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Real-Time Collaborative Design with 
Heterogeneous CAD Systems Based on 
Neutral Modeling Commands 
 
This paper presents an integration-based solution for developing a real-time collaborative 
design (co-design) platform on heterogeneous computer-aided design (CAD) systems. 
Different from the visualization-based approaches, the product models are allowed to be 
constructed and be modified from various sites together in the proposed collaborative 
design platform. Our approach is based on a mechanism for the translation between 
system modeling operations (SMO) and neutral modeling commands (NMC). Every 
operation given by a user on one site is translated into an NMC and transmitted to all the 
other sites through network, and then the received NMC is converted into corresponding 
SMOs on every other site instantaneously. Since only the commands but not the product 
data are transferred, the data size under transmission is greatly reduced, so that a real-
time synchronization can be achieved with a standard network bandwidth. In addition, by 
developing system-dependent SMO↔NMC translators on different client CAD systems, 
users on different sites could join the collaboration by using their familiar CAD systems; 
this is the benefit that cannot be offered by the homogeneous co-design systems. The 
prototype implementation proves that our approach works well for integrating various 
current popular commercial CAD systems into a real-time collaborative design platform. 
 
Keywords: command-based, real-time synchronization, collaborative design, CAD systems, 
heterogeneous structure,  feature-based modeling, interoperability 

 
 
 
 
 

1 Introduction 
The paradigm of product development is changing with the 

increasing globalization of the economy and the rapid 
development of information technology. In recent years, more and 
more complex products need to be collaboratively developed by 
multiple departments or groups geographically dispersed. It is 
well recognized that this new product development paradigm 
requires new computer-aided design (CAD) approaches and tools 
which effectively support collaborative design activities. For 
example of the enterprises in Hong Kong, the customers are 
mainly from US and Europe, the design centers are usually 
located at their headquarters in Hong Kong, and most of them 
have their manufacturing facilities in mainland China. Therefore 
there is a growing demand to enable collaborative product 
development linking the overseas customers, the Hong Kong 
headquarters, and the manufacturing plants. The Internet is an 
ideal platform to articulate such development. However, general 
CAD software cannot support the requirement of an instantaneous 
collaborative design task, especially in the sense of instantaneous 
and collaborative design.  

In current CAD systems, the design behavior of parts, 
assemblies, and manufacturing planning only supports a single 
user. However, in practice several engineers are usually involved 
in the development of a product. It is true for not only complex 
products but also relatively simple products. Moreover, 
collaboration among team members shows an increasing 
importance in solving design conflicts as early as possible in the 
design stage. Thus, a platform supports collaborative design with 
current popular CAD systems is a desideratum. The major 
requirements of such a platform are:  

• Not only viewing operations but also modeling 
functions should be enabled for the development of 
product models, so that different users who are involved 

in the design activity and located at different sites can 
modify the product data together online;  

• The size of data transferred should be reduced as much 
as possible, for the bandwidth is still a bottleneck of 
current Internet;  

• Users could use their familiar systems during the design 
procedure. 

Based on these requirements, an integration-based method is 
given in this paper for constructing a real-time collaborative 
design platform within heterogeneous CAD systems. Our method 
is command-based, so that the amount of data transmission is 
greatly limited. Different from the visualization-based approaches, 
models can be constructed and modified synchronously from 
various sites in the proposed collaborative design environment. 
Based on a translation mechanism between system modeling 
operations (SMO) and neutral modeling commands (NMC), every 
operation given by a user on one site will be translated into an 
NMC and be sent to all the other sites through the network. When 
the other sites receive this command, it is converted into 
corresponding SMOs on the local system. The whole collaborative 
design platform is constructed in an integrated manner by 
developing a central management server, and several client-side 
system-dependent manager applications, which are usually in the 
form of add-ons. The mechanism and structure of our integration 
approach are shown in Fig. 1. On every client site, the CAD 
system is equipped with a manager add-on, which takes the role of 
SMO↔NMC translators, the sender and receiver of NMCs, and 
the coordinator for the modification permission. The translated 
NMCs are sent to the central server and then forwarded to all the 
other sites. For the security reason, the NMCs are usually 
encrypted and compressed before transmission. 

