Neutral Modeling Commands

This paper presents an integration-based solution for developing a real-time collaborative
design (co-design) platform on heterogeneous computer-aided design (CAD) systems.
Different from the visualization-based approaches, the product models are allowed to be
constructed and be modified from various sites together in the proposed collaborative
design platform. Our approach is based on a mechanism for the translation between
system modeling operations (SMO) and neutral modeling commands (NMC). Every
operation given by a user on one site is translated into an NMC and transmitted to all the
other sites through network, and then the received NMC is converted into corresponding
SMOs on every other site instantaneously. Since only the commands but not the product
data are transferred, the data size under transmission is greatly reduced, so that a real-
time synchronization can be achieved with a standard network bandwidth. In addition, by
developing system-dependent SMO↔NMC translators on different client CAD systems,
users on different sites could join the collaboration by using their familiar CAD systems;
this is the benefit that cannot be offered by the homogeneous co-design systems. The
prototype implementation proves that our approach works well for integrating various
current popular commercial CAD systems into a real-time collaborative design platform.

Keywords: command-based, real-time synchronization, collaborative design, CAD systems,
heterogeneous structure, feature-based modeling, interoperability

1 Introduction
The paradigm of product development is changing with the

increasing globalization of the economy and the rapid
development of information technology. In recent years, more and
more complex products need to be collaboratively developed by
multiple departments or groups geographically dispersed. It is
well recognized that this new product development paradigm
requires new computer-aided design (CAD) approaches and tools
which effectively support collaborative design activities. For
example of the enterprises in Hong Kong, the customers are
mainly from US and Europe, the design centers are usually
located at their headquarters in Hong Kong, and most of them
have their manufacturing facilities in mainland China. Therefore
there is a growing demand to enable collaborative product
development linking the overseas customers, the Hong Kong
headquarters, and the manufacturing plants. The Internet is an
ideal platform to articulate such development. However, general
CAD software cannot support the requirement of an instantaneous
collaborative design task, especially in the sense of instantaneous
and collaborative design.

In current CAD systems, the design behavior of parts,
assemblies, and manufacturing planning only supports a single
user. However, in practice several engineers are usually involved
in the development of a product. It is true for not only complex
products but also relatively simple products. Moreover,
collaboration among team members shows an increasing
importance in solving design conflicts as early as possible in the
design stage. Thus, a platform supports collaborative design with
current popular CAD systems is a desideratum. The major
requirements of such a platform are:

• Not only viewing operations but also modeling
functions should be enabled for the development of
product models, so that different users who are involved

in the design activity and located at different sites can
modify the product data together online;

• The size of data transferred should be reduced as much
as possible, for the bandwidth is still a bottleneck of
current Internet;

• Users could use their familiar systems during the design
procedure.

Based on these requirements, an integration-based method is
given in this paper for constructing a real-time collaborative
design platform within heterogeneous CAD systems. Our method
is command-based, so that the amount of data transmission is
greatly limited. Different from the visualization-based approaches,
models can be constructed and modified synchronously from
various sites in the proposed collaborative design environment.
Based on a translation mechanism between system modeling
operations (SMO) and neutral modeling commands (NMC), every
operation given by a user on one site will be translated into an
NMC and be sent to all the other sites through the network. When
the other sites receive this command, it is converted into
corresponding SMOs on the local system. The whole collaborative
design platform is constructed in an integrated manner by
developing a central management server, and several client-side
system-dependent manager applications, which are usually in the
form of add-ons. The mechanism and structure of our integration
approach are shown in Fig. 1. On every client site, the CAD
system is equipped with a manager add-on, which takes the role of
SMO↔NMC translators, the sender and receiver of NMCs, and
the coordinator for the modification permission. The translated
NMCs are sent to the central server and then forwarded to all the
other sites. For the security reason, the NMCs are usually
encrypted and compressed before transmission.

Compared with other collaborative design solutions that can be
found in literature [1-17], our integration-based method for

Fig. 1 Structure of the proposed collaborative design environment

developing a collaborative design platform within heterogeneous
CAD systems has the following contributions:

• A new method for developing an online collaborative
design platform is presented;

• Our collaborative design platform is based on an
integration approach with heterogeneous CAD systems.
Thus users on different sites can still manipulate models
by using their familiar CAD systems during the design
procedure. This is the benefit that cannot be offered by
the homogenous collaborative design (co-design)
systems;

• Not only the visualization but also the real-time
manipulation of models is supported by the developed
platform, which is the urgently requested function by
industrial users;

• The creation and modification of models could be given
online collaboratively by several users in real-time.
Only the neutral modeling commands but not the
models are transferred, the data size under transmission
is very limited, so that an instantaneous synchronization
can be achieved by a standard network bandwidth.

The rest of the paper is organized as follows. After reviewing
the related works in collaborative design, the methodology of our
proposed approach is introduced in section 3, where the
mechanism of collaborative design platform, the selection criteria
of client CAD systems, and the construction principles of neutral
modeling commands are presented consecutively. Section 4 will
focus on the representation of NMCs and the translation between
NMCs and SMOs. Results of our current implementation on top
of several commercial CAD systems are given in section 5, and
the limitations are also discussed in this section. Finally, our paper
ends with the conclusion section.

2 Related Works
In last decade, quite a few pieces of research have been

investigated in synchronized collaborative design and several
prototype systems have been developed. Following the
classification given in [1], the approaches can be divided into two
types: 1) visualization-based design systems, which support the
function of viewing, annotating and inspecting design models in a
Web or a CAD environment; and 2) co-design systems, which
provide users the function of modeling and modifying models
interactively and collaboratively online.

The visualization-based CAD systems usually have the
functions supporting visualization, annotation and inspection of
models. They are implemented either in plug-ins of Web browsers