Compared with other collaborative design solutions that can be 
found in literature [1-17], our integration-based method for  



 

 
 
Fig. 1  Structure of the proposed collaborative design environment 
 
 
developing a collaborative design platform within heterogeneous 
CAD systems has the following contributions: 

• A new method for developing an online collaborative 
design platform is presented; 

• Our collaborative design platform is based on an 
integration approach with heterogeneous CAD systems. 
Thus users on different sites can still manipulate models 
by using their familiar CAD systems during the design 
procedure. This is the benefit that cannot be offered by 
the homogenous collaborative design (co-design) 
systems; 

• Not only the visualization but also the real-time 
manipulation of models is supported by the developed 
platform, which is the urgently requested function by 
industrial users; 

• The creation and modification of models could be given 
online collaboratively by several users in real-time. 
Only the neutral modeling commands but not the 
models are transferred, the data size under transmission 
is very limited, so that an instantaneous synchronization 
can be achieved by a standard network bandwidth. 

The rest of the paper is organized as follows. After reviewing 
the related works in collaborative design, the methodology of our 
proposed approach is introduced in section 3, where the 
mechanism of collaborative design platform, the selection criteria 
of client CAD systems, and the construction principles of neutral 
modeling commands are presented consecutively. Section 4 will 
focus on the representation of NMCs and the translation between 
NMCs and SMOs. Results of our current implementation on top 
of several commercial CAD systems are given in section 5, and 
the limitations are also discussed in this section. Finally, our paper 
ends with the conclusion section. 

2 Related Works  
In last decade, quite a few pieces of research have been 

investigated in synchronized collaborative design and several 
prototype systems have been developed. Following the 
classification given in [1], the approaches can be divided into two 
types: 1) visualization-based design systems, which support the 
function of viewing, annotating and inspecting design models in a 
Web or a CAD environment; and 2) co-design systems, which 
provide users the function of modeling and modifying models 
interactively and collaboratively online. 

The visualization-based CAD systems usually have the 
functions supporting visualization, annotation and inspection of 
models. They are implemented either in plug-ins of Web browsers 

or as add-ons in some CAD systems. Among the visualization-
based collaborative design platforms, the most famous one is 
SolidWorks eDrawingTM [2] which is a viewer for SolidWorks 
files. The eDrawing is equipped with viewing, marking-up, 3D 
pointing and animation tools. The product data in eDrawing is 
delivered in a save-and-download manner, so that it is in fact an 
offline approach. In order to deliver and manipulate interactive 3D 
objects effectively through the Internet, a variety of 3D streaming-
based communication methods for collaborative design [1, 3-5] 
have been developed. In [1] and [3], the authors developed a 
geometric model simplification approach to exploit trimming 
information in CAD models while preventing the distortion of 
design features. Their work aims at supporting visualization of 
multiple CAD models in a distributed CAD environment. Wu and 
Sarma in [4] introduced a mechanism to trace the update of facet 
models, where a changed portion of a model is encoded in an 
incremental editing manner, transmitted to other sites in a 
distributed environment, and finally embedded into the associated 
faceted models at other sites. Two benefits are given by their 
approach: 1) the editing activity is encoded incrementally, so that 
the complex reconstruction after each operation is avoided; and 2) 
only updated portion of a model is transmitted for synchronization, 
therefore, the bottleneck of repeatedly transferring a large amount 
of facet data over networks is prevented. The approach in [5] 
presented a similar idea to [4] but focused on the real-time 
transmission of the boundary representation models (B-reps). The 
algorithm consists of three steps: identifying and encoding the 
incremental model of the B-rep once a modeling operation is 
performed; then transmitting the incremental model as well as the 
related geometric information to other remote sites; finally, 
decoding the received codes of the incremental model and directly 
embedding the restored entities into the local B-rep. Since the B-
rep models rather than the facet models are supported by [5], the 
technique can be conducted to develop the geometric modeling 
kernel of co-design systems. There are some commercial viewers 
based on 3D streaming technologies available in the market (e.g., 
Cimmetry Systems AutovueTM [6], ConceptWorksTM [7], and 
Autodesk StreamlineTM [8]).  