or as add-ons in some CAD systems. Among the visualization-
based collaborative design platforms, the most famous one is
SolidWorks eDrawingTM [2] which is a viewer for SolidWorks
files. The eDrawing is equipped with viewing, marking-up, 3D
pointing and animation tools. The product data in eDrawing is
delivered in a save-and-download manner, so that it is in fact an
offline approach. In order to deliver and manipulate interactive 3D
objects effectively through the Internet, a variety of 3D streaming-
based communication methods for collaborative design [1, 3-5]
have been developed. In [1] and [3], the authors developed a
geometric model simplification approach to exploit trimming
information in CAD models while preventing the distortion of
design features. Their work aims at supporting visualization of
multiple CAD models in a distributed CAD environment. Wu and
Sarma in [4] introduced a mechanism to trace the update of facet
models, where a changed portion of a model is encoded in an
incremental editing manner, transmitted to other sites in a
distributed environment, and finally embedded into the associated
faceted models at other sites. Two benefits are given by their
approach: 1) the editing activity is encoded incrementally, so that
the complex reconstruction after each operation is avoided; and 2)
only updated portion of a model is transmitted for synchronization,
therefore, the bottleneck of repeatedly transferring a large amount
of facet data over networks is prevented. The approach in [5]
presented a similar idea to [4] but focused on the real-time
transmission of the boundary representation models (B-reps). The
algorithm consists of three steps: identifying and encoding the
incremental model of the B-rep once a modeling operation is
performed; then transmitting the incremental model as well as the
related geometric information to other remote sites; finally,
decoding the received codes of the incremental model and directly
embedding the restored entities into the local B-rep. Since the B-
rep models rather than the facet models are supported by [5], the
technique can be conducted to develop the geometric modeling
kernel of co-design systems. There are some commercial viewers
based on 3D streaming technologies available in the market (e.g.,
Cimmetry Systems AutovueTM [6], ConceptWorksTM [7], and
Autodesk StreamlineTM [8]).

As mentioned in [1], the co-design systems usually can
effectively support collaborative modeling and collaborative
modifying functions among designers. According to the
architecture, the co-design systems can be divided into two types:
homogeneous and heterogeneous. A centralized homogeneous
platform usually acts in the mode of fat-server and thin-clients.
The clients are light-weight and they primarily support
visualization and interactive function such as selection,
transformation, changing visualization properties of displayed
parts, etc. The main modeling activities are taken in a common
workspace in the server side (e.g., Alibre DesignTM [9],
OneSpaceTM [10], the framework of Bidarra et al. [11], and the
approach of Wang and Wright [12]). The advantage of a
centralized system is that the system is easy to achieve the
synchronization of data and perform the concurrency control.
Their major problem is that the response speed of a system will be
slowed down when the data exchange between clients and server
becomes frequent and the interchanged model becomes complex.
Therefore, some systems are developed in the mode of thin-server
and strong-clients, where a server only plays as an information
exchanger to broadcast CAD files or commands generated by
client sites [1]. The implementations in this architecture include
CollabCADTM [13], IX DesignTM [14], and the approach of Tay
and Roy [15]. However, for all above co-design platforms, users
must use the same CAD system which is distributed among the
client/server structure – it means that they have to move from their
accustomed design systems into the new system, and some
additional cost for this new system is also applied to enterprises
adopting it. Thus, the following question arises: could we find a

Fig. 2 Structure of a client-side add-on application

way to support collaborative design activities while still adopting
the systems we used to? This question leads to a co-design
platform supporting heterogeneous CAD systems proposed in this
paper.

Another piece of related works is about the procedure-based
data exchange of parametric feature-based models. Some research
focuses on the translation of parametric feature-based models
from one format into another. Choi et al. [16] proposed a macro-
parametric approach to exchange CAD models. This approach is
further extended to the feature-based macro-file format supporting
the representation of the history-based parametric design [17]. We
borrow some idea from [17] to define the set of neutral modeling
commands. Besides academic research, there are also some
feature-based translators being developed by industries such as
ASPire3d [18], Proficiency Collaboration GatewayTM [19],
Theorem Solutions [20], and Acc-u-TransTM [21]. Among them,
Collaboration Gateway, the translator developed by Proficiency, is
a representative one. According to [22], in Collaboration Gateway,
the Universal Product Representation (UPR) architecture is
defined and adopted to provide universal support for all data
levels employed by present CAD systems. Currently, the newest
version of Collaboration Gateway supports five high-end CAD
systems including CATIA V4 and CATIA V5, I-Deas,
Pro/ENGINEER, and Unigraphics. However, all these translators
[18-22] concern about the offline exchange of CAD models.
Simply extending them into a distributed environment is not
feasible.

Recently, Li et al. in [23] also conducted a feature-based
approach to develop a distributed and collaborative environment.
Based on feature-to-feature relationships, they proposed a
distributed feature manipulation mechanism to filter the varied
information of a working part during a co-design activity to avoid
unnecessary transfer of the large size complete CAD files each
time when any interactive operation is imposed on the model by a
client. However, their system is still in the mode of homogeneous
platform with the modeling activities are given on the server side.
Our approach is different: the server only manages the command
transmitting events; and the modeling activities are performed in
real-time on every client sites by their own CAD systems. Since
only commands are transferred, real-time responses can be
achieved on the Internet with standard bandwidth. Details are
presented in the following sections.

3 Methodology

3.1 Mechanism.
The major idea of our integration-based solution for developing

a real-time collaborative design platform on heterogeneous CAD
systems is to integrate existing CAD systems into a distributed
design framework that supports real-time collaborative design
activities. The structure of our proposed framework is shown in

Fig. 3 Peer-to-peer topology vs. client/server topology

Fig. 1, where the manager applications are developed as add-ons
on selected commercial CAD systems. These client-side manager
add-ons take the duty of capturing the operations given by users,
converting the system modeling operations (SMOs) into neutral
modeling commands (NMCs), sending NMCs, receiving NMCs,
and decoding the received NMCs into corresponding SMOs. A
client-side manager application developed for our proposed
environment should follow the structure shown in Fig. 2. Since
our platform is in a distributed mode with heterogeneous CAD
systems, every client site has a distinct CAD system performing
the activities of product modeling. On top of an independent CAD
system is a system-dependent manager add-on consisting of two
translators. The SMO-to-NMC translator captures and encodes
each locally performed modeling operation into an NMC; then
this NMC will be sent to the central management server through
the Internet. Another translator plays the role of NMC-to-SMO
translation, which is in charge of decoding every NMC that is
received from the central server into one or more corresponding
SMOs. These two translators are the kernel technologies to enable
the real-time exchange of modeling operations between
heterogeneous CAD systems, so that the synchronized
collaborative design is supported. In the environment equipped
with the SMO↔NMC translators, every user-performed SMO is
immediately translated into an NMC being sent to other sites;
while as soon as one NMC arrives, it is decoded into
corresponding SMOs to be executed on the local system. Based on
the proposed mechanism, every CAD system only interacts with
NMCs. Therefore, one CAD system is independent of those CAD
systems on the other sites. According to our experiments, the time
taken to implement this platform is approximately linear to the
number of CAD systems integrated.

3.1.1 Topology of Sites.
When conducting communication among sites to transfer

NMCs, there are two basic ways to structure the messaging
topology of communication: peer-to-peer or client/server (shown
in Fig. 3). The implementation of the peer-to-peer is simple;
however, the client/server mode is more efficient than the peer-to-
peer mode, especially for the case there are a large amount of
clients involved in the design. In particular, they scale much better
than the peer-to-peer mode because additional users only cause a
linear increase in the message traffic. The weak processing power
of a user’s computer will greatly influence the response speed in
the peer-to-peer mode, but have almost no effect in the
client/server mode. Therefore, we suggest the client/server
topology.