As mentioned in [1], the co-design systems usually can 
effectively support collaborative modeling and collaborative 
modifying functions among designers. According to the 
architecture, the co-design systems can be divided into two types: 
homogeneous and heterogeneous. A centralized homogeneous 
platform usually acts in the mode of fat-server and thin-clients. 
The clients are light-weight and they primarily support 
visualization and interactive function such as selection, 
transformation, changing visualization properties of displayed 
parts, etc. The main modeling activities are taken in a common 
workspace in the server side (e.g., Alibre DesignTM [9], 
OneSpaceTM [10], the framework of Bidarra et al. [11], and the 
approach of Wang and Wright [12]). The advantage of a 
centralized system is that the system is easy to achieve the 
synchronization of data and perform the concurrency control. 
Their major problem is that the response speed of a system will be 
slowed down when the data exchange between clients and server 
becomes frequent and the interchanged model becomes complex. 
Therefore, some systems are developed in the mode of thin-server 
and strong-clients, where a server only plays as an information 
exchanger to broadcast CAD files or commands generated by 
client sites [1]. The implementations in this architecture include 
CollabCADTM [13], IX DesignTM [14], and the approach of Tay 
and Roy [15]. However, for all above co-design platforms, users 
must use the same CAD system which is distributed among the 
client/server structure – it means that they have to move from their 
accustomed design systems into the new system, and some 
additional cost for this new system is also applied to enterprises 
adopting it. Thus, the following question arises: could we find a 



 

  
Fig. 2  Structure of a client-side add-on application 
 
 
way to support collaborative design activities while still adopting 
the systems we used to? This question leads to a co-design 
platform supporting heterogeneous CAD systems proposed in this 
paper. 

Another piece of related works is about the procedure-based 
data exchange of parametric feature-based models. Some research 
focuses on the translation of parametric feature-based models 
from one format into another. Choi et al. [16] proposed a macro-
parametric approach to exchange CAD models. This approach is 
further extended to the feature-based macro-file format supporting 
the representation of the history-based parametric design [17]. We 
borrow some idea from [17] to define the set of neutral modeling 
commands. Besides academic research, there are also some 
feature-based translators being developed by industries such as 
ASPire3d [18], Proficiency Collaboration GatewayTM [19], 
Theorem Solutions [20], and Acc-u-TransTM [21]. Among them, 
Collaboration Gateway, the translator developed by Proficiency, is 
a representative one. According to [22], in Collaboration Gateway, 
the Universal Product Representation (UPR) architecture is 
defined and adopted to provide universal support for all data 
levels employed by present CAD systems. Currently, the newest 
version of Collaboration Gateway supports five high-end CAD 
systems including CATIA V4 and CATIA V5, I-Deas, 
Pro/ENGINEER, and Unigraphics. However, all these translators 
[18-22] concern about the offline exchange of CAD models. 
Simply extending them into a distributed environment is not 
feasible. 

Recently, Li et al. in [23] also conducted a feature-based 
approach to develop a distributed and collaborative environment. 
Based on feature-to-feature relationships, they proposed a 
distributed feature manipulation mechanism to filter the varied 
information of a working part during a co-design activity to avoid 
unnecessary transfer of the large size complete CAD files each 
time when any interactive operation is imposed on the model by a 
client. However, their system is still in the mode of homogeneous 
platform with the modeling activities are given on the server side. 
Our approach is different: the server only manages the command 
transmitting events; and the modeling activities are performed in 
real-time on every client sites by their own CAD systems. Since 
only commands are transferred, real-time responses can be 
achieved on the Internet with standard bandwidth. Details are 
presented in the following sections. 