In most cases of client/server topology, the servers having
modeling functions or data accessing functions must face the
problem that performance of these servers will decline when the
number of clients is increasing. Nevertheless, in our proposed
platform, the functions of the central management server are

limited to receiving incoming commands and forwarding them to
the other sites. Hence, unlike those “heavy” servers with modeling
functions, our central server works as a “thin” one due to its
limited functions and lower performance requirements.
Furthermore, equipped with server-side multi-threading technique,
the response time could be obviously shortened and the thin server
could be speeded up to overcome the problem of performance
bottleneck.

3.1.2 Initialization.
The central management server can be physically located in the

same computer of a user (i.e., the project manager). We define
coordinator as the user who initializes a collaboration session, and
define modifier as the user who is authorized to modify the
product data at some time current. Among n users involved in a
collaboration session, there is only one coordinator and one
modifier at any time. During the process of design, the modifier
can be shifted to different users by gaining the modification
permission from their coordinator, while the coordinator cannot
be changed.

The first initialization method is that, when a coordinator
creates a collaboration session, the client manager add-on on the
coordinator’s computer delivers the existing product data to all
the other n-1 users’ sites through the management server. In detail,
the initial product data is transferred from the coordinator’s
computer to the server first; and then the server transfers the data
to the computers of the other n-1 users. In our approach, the initial
existing product data is represented by a list of NMCs encoding
the design history of the parametric product model, which is the
result of last collaboration design session.

The second method to initialize product models across sites is
to let the coordinator open the legacy or saved native CAD file
using “File→Open” menu of the local CAD system. The
fileOpened event on the coordinator’s site triggers the local
manager add-on to firstly traverse the feature tree of the opened
file in a top-to-bottom manner, and then translate every feature
into its corresponding NMC, and finally send them out. In this
way, after all translated NMCs have been sent out from the
coordinator’s site, parametric product models with the identical
feature semantics are disseminated among the other client CAD
systems and ready for a new collaboration session. Chen et al. [24]
describe the capture of fileOpened event and the traversing
mechanism of feature-trees in detail.

Compared with the first initialization method using an NMC list,
a limitation of the second method is that, some feature created in
last collaboration session, which is supported by our proposed co-
design platform but is incompatible with a certain native CAD file
format, will be filtered out and lost after such a CAD file is saved.
As a result, the re-opened model is inconsistent with the model
saved in the last collaboration session. Therefore, we recommend
the first initialization method.

3.1.3 Concurrency Control.
In order to avoid concurrent modification conflicts, we

introduce a token-based locking mechanism, which is
implemented by transferring the modification permission (token)
among all users. In detail, on every site, the manager add-on keeps
a flag indicating whether the user on this site is the only modifier
or not. If the user is the modifier, the modeling operations
performed by this user are converted into NMCs and delivered to
the management server. Otherwise except for system viewing
operations, every modeling operation given by this user will be
automatically rejected by the local manager add-on. By this
locking mechanism, only the modifier can modify the product
model at any time. In this way, the write-after-write conflicts are
avoided in our proposed co-design platform. Considering
assignment of the modifier, it is the duty of the coordinator, who
creates the collaborative design session and controls the whole

design procedure. Usually the coordinator is the project manager.
When the coordinator wants to assign the modification permission
to a user, the manager add-on of the coordinator’s site will send a
command to the user’s site to let its manager add-on activate the
SMO-to-NMC translator. At the same time, commands will be
sent to all the other sites to let their manager add-ons to serve as
NMC-to-SMO translator only – i.e., the SMO-to-NMC translation
is disabled. The modification permission can be assigned and
withdrawn by the coordinator (i.e., the project manager) at any
time.

Anyone wants to modify the model can request the
modification permission from the coordinator through a chatting
channel. If the modification permission is authorized, the modifier
– the user who got the authorization, can modify the product
model on his or her site. The NMCs generated on the site of the
modifier will be firstly sent to the central management server, and
forwarded to the coordinator by the server. If the modeling
operations were rejected by the coordinator (i.e., the project
manager), the manager add-on on the modifier’s site will undo
these operations automatically, so that the product models on all
the sites are consistent. If the coordinator confirmed this
modification, the server delivers these NMCs to all the other sites.
When the manager add-ons on other sites receive these NMCs and
finish corresponding updates of their local models, every add-on
will highlight these modifications to its user in a visual manner
and send an acknowledgement message to the server
automatically. If the server did not receive the acknowledgement
from a site within an expected time, these NMCs will be re-sent to
that site for two more times. If the server still did not receive any
reply from that site, the user on that site is assumed to have
aborted the collaboration session, and the aborted user needs to
join the collaboration session again sometime later. Once a user
requests to join the collaboration session, the current parametric
design history in the form of an NMC sequence stored in the
coordinator’s computer is generated and sent to the new user to
initialize the product data.

Another method of concurrency control is named as token-ring
algorithm, which passes the modification permission (token)
among the members along with a logical ring. However, the
token-ring algorithm would perform very poorly in lightly loaded
cases just like our co-design environment, mainly because a site
may have to wait through many unused token passes for a turn.
Moreover, the token-ring algorithm is known to be less scalable.
Therefore, we adopt the token-based locking method as our
concurrency control mechanism owing to its simplicity, stability,
and scalability.

3.2 Selection Criteria of Client CAD Systems.
According to the framework introduced above, no special CAD

systems need to be developed for the proposed collaborative
design environment. Only add-ons are to be developed on each
selected CAD system. Of course, not every CAD system can be
integrated into such a collaborative design environment, thus the
selection criteria of client CAD systems are given below. For the
candidate CAD systems, they must satisfy the following two
major criteria:

• The systems should provide the ability for developing
add-ons;

• Each operation applied to the product model in a CAD
system is able to be tracked instantaneously.

For the first criterion, most modern CAD systems support it.
There are usually two ways to program on CAD systems: by script
language and by C++ API (application programming interface).
The script languages are often interpreted languages which must
be checked for errors at run-time; while an add-on written in C++
API is compiled from source codes to native machine instructions.
Thus, an add-on in a script language runs much slower than the

Fig. 4 Union of parametric
feature modeling operations

Fig. 5 Example union of parameters
for extrusion

equivalent add-on written in C++ API. In addition, an add-on
written in C++ can be equipped with the existing network
communication libraries [25-27]. Therefore, in our solution of
collaborative design with heterogeneous CAD systems, all add-
ons are written in C++ APIs.

The second criterion requests that the add-on program on one
site is able to instantaneously trace operations performed on the
local CAD system. According to our mechanism, every SMO
performed on an arbitrary local CAD system should be captured
and translated into an NMC. Thus, the selected CAD systems
must provide their manager add-ons with the ability to trace all
operations of the CAD system as well as their parameters in real-
time. In addition, the NMC that corresponds to each SMO should
also has a number of corresponding API functions for all selected
CAD systems, so that each sites can apply its corresponding API
functions to update its product model accordingly.

Our preliminary investigation shows that the following
commonly used CAD systems satisfy the above two selection
criteria: SolidWorksTM [28], Autodesk Mechanical DesktopTM [29]
(known as MDT), Pro/ENGINEERTM [30] (known as ProE),
CATIATM [31], NXTM [32] (previously known as Unigraphics),
and PowerShapeTM [33]. We then select the first three systems to
implement a prototype of the proposed real-time collaborative
design platform which will be demonstrated later. For other CAD
systems, since most of them are developed on an open architecture
in current fashion, they can be easily integrated into our platform
as long as they provide necessary API functions.

3.3 Construction Principles of Neutral Modeling
Commands.

Neutral modeling commands play an important role in
achieving real-time synchronization for the collaborative design
among heterogeneous CAD systems. To guarantee the rationality
and validity of the NMC set, the set should be constructed
following the two principles below:

• Based on parametric feature modeling operations and
their parameters;

• As a union of parametric feature modeling operations
and their parameters on all integrated client systems.

Parametric feature modeling (PFM), as one of the most
advanced ways for product modeling, can effectively support
geometric modeling with parametric features. PFM is adaptive to
design practices, and the environment of variational design and
intelligent design can be developed based on parametric features.
Accordingly, PFM is the most popular product modeling method
provided in all of current commercial CAD systems. Therefore, a
successful collaborative design platform must support PFM, and
the NMC set is constructed based on the activities of feature-based
parametric design (i.e., every NMC corresponds to a number of
PFM operations).

We observe that the essential modeling operations provided by
all commercial CAD systems are similar, although some
equivalent operations may differ slightly from one another in their

Fig. 6 General UML class diagram of NMCs

detailed parameters. In order to ensure that every SMO can be
translated into an NMC, the NMC set is desired to be the union of
all PFM operations of the integrated CAD systems (see Fig. 4).
Similarly, the parameters of each NMC take the union of
parameters of all equivalent operations with the same design
semantics. As shown in Fig. 5, taking extrusion operations as an
example, all investigated CAD systems support extrusion in one
direction which is called one-side-extrusion, while there is a bi-
extrusion option provided in SolidWorks and Pro/ENGINEER to
enable users to extrude the profile in both directions from the
sketch plane. Thus, the parameters of the extrusion command will
also include the bi-extrusion attribute. For a modeling operation
that cannot find corresponding operations in another system, we
convert it into a sequence of geometric operations in the local
system.

4 Representation and Translation of Neutral Modeling
Commands

Serving as the key technique in our integration-based solution
for developing a real-time collaborative design platform on
heterogeneous CAD systems, the representation method of NMCs
is firstly detailed in this section. In the following, the translation
mechanism between SMOs and NMCs is described.

4.1 Representation.
For supporting the implementation of two translators – SMO-

to-NMC and NMC-to-SMO effectively, we represent all NMCs in
an object-oriented manner, where each type of NMC is a class and
can be instantiated into an object with functions during the
collaborative design. In addition, each NMC has a string
representation for transmission through the network, and the string
includes the name and all attributes of the NMC. To facilitate
interoperability between heterogeneous systems, extensible
markup language (XML), the de facto open standard for
information exchange, is adopted as the format of the string
representation for NMCs. The general unified modeling language
(UML) class diagram of the object-oriented representation of
NMCs is shown in Fig. 6.

The class NeutralModelingCommand is the root of all NMC
classes, where its first attribute id is an identifier consisting of the
local system’s name and the creation time of the NMC. The
at tr ibute commandName is the NMC’s name and the
operationState indicates one of three states: creation, modification
and deletion. For example, a modification operation about an

Fig. 7 Hierarchical tree of the identified neutral modeling commands
(NMCs) used in the paper

extrusion feature is translated into an NMC object with whose
commandName being “FeatureExtrusion” and its operationState
being “modification”; and the modified object is indicated by
operationObject. Similarly, the removed object after a deletion
operation is referred in operationObject, too. The attribute
paramList represents the parameters of an NMC. For each class
derived from NeutralModelingCommand, class ParamList
provides a concrete subclass to express its specific parameters. As
shown in the left-bottom of Fig. 6, class FeatureExtrusion takes
class ExtrusionParamList as the type of its paramList attribute. In
the case if no match is found between an NMC and the SMOs at
the remote site, the NMC will be converted into a sequence of
geometric operations to be applied at the remote site. The
geomList is conducted to store this sequence of geometric
operations. Similar to the family of ParamLists, every NMC class
takes a corresponding subclass of class GeomOperList to represent
its specific sequence of geometric operations. The attribute
validInfo carries the validation information of an NMC.

There are two translation functions in each NMC class:
generateNMC() and generateSMO(). The generateNMC() is used
to translate an SMO into an NMC, whose input is a local
operation and output is an NMC with corresponding parameters
and geometric operations; while generateSMO() is in charge of
converting a received NMC to its corresponding SMOs on the
local system. The implementation of these two functions of each
NMC class is CAD system dependent (i.e., in the add-ons on
different systems, they should be developed respectively).

For certain NMCs, their parameters include some topological
entities (e.g., fillet operation needs one or more edges as its
parameters). In homogeneous systems, such entities can be
identified by their IDs or pointers in the local machine where they
are created. However, this does not work for the communication
among the distributed heterogeneous systems since the IDs or the
pointers of the same topological entities may vary in different
CAD systems. To overcome this difficulty, we adopt one entity’s
type and its geometric information in the world coordinate system
(WCS) to express this topological entity in an NMC. For instance,
a linear edge is expressed by its type and the coordinates of two
endpoints in WCS. Similarly, a planar face is expressed by its type,
its unit normal in WCS and the WCS coordinate of a point on the
face, and freeform curves and surfaces are presented in Non-
Uniform Rational B-Spline (NURBS). The feasibility of this
method depends on whether the geometric information of the
same topological entities in different CAD systems is equal or not.
Fortunately, from our experiments, the WCSs of all investigated
CAD systems are Cartesian coordinate system following the right-
hand rule. Since any user coordinate system (UCS) can be freely
transformed to WCS and vice verse, no matter what UCS is
adopted, the geometric information of the same topological
entities under the WCSs of different CAD systems is consistent.