3 Methodology  

3.1 Mechanism.  
The major idea of our integration-based solution for developing 

a real-time collaborative design platform on heterogeneous CAD 
systems is to integrate existing CAD systems into a distributed 
design framework that supports real-time collaborative design 
activities. The structure of our proposed framework is shown in  

 
 
Fig. 3  Peer-to-peer topology vs. client/server topology 
 
 
Fig. 1, where the manager applications are developed as add-ons 
on selected commercial CAD systems. These client-side manager 
add-ons take the duty of capturing the operations given by users, 
converting the system modeling operations (SMOs) into neutral 
modeling commands (NMCs), sending NMCs, receiving NMCs, 
and decoding the received NMCs into corresponding SMOs. A 
client-side manager application developed for our proposed 
environment should follow the structure shown in Fig. 2. Since 
our platform is in a distributed mode with heterogeneous CAD 
systems, every client site has a distinct CAD system performing 
the activities of product modeling. On top of an independent CAD 
system is a system-dependent manager add-on consisting of two 
translators. The SMO-to-NMC translator captures and encodes 
each locally performed modeling operation into an NMC; then 
this NMC will be sent to the central management server through 
the Internet. Another translator plays the role of NMC-to-SMO 
translation, which is in charge of decoding every NMC that is 
received from the central server into one or more corresponding 
SMOs. These two translators are the kernel technologies to enable 
the real-time exchange of modeling operations between 
heterogeneous CAD systems, so that the synchronized 
collaborative design is supported. In the environment equipped 
with the SMO↔NMC translators, every user-performed SMO is 
immediately translated into an NMC being sent to other sites; 
while as soon as one NMC arrives, it is decoded into 
corresponding SMOs to be executed on the local system. Based on 
the proposed mechanism, every CAD system only interacts with 
NMCs. Therefore, one CAD system is independent of those CAD 
systems on the other sites. According to our experiments, the time 
taken to implement this platform is approximately linear to the 
number of CAD systems integrated.  

3.1.1 Topology of Sites. 
When conducting communication among sites to transfer 

NMCs, there are two basic ways to structure the messaging 
topology of communication: peer-to-peer or client/server (shown 
in Fig. 3). The implementation of the peer-to-peer is simple; 
however, the client/server mode is more efficient than the peer-to-
peer mode, especially for the case there are a large amount of 
clients involved in the design. In particular, they scale much better 
than the peer-to-peer mode because additional users only cause a 
linear increase in the message traffic. The weak processing power 
of a user’s computer will greatly influence the response speed in 
the peer-to-peer mode, but have almost no effect in the 
client/server mode. Therefore, we suggest the client/server 
topology.  

In most cases of client/server topology, the servers having 
modeling functions or data accessing functions must face the 
problem that performance of these servers will decline when the 
number of clients is increasing. Nevertheless, in our proposed 
platform, the functions of the central management server are 



 

limited to receiving incoming commands and forwarding them to 
the other sites. Hence, unlike those “heavy” servers with modeling 
functions, our central server works as a “thin” one due to its 
limited functions and lower performance requirements. 
Furthermore, equipped with server-side multi-threading technique, 
the response time could be obviously shortened and the thin server 
could be speeded up to overcome the problem of performance 
bottleneck. 

3.1.2 Initialization. 
The central management server can be physically located in the 

same computer of a user (i.e., the project manager). We define 
coordinator as the user who initializes a collaboration session, and 
define modifier as the user who is authorized to modify the 
product data at some time current. Among n users involved in a 
collaboration session, there is only one coordinator and one 
modifier at any time. During the process of design, the modifier 
can be shifted to different users by gaining the modification 
permission from their coordinator, while the coordinator cannot 
be changed.  

The first initialization method is that, when a coordinator 
creates a collaboration session, the client manager add-on on the 
coordinator’s computer delivers the existing product data to all 
the other n-1 users’ sites through the management server. In detail, 
the initial product data is transferred from the coordinator’s 
computer to the server first; and then the server transfers the data 
to the computers of the other n-1 users. In our approach, the initial 
existing product data is represented by a list of NMCs encoding 
the design history of the parametric product model, which is the 
result of last collaboration design session. 