All identified neutral modeling commands in this paper are
shown as leaf nodes in Fig. 7. The non-leaf nodes represent the
semantic abstraction of NMCs.

Fig. 8 Translation between SMOs and NMCs

4.2 Translation.
In order to support the synchronized collaborative design, an

NMC-based method for the real-time exchange of modeling
operations among heterogeneous CAD systems is proposed, where
the primary issue is how to effectively and efficiently implement
the translation between SMOs and NMCs.

4.2.1 Real-Time Translation between SMOs and NMCs.
Fig. 8 illustrates the process of the real-time translation between

SMOs and NMCs. As soon as a feature-based parametric design
operation is applied on a local CAD system, the operation is
captured by the SMO-to-NMC translator in the local add-on
(shown in the left of Fig. 8). The SMO-to-NMC translator
matches the operation in the local NMC-library to find a
corresponding NMC-template. The NMC-library is system-
dependent – in other words, an NMC will have different NMC-
templates in the NMC libraries for various client CAD systems,
and the NMC libraries for the same system should be identical
even if they are located on different sites. An NMC object is then
created by the matched NMC-template and its system-dependent
generateNMC() function is invoked with the captured operation as
its input to determine necessary information of the NMC
including all parameters, validation information, and optional
geometric operations. Finally, the SMO-to-NMC translator calls
the string serialization method to create a string representation of
this NMC, which is sent to the other sites immediately. The
process of the real-time translation from an NMC to SMOs is
illustrated in the right of Fig. 8. As soon as an NMC string is
received from the network, the local NMC-to-SMO translator
finds out its corresponding NMC-template in the local NMC-
library through the command name of the received NMC. Then,
an NMC object is created by the matched NMC-template and its
system-dependent generateSMO() is invoked with the received
NMC string as input to generate related SMOs. After the SMOs
are completed by the local CAD system, the validation of the
product model is executed.

4.2.2 Implementation of generateNMC() and
generateSMO().

The function generateNMC() plays a principal role in the
process of encoding an SMO into an NMC, which is responsible
for generating all the necessary information of a matched NMC-
template. Its detailed tasks are:

• Generating all parameters of an NMC object by an SMO
– the corresponding NMC parameters of an SMO
usually consist of two parts: direct and indirect
parameters, where direct parameters refer to those are
also parameters of the SMO and hence can be directly
obtained from the SMO, and the indirect parameters are
calculated from the product model or the design history
by the generateNMC() function (e.g., for the SMO of
extruding from a sketch to a face, the extrusion depth is
implicitly defined by the position of the selected face,
which is an indirect parameter to be computed by
generateNMC());

• Constructing the sequence of geometric operations of
the NMC, where both the types and the parameters of

each geometric operation are computed from the SMO
applied on the product model;

• Creating the validation information of the NMC – the
mass properties of the updated solid model (e.g., the
surface area and the center of gravity) are taken as the
validation information.

The implementation of generateNMC() for each NMC is
system-dependent.

Similarly, the other system-dependent function generateSMO()
is responsible for decoding an NMC string into a sequence of
system-dependent SMOs which is called SMO-group when
receiving the NMC string, where the function’s tasks include:

• Parsing the received NMC string and accessing its
parameters – all parameters and validation information
should be easily accessed;

• Converting the NMC into an SMO-group – with all the
parameters involved in the NMC as well as the
parameters calculated from the product model and
design history for certain cases. All the modeling
operations involved in an SMO-group are executed on
the local CAD system consecutively;

• Verifying the updated product model – two mass
properties: 1) the surface area and 2) the center of
gravity are computed to verify the updated product
model, where if the difference of mass properties
between the local product model and the received
validation information is greater than a given tolerance,
the NMC is considered as being applied incorrectly.

One received NMC may be decoded into more than one SMOs,
for example, for the received NMC of extrusion whose bi-
extrusion attribute is true, the generateSMO() defined on the
system not supporting bi-extrusion will translate the bi-extrusion
NMC into two one-side-extrusion operations based on the same
sketch. If a received NMC does not match any NMC-template in
the local NMC-library, the local product model will be updated by
the geometric operations involved in the received NMC.

4.2.3 Processing Method for Modification and Deletion.
Differing from data exchange systems, the synchronized

collaborative design system must support the function of real-time
modification and deletion. The synchronized modification and
deletion of a feature are more difficult to be achieved than the
synchronized creation because they depend on some existing
features. Before any modification or deletion operation is
performed, we need to determine these depended features. The
attribute operationState of each NMC is set to creation,
modification or deletion to distinguish the three states, and the
attribute operationObject indicates the feature of product model to
be manipulated.
Before presenting the method to process modification or deletion
requests, let us introduce a concept about NMC-based design
history, which associates each NMC object to its affected portions
of the product model. The design history of collaborative design
can actually be presented in a list of NMCs received by the
management server and sorted by the receiving time. Similarly,
the NMCs being sent out and received at every client site also
form a design history of the local product model if these
commands are sorted chronologically. The list of sorted NMCs on
one site is maintained to be consistent with the lists of NMCs
recorded in the other sites, where the NMCs having the same ID
are identical (e.g., as shown in Fig. 9, the lists of NMCs in two
different CAD systems have the same order of commands). The
list of sorted NMCs on one site is called the local NMC-based
design history of this site. In a local NMC-based design history,
every NMC is stored together with the pointers to one or more
affected features in the model (shown in Fig. 9). Therefore
through one-to-one mapping between the identical NMC IDs, the

Fig. 9 The NMC-based design history concept for associating affected
portions of heterogeneous product models

corresponding features on heterogeneous product models in
different CAD systems can be associated effectively. An
illustration of such association is shown in Fig. 9. Note that, for
the same NMC in the NMC-based design histories recorded on
different sites, the number of the pointers stored with the NMC
may be different. For instance, for the bi-extrusion NMC on one
site with a CAD system supporting bi-extrusion, there is only one
pointer stored with it; while the bi-extrusion NMC on another site
with a CAD system not supporting bi-extrusion has two pointers
stored with it, each of which points to a one-side-extrusion feature.

With the help of NMC-based design history concept introduced
above, when a feature is modified by an SMO locally, it is easy to
find its corresponding features on the other sites with following
four steps:

i. In a local CAD system where an SMO is applied, by
traversing the local NMC list, we find out the NMC
whose pointer also points to the feature modified by the
SMO just applied;

ii. The found NMC’s ID is then determined;
iii. On a remote site, using the determined ID, we locate the

corresponding NMC in the local NMC list;
iv. Using the pointers stored together with the located NMC,

the affected features of the product model on the remote
site is also determined.

If a deletion request is given, all corresponding features should
be deleted on an arbitrary remote site could also be determined
using the similar steps listed above in a real-time manner.