The second method to initialize product models across sites is 
to let the coordinator open the legacy or saved native CAD file 
using “File→Open” menu of the local CAD system. The 
fileOpened event on the coordinator’s site triggers the local 
manager add-on to firstly traverse the feature tree of the opened 
file in a top-to-bottom manner, and then translate every feature 
into its corresponding NMC, and finally send them out. In this 
way, after all translated NMCs have been sent out from the 
coordinator’s site, parametric product models with the identical 
feature semantics are disseminated among the other client CAD 
systems and ready for a new collaboration session. Chen et al. [24] 
describe the capture of fileOpened event and the traversing 
mechanism of feature-trees in detail.  

Compared with the first initialization method using an NMC list, 
a limitation of the second method is that, some feature created in 
last collaboration session, which is supported by our proposed co-
design platform but is incompatible with a certain native CAD file 
format, will be filtered out and lost after such a CAD file is saved. 
As a result, the re-opened model is inconsistent with the model 
saved in the last collaboration session. Therefore, we recommend 
the first initialization method. 

3.1.3 Concurrency Control. 
In order to avoid concurrent modification conflicts, we 

introduce a token-based locking mechanism, which is 
implemented by transferring the modification permission (token) 
among all users. In detail, on every site, the manager add-on keeps 
a flag indicating whether the user on this site is the only modifier 
or not. If the user is the modifier, the modeling operations 
performed by this user are converted into NMCs and delivered to 
the management server. Otherwise except for system viewing 
operations, every modeling operation given by this user will be 
automatically rejected by the local manager add-on. By this 
locking mechanism, only the modifier can modify the product 
model at any time. In this way, the write-after-write conflicts are 
avoided in our proposed co-design platform. Considering 
assignment of the modifier, it is the duty of the coordinator, who 
creates the collaborative design session and controls the whole 

design procedure. Usually the coordinator is the project manager. 
When the coordinator wants to assign the modification permission 
to a user, the manager add-on of the coordinator’s site will send a 
command to the user’s site to let its manager add-on activate the 
SMO-to-NMC translator. At the same time, commands will be 
sent to all the other sites to let their manager add-ons to serve as 
NMC-to-SMO translator only – i.e., the SMO-to-NMC translation 
is disabled. The modification permission can be assigned and 
withdrawn by the coordinator (i.e., the project manager) at any 
time. 

Anyone wants to modify the model can request the 
modification permission from the coordinator through a chatting 
channel. If the modification permission is authorized, the modifier 
– the user who got the authorization, can modify the product 
model on his or her site. The NMCs generated on the site of the 
modifier will be firstly sent to the central management server, and 
forwarded to the coordinator by the server. If the modeling 
operations were rejected by the coordinator (i.e., the project 
manager), the manager add-on on the modifier’s site will undo 
these operations automatically, so that the product models on all 
the sites are consistent. If the coordinator confirmed this 
modification, the server delivers these NMCs to all the other sites. 
When the manager add-ons on other sites receive these NMCs and 
finish corresponding updates of their local models, every add-on 
will highlight these modifications to its user in a visual manner 
and send an acknowledgement message to the server 
automatically. If the server did not receive the acknowledgement 
from a site within an expected time, these NMCs will be re-sent to 
that site for two more times. If the server still did not receive any 
reply from that site, the user on that site is assumed to have 
aborted the collaboration session, and the aborted user needs to 
join the collaboration session again sometime later. Once a user 
requests to join the collaboration session, the current parametric 
design history in the form of an NMC sequence stored in the 
coordinator’s computer is generated and sent to the new user to 
initialize the product data.  

Another method of concurrency control is named as token-ring 
algorithm, which passes the modification permission (token) 
among the members along with a logical ring. However, the 
token-ring algorithm would perform very poorly in lightly loaded 
cases just like our co-design environment, mainly because a site 
may have to wait through many unused token passes for a turn. 
Moreover, the token-ring algorithm is known to be less scalable. 
Therefore, we adopt the token-based locking method as our 
concurrency control mechanism owing to its simplicity, stability, 
and scalability.  