By this associating mechanism of features, we deal with
modification requests as follows. First, the SMO-to-NMC
translator captures a modification operation and finds out its
modified feature on the product model. According to the type of
the modified feature, a corresponding NMC-template is chosen by
searching the NMC-library and a new NMC instance Ψ is created
with its operationState set to “modification”. The generateNMC()
function of Ψ is then invoked, where the modified feature of the
captured SMO is used to find out a creation-NMC (i.e., the NMCs
with operationState as “creation”) that created this feature in the
local NMC-based design history. The ID of the found NMC is
assigned to the attribute operationObject of Ψ. The consequent
steps such as generation of parameters and validation information
are the same as generating a creation-NMC. Regarding a deletion
operation, the processing method is similar to that of processing a
modification operation but with all parameters of the NMC being
null.

Because the features to be modified or deleted need to be
determined firstly, unlike a creation-NMC, the generateSMO()

Fig. 10 An example for illustrating the association mechanism of
SMO-group, the SMO execution and dissemination path among
heterogeneous CAD systems, and the NMC traversing and matching
path in the NMC-based design history

function’s implementation of a modification-NMC (i.e., the NMC
with operationState as “modification”) or a deletion-NMC (i.e.,
the NMC with operationState as “deletion”) is quite different.
With the help of ID stored in the operationObject parameter of an
NMC, the previous creation-NMC that constructed the requested
feature is found out from the local NMC-based design history.
Following the associated pointers of the found creation-NMC, the
features to be modified or deleted are determined on the local site
so that they can be finally updated. It is worth noting that for the
case that the found creation-NMC has more than one associated
pointers, all the features referred by the associated pointers are
modified or deleted, i.e. multiple SMOs are generated and
executed. The NMC-to-SMO translation of the modification-
NMC of a bi-extrusion on the site with a CAD system not
supporting bi-extrusion is an example of such case.

Fig. 10 illustrates an example of creating and modifying a bi-
extrusion feature collaboratively using various CAD systems
some of which support bi-extrusion feature while the other ones
do not. After one SMO “bi-extrusion feature” has been executed
locally in SolidWorks system and disseminated remotely
(indicated in Fig. 10 as bold arrows), the identical replicas of an
NMC item (shown as rectangles in the middle of Fig. 10) are
appended to the NMC list of every site. Every replica binds with
one or more affected feature objects in the local system with the
help of pointers (shown as slim doubly connected links) stored in
this NMC item. The bound affected feature objects are called as
SMO-group of this NMC. From this figure, it can be clearly seen
that, for the same NMC, the SMO-group of Autodesk MDT
contains two one-side-extrusion features, whereas there is only
one bi-extrusion feature in SolidWorks and Pro/ENGINEER.
Once Pro/ENGINEER issued a modification-NMC (shown as
oblique rectangles), which is received by the other two systems
and appended to their local NMC lists, a traversing and matching
routine (shown as zigzags) uses the operationObject parameter of
the modification-NMC as input and starts to find out the local
feature objects. By traversing the local NMC list, an NMC can be
matched with the given operationObject parameter. Using this
matched NMC, the local affected feature objects within its SMO-
group could be determined using the NMC-SMO doubly
connected links of this NMC, and then they are manipulated

Fig. 11 UML class diagram of CompositedFeature

further. Here we can see that two one-side-extrusion features
within the SMO-group in Autodesk MDT are coherently
determined and updated as one.

4.2.4 Composite Features and User-Defined Features.
Composite features and user-defined features (UDF) need to be

specially processed in our proposed collaborative design
environment, where a composite feature is a complex feature
composed of several basic features (e.g., a composite hole) and a
UDF is a special kind of features defined by users.

To translate a composite feature operation, we decompose it
into several basic features which are going to be translated into
their corresponding NMCs. The NMCs for basic features are
stored in the NMC for the composite feature as the auxiliary
information. The abstract NMC class called CompositedFeature
that represents the parent of all composite features is shown in Fig.
11. Every concrete composite feature is represented by a subclass
of class CompositedFeature, with the NMC objects corresponded
to the decomposed basic features stored in the list named
decomposedNmc (refer to the right-bottom part of Fig. 11).

Similarly, a UDF also consists of several basic features.
However different from composite features, for constructing itself,
a UDF usually has some user-defined parameters, which are called
driving parameters. Therefore, the NMC class for a UDF will
have another list to store the driving parameters besides
decomposedNmc.

5 Results and Discussions
Based on the proposed approach for integrating heterogeneous

CAD systems into a collaborative design environment, we have
implemented a prototype collaborative design platform with
SolidWorks 2003, Autodesk MDT 6.0 and Pro/ENGINEER
Wildfire 2. For each of these three systems, both SMO-to-NMC
and NMC-to-SMO translators are implemented with Visual C++
6.0 and the C++ API functions of the selected CAD systems. The
translators are complied into add-ons of each CAD system,
running as a background application after the host CAD system
starts to work. The program serving as a management server is
also written in C++, and it communicates with client sites using
Transmission Control Protocol/Internet Protocol (TCP/IP).

Our first example is a bracket model which is shown in Fig. 12.
With our prototype platform, three geographically dispersed users,
using SolidWorks, Autodesk MDT and Pro/ENGINEER
respectively, build and refine the bracket model in a collaborative
manner. The designer using SolidWorks acts as both the
coordinator and the modifier initially. At the beginning of the co-
design session, the user using SolidWorks creates a base extrusion
feature. Instantaneously, the SMO-to-NMC translator stationed in
the SolidWorks is triggered by the featureCreated event. Based on
the captured information about the extrusion feature, the NMC-
template that corresponds to the extrusion feature is found out
from the NMC-library and an instance of it is created. Using the
instance’s generateNMC() function, all parameters and the mass
properties for validation are computed, which are finally serialized
into an XML string and transmitted to all the other sites through
the management server. After receiving the XML string of this

Fig. 12 Example I: collaborative modeling of a bracket model using SolidWorks, Autodesk MDT and Pro/ENGINEER

Fig. 13 Example II: collaborative modification of a real mechanical part using SolidWorks and Autodesk MDT

NMC on the sites of MDT and Pro/ENGINEER, the NMC-to-
SMO translators stationed on those sites convert the command
into an SMO that is going to be performed on the local client
CAD systems. Then, the user on the MDT site feels that the
extruded base part needs to have its four corners filleted, so this
user asks for the modification permission from the coordinator by
sending a request via a chatting channel. Being the modifier, the
user on the MDT site fillets the base extrusion feature and the
corresponding NMCs are generated and broadcasted to all the
other sites after being confirmed by the coordinator. After fillets
added, the modification permission is passed back to the
coordinator (the user of SolidWorks). After the user of
SolidWorks extrudes a block on top of the base part, the user of
Pro/ENGINEER is authorized to create a reference plane based on
the block and extrude a cylinder which is perpendicular to the
block’s back face. In the following, the user on the MDT site drills
a through hole on the cylinder and the user of SolidWorks drills

four small through holes on the base part consecutively. Go on the
modeling, the bracket model is finally constructed by three users
in a collaborative manner. Fig. 12 shows the progressive results.

Note that, after the user on the SolidWorks site constructs a bi-
extrusion feature as a rib, the NMC for bi-extrusion is translated
into two one-side-extrusion operations in the MDT system since
there is no bi-extrusion operation supported by MDT (see the 4th
row in Fig. 12 and its corresponding feature trees in the middle-
right of Fig. 12 – two extrusion features are shown in the feature
tree of MDT system). Pro/ENGINEER has the bi-extrusion
operation, so just one bi-extrusion SMO is conducted
synchronously. After modeling the rib and changing its thickness
(shown in the 5th row in Fig. 12), the user of MDT deletes one of
the two one-side extrusions that correspond to the bi-extrusion
feature created in SolidWorks. The final result is as shown in the
last row of Fig. 12 and its corresponding feature trees are shown
in the bottom-right of Fig. 12.

Fig. 14 Example III: collaborative assembly of a mechanical structure using SolidWorks and Pro/ENGINEER

Fig. 15 An example for a bi-extrusion NMC in XML format

The second example is a real mechanical part shown in Fig. 13,
which is recently used in [34] to demonstrate the functionality of
their approach. Since the end of rectangle extrusion should align
with the outer borders of disk base and hexagonal cap due to the
fact that three points or components should be coplanar, the user
of MDT modifies the length of rectangle extrusion to meet this
requirement. After enlarging the radius of hexagonal face fillet,
the user on the site of SolidWorks finally modifies the circular
pattern from quarter-instances to hex-instances to adapt other
connectors.

Based on the NMC-based approach, we have also implemented
a collaborative assembly module in our co-design platform. The
third example shown in Fig. 14 demonstrates this function, where
two users work together to assemble five parts – a bracket, a cam,
a hand knob, a cam follower lever, and a camshaft into a
mechanical structure.

The data size per NMC and the data exchange rate have also
been tested on our prototype platform using PentiumTM IV
2.6GHz PCs with 512 MB RAM running Windows XP
Professional SP2. The average size per NMC (represented in
XML format – e.g., Fig. 15) is 1843 bytes which is sampled by
using 50 NMCs (including all NMCs identified in Fig. 7). Based
on this data size, the network transmission time under different
network speeds could be calculated as:

• Using a local area network (LAN) with 100Mbps
(million bits per second) bandwidth, the transmission
time is (1843×8bit)/(100×10242 bit/second) = 0.141×10-

3second;
• Using a standard dial-up modem with 56Kbps (kilobits

per second) bandwidth, the transmission time is
(1843×8bit)/(56×1024 bit/second) = 0.257 second.

Fig. 16 Average computing times on SolidWorks and MDT

Fig. 17 The size comparison of datasets between NMCs in XML
format and other offline schemes

Considering about the SMO-to-NMC and the NMC-to-SMO
translation time, the client add-on program on SolidWorks 2003
spends 3.672 seconds to generate 50 NMCs and 19.421 seconds to
execute 50 NMCs. The same tests also have been performed on
MDT 6.0 system. The average computing times of SMO-to-NMC
translation and NMC-to-SMO translation on these two systems are
shown in Fig. 16. Therefore, even using a modem, a common
“SMO(SolidWorks)→NMC→SMO(MDT)” exchange will take
0.577seconds (0.0734+0.257+0.247), and a common
“SMO(MDT)→NMC→SMO(SolidWorks)” exchange takes
0.713seconds (0.0678+0.257+0.388). This data exchange rate can
be considered as a real-time one.

At the same time, when comparing to those offline product data
exchange schemes, the size of data exchanged in our approach is
much smaller. Based on a model having 34 features, the size
comparisons between the NMCs in XML format (NMC-XML)
and the initial graphics exchange specification (IGES) file (text-
based .igs file), the standard for the exchange of product data
(STEP) file (text-based .step file), the MDT file (binary-based
.dwg file), and the SolidWorks file (binary-based .sldprt file) are
shown in Fig. 17. The differences are even much greater after
these files are compressed by GNU zip with default compression
level. NMC-XML performs better in both the compressed size and
the compression ratio due to the higher percentage of descriptive
tags than the other four. Note that the whole list of NMCs is only
sent in the initialization phase. During the collaborative design,
the NMCs are delivered progressively, so that the actual size of
data transferred on the network is even less.

5.1 Limitations.
The integration-based approach presented in this paper has

several limitations:
• First of all, the approach relies on the mapping between

SMOs and NMCs. If no such correspondence is found,
we need to either expand the set of NMCs or define the
corresponding geometric operations for each NMC. For
this reason, every time when the C++ API version of an
integrated CAD system is updated, we need to upgrade
the client add-on program of this CAD system to reflect
the change.

• Secondly, the concurrency control method of our current
implementation is relatively simple, where only one user
is allowed to modify the product data in a specific time
period. A more efficient way for the concurrent product
development is to let multiple users work in their own
portions of the product. In our future work, we are going
to find a method to separate the whole product dataset
into different critical sections, so that multiple modifiers
can be assigned to different portions to work
concurrently. For this issue, our current solution is to

subdivide the product dataset into several isolated
subsets in advance; we can then start several
collaborative design sessions for each of the portions.

• Furthermore, the current approach does not consider
about the security problem. Every user in the
collaborative design session can access every detail of
the product data. This is not always allowed. Thus, we
will further develop our current approach into a
hierarchical structure in the future work, so that the
product data is organized with layers and different users
can only access and view the different authorized
portions of product data in particular layers.

• In our current implementation, the synchronization for
the operations on composite features or user-defined
features is primal. Therefore more studies will be
conducted in the areas about how to efficiently and
effectively decompose them into basic features provided
by each system.

• Another drawback of our approach is the method of
verifying the results from SMOs because using mass
properties is not an ideal solution. In some extreme
cases, incorrect operations may also cause the same
values of mass properties. We need to find some better
methods to verify models. Our first thought is to adopt
the implicit representation of product models.

• Lastly, only three CAD systems have been investigated
and integrated, more systems (e.g., CATIA,
PowerShape and NX, etc.) need to be considered in our
future work.

Although the current implementation shows the above
limitations, our contribution to the methodology for developing
online collaborative design systems is significant – this will be
summarized in the following conclusion section.