3.2 Selection Criteria of Client CAD Systems. 
According to the framework introduced above, no special CAD 

systems need to be developed for the proposed collaborative 
design environment. Only add-ons are to be developed on each 
selected CAD system. Of course, not every CAD system can be 
integrated into such a collaborative design environment, thus the 
selection criteria of client CAD systems are given below. For the 
candidate CAD systems, they must satisfy the following two 
major criteria:  

• The systems should provide the ability for developing 
add-ons;  

• Each operation applied to the product model in a CAD 
system is able to be tracked instantaneously.  

For the first criterion, most modern CAD systems support it. 
There are usually two ways to program on CAD systems: by script 
language and by C++ API (application programming interface). 
The script languages are often interpreted languages which must 
be checked for errors at run-time; while an add-on written in C++ 
API is compiled from source codes to native machine instructions. 
Thus, an add-on in a script language runs much slower than the  



 

  
 
Fig. 4  Union of parametric 
feature modeling operations 
 
 

 
Fig. 5  Example union of parameters 
for extrusion 
 
 

equivalent add-on written in C++ API. In addition, an add-on 
written in C++ can be equipped with the existing network 
communication libraries [25-27]. Therefore, in our solution of 
collaborative design with heterogeneous CAD systems, all add-
ons are written in C++ APIs. 

The second criterion requests that the add-on program on one 
site is able to instantaneously trace operations performed on the 
local CAD system. According to our mechanism, every SMO 
performed on an arbitrary local CAD system should be captured 
and translated into an NMC. Thus, the selected CAD systems 
must provide their manager add-ons with the ability to trace all 
operations of the CAD system as well as their parameters in real-
time. In addition, the NMC that corresponds to each SMO should 
also has a number of corresponding API functions for all selected 
CAD systems, so that each sites can apply its corresponding API 
functions to update its product model accordingly.  

Our preliminary investigation shows that the following 
commonly used CAD systems satisfy the above two selection 
criteria: SolidWorksTM [28], Autodesk Mechanical DesktopTM [29] 
(known as MDT), Pro/ENGINEERTM [30] (known as ProE), 
CATIATM [31], NXTM [32] (previously known as Unigraphics), 
and PowerShapeTM [33]. We then select the first three systems to 
implement a prototype of the proposed real-time collaborative 
design platform which will be demonstrated later. For other CAD 
systems, since most of them are developed on an open architecture 
in current fashion, they can be easily integrated into our platform 
as long as they provide necessary API functions. 

3.3 Construction Principles of Neutral Modeling 
Commands. 

Neutral modeling commands play an important role in 
achieving real-time synchronization for the collaborative design 
among heterogeneous CAD systems. To guarantee the rationality 
and validity of the NMC set, the set should be constructed 
following the two principles below: 

• Based on parametric feature modeling operations and 
their parameters; 

• As a union of parametric feature modeling operations 
and their parameters on all integrated client systems. 

Parametric feature modeling (PFM), as one of the most 
advanced ways for product modeling, can effectively support 
geometric modeling with parametric features. PFM is adaptive to 
design practices, and the environment of variational design and 
intelligent design can be developed based on parametric features. 
Accordingly, PFM is the most popular product modeling method 
provided in all of current commercial CAD systems. Therefore, a 
successful collaborative design platform must support PFM, and 
the NMC set is constructed based on the activities of feature-based 
parametric design (i.e., every NMC corresponds to a number of 
PFM operations). 

We observe that the essential modeling operations provided by 
all commercial CAD systems are similar, although some 
equivalent operations may differ slightly from one another in their 

  
Fig. 6  General UML class diagram of NMCs 
 
 
detailed parameters. In order to ensure that every SMO can be 
translated into an NMC, the NMC set is desired to be the union of 
all PFM operations of the integrated CAD systems (see Fig. 4). 
Similarly, the parameters of each NMC take the union of 
parameters of all equivalent operations with the same design 
semantics.  As shown in Fig. 5, taking extrusion operations as an 
example, all investigated CAD systems support extrusion in one 
direction which is called one-side-extrusion, while there is a bi-
extrusion option provided in SolidWorks and Pro/ENGINEER to 
enable users to extrude the profile in both directions from the 
sketch plane. Thus, the parameters of the extrusion command will 
also include the bi-extrusion attribute. For a modeling operation 
that cannot find corresponding operations in another system, we 
convert it into a sequence of geometric operations in the local 
system. 