6 Conclusion
In this paper, an integration-based solution for a real-time

online collaborative design platform is proposed. The platform
developed by this method can consist of heterogeneous CAD
systems. Different from the visualization-based approaches,
product models are allowed to be constructed and modified from
various sites using different client CAD systems synchronously.
In addition, our approach is different from the homogeneous co-
design systems because users on our proposed platform can
manipulate product models by the CAD systems they used to. Our
approach is based on a mechanism for the translation between
system modeling operations (SMO) and neutral modeling
commands (NMC). Every operation given by a user on one site
will be translated into an NMC and transferred through the
network to all the other sites after being confirmed, and then the
NMC are converted into corresponding SMOs on every other site.
Since only commands but not model data are transmitted, the size
of data under transmission is very limited. As a result, the real-
time synchronization can be achieved with a standard bandwidth.
The prototype implementation of the proposed environment
proves that our approach can integrate various current popular
commercial CAD systems into a real-time collaborative design
environment. In summary, compared with the other existing
collaborative design solutions in the literature, our approach
contributes a novel method for integrating heterogeneous CAD
systems into a collaborative design platform, which shows the
following advantages:

• Not only the visualization but also the real-time
manipulation of models is supported by our platform,
which is the urgently requested function by industrial
users;

• The creation and modification of models could be
performed collaboratively online in real-time;

• Our collaborative design platform is based on an
integration approach with heterogeneous CAD systems,
so users on different sites can still manipulate models by
using their familiar systems;

• The architecture of our platform is open. In other words,
it provides the possibility for more and more client
systems to be integrated incrementally.

In summary, the approach presented in this paper provides a
new methodology to the research and development for online
collaborative design systems with heterogeneous CAD systems.

Acknowledgements
The work is supported by the NSF of China (No.60273057,

No.60574061 and No.60021201), 973 Plan of China
(2002CB312106) and the Trans-Century Training Programme
Foundation for Talents by the Education Ministry of China. We
also would like to thank Li Jie, Chen Xiang, Yang Youdong and
Yang Fanqin for the part of the implementation they did.

References
[1] Li, W.D., Lu, W.F., Fuh, J.Y.H., and Wong, Y.S., 2005, “Collaborative

Computer-Aided Design - Research and Development Status,” Computer-
Aided Design, 37(9), pp. 931-940.

[2] SolidWorks eDrawingTM, http://www.solidworks.com/edrawings/
[3] Qiu, Z.M., Wong, Y.S., Fuh, J.Y.H., Chen, Y.P., Zhou, Z.D., Li, W.D., and

Lu, Y.Q., 2004, “Geometric Model Simplification for Distributed CAD,”
Computer-Aided Design, 36(9), pp. 809-819.

[4] Wu, D., and Sarma, R., 2004, “The Incremental Editing of Faceted Models in
An Integrated Design Environment,” Computer-Aided Design, 36(9), pp.
821-833.

[5] Li, J., Gao, S.M., and Zhou, X., 2003, “Direct Incremental Transmission of
Boundary Representation,” Proc. 8th ACM Symposium on Solid Modeling
and Applications, ACM, New York, USA, pp. 298-303.

[6] Cimmetry Systems AutovueTM, http://www.cimmetry.com
[7] ConceptWorksTM, http://www.realitywave.com
[8] Autodesk StreamlineTM, http://www.autodesk.co.uk/streamline/
[9] Alibre DesignTM, http://www.alibre.com
[10] OneSpaceTM, http://www.cocreate.com
[11] Bidarra, R., Kranendonk, N., Noort, A., and Bronsvoort, W.F., 2002, “A

Collaborative Framework for Integrated Part and Assembly Modeling,”
Transactions of the ASME - Journal of Computing and Information Science
in Engineering, 2(4), pp. 256-264.

[12] Wang, F., and Wright, P., 1998, “Internet-Based Design and Manufacturing
on An Open Architecture Machine Center,” Japan-USA Symposium on
Flexible Automation, Otsu, Japan, pp. 221-228.

[13] CollabCADTM, http://www.collabcad.com
[14] IX DesignTM, http://www.impactxoft.com/products/design.asp
[15] Tay, F.E.H., and Roy, A., 2003, “CyberCAD: A Collaborative Approach in

3D-CAD Technology in A Multimedia-Supported Environment,” Computers
in Industry, 52(2), pp. 127-145.

[16] Choi, G.-H., Mun, D., and Han, S., 2002, “Exchange of CAD Part Models
Based on the Macro-Parametric Approach,” International Journal of
CAD/CAM, 2(1), pp. 13-21.

[17] Mun, D., Han, S., Kim, J., and Oh, Y., 2003, “A Set of Standard Modeling
Commands for the History-Based Parametric Approach,” Computer-Aided
Design, 35(13), pp. 1171-1179.

[18] ASPire3d, http://www.aspire3d.com
[19] Proficiency Collaboration GatewayTM, http://www.proficiency.com
[20] Theorem Solutions, http://www.theorem.co.uk
[21] Acc-u-TransTM, http://www.translationtech.com
[22] Rappoport, A., 2003, “An Architecture for Universal CAD Data Exchange,”

Proc. 8th ACM Symposium on Solid Modeling and Applications, ACM, New
York, USA, pp. 266-269.

[23] Li, W.D., Ong, S.K., Fuh, J.Y.H., Wong, Y.S., Lu, Y.Q., and Nee, A.Y.C.,
2004, “Feature-Based Design in A Distributed and Collaborative
Environment,” Computer-Aided Design, 36(9), pp. 775-797.

[24] Chen, X., Li, M., and Gao, S.M., 2005, “A Web Services Based Platform for
Exchange of Procedural CAD Models,” Proc. 9th International Conference
on Computer Supported Cooperative Work in Design, IEEE, Piscataway, NJ,
USA, 1, pp. 605-610.

[25] Winsoft, http://www.winsoft.sk
[26] Microsoft DirectPlay, http://www.microsoft.com
[27] ACETM, http://www.cs.wustl.edu/~schmidt/ACE.html
[28] SolidWorksTM, http://www.solidworks.com
[29] Autodesk Mechanical DesktopTM, http://www.autodesk.com
[30] Pro/ENGINEERTM, http://www.ptc.com
[31] CATIATM, http://www.3ds.com/products-solutions/plm-solutions/catia/
[32] NXTM, http://www.ugs.com/products/nx/
[33] PowerShapeTM, http://www.delcam.co.uk
[34] Rappoport, A., Spitz, S., and Etzion, M., 2005, “One-Dimensional Selections

for Feature-Based Data Exchange,” Proc. 2005 ACM Symposium on Solid
and Physical Modeling, ACM, New York, USA, pp. 125-134.