4 Representation and Translation of Neutral Modeling 
Commands  

Serving as the key technique in our integration-based solution 
for developing a real-time collaborative design platform on 
heterogeneous CAD systems, the representation method of NMCs 
is firstly detailed in this section. In the following, the translation 
mechanism between SMOs and NMCs is described. 

4.1 Representation. 
For supporting the implementation of two translators – SMO-

to-NMC and NMC-to-SMO effectively, we represent all NMCs in 
an object-oriented manner, where each type of NMC is a class and 
can be instantiated into an object with functions during the 
collaborative design. In addition, each NMC has a string 
representation for transmission through the network, and the string 
includes the name and all attributes of the NMC. To facilitate 
interoperability between heterogeneous systems, extensible 
markup language (XML), the de facto open standard for 
information exchange, is adopted as the format of the string 
representation for NMCs. The general unified modeling language 
(UML) class diagram of the object-oriented representation of 
NMCs is shown in Fig. 6. 

The class NeutralModelingCommand is the root of all NMC 
classes, where its first attribute id is an identifier consisting of the 
local system’s name and the creation time of the NMC. The 
at tr ibute commandName  is the NMC’s name and the 
operationState indicates one of three states: creation, modification 
and deletion. For example, a modification operation about an  



 

 
 
Fig. 7  Hierarchical tree of the identified neutral modeling commands 
(NMCs) used in the paper 
 
 
extrusion feature is translated into an NMC object with whose 
commandName being “FeatureExtrusion” and its operationState 
being “modification”; and the modified object is indicated by 
operationObject. Similarly, the removed object after a deletion 
operation is referred in operationObject, too. The attribute 
paramList represents the parameters of an NMC. For each class 
derived from NeutralModelingCommand, class ParamList 
provides a concrete subclass to express its specific parameters. As 
shown in the left-bottom of Fig. 6, class FeatureExtrusion takes 
class ExtrusionParamList as the type of its paramList attribute. In 
the case if no match is found between an NMC and the SMOs at 
the remote site, the NMC will be converted into a sequence of 
geometric operations to be applied at the remote site. The 
geomList is conducted to store this sequence of geometric 
operations. Similar to the family of ParamLists, every NMC class 
takes a corresponding subclass of class GeomOperList to represent 
its specific sequence of geometric operations. The attribute 
validInfo carries the validation information of an NMC. 

There are two translation functions in each NMC class: 
generateNMC() and generateSMO(). The generateNMC() is used 
to translate an SMO into an NMC, whose input is a local 
operation and output is an NMC with corresponding parameters 
and geometric operations; while generateSMO() is in charge of 
converting a received NMC to its corresponding SMOs on the 
local system. The implementation of these two functions of each 
NMC class is CAD system dependent (i.e., in the add-ons on 
different systems, they should be developed respectively). 

For certain NMCs, their parameters include some topological 
entities (e.g., fillet operation needs one or more edges as its 
parameters). In homogeneous systems, such entities can be 
identified by their IDs or pointers in the local machine where they 
are created. However, this does not work for the communication 
among the distributed heterogeneous systems since the IDs or the 
pointers of the same topological entities may vary in different 
CAD systems. To overcome this difficulty, we adopt one entity’s 
type and its geometric information in the world coordinate system 
(WCS) to express this topological entity in an NMC. For instance, 
a linear edge is expressed by its type and the coordinates of two 
endpoints in WCS. Similarly, a planar face is expressed by its type, 
its unit normal in WCS and the WCS coordinate of a point on the 
face, and freeform curves and surfaces are presented in Non-
Uniform Rational B-Spline (NURBS). The feasibility of this 
method depends on whether the geometric information of the 
same topological entities in different CAD systems is equal or not. 
Fortunately, from our experiments, the WCSs of all investigated 
CAD systems are Cartesian coordinate system following the right-
hand rule. Since any user coordinate system (UCS) can be freely 
transformed to WCS and vice verse, no matter what UCS is 
adopted, the geometric information of the same topological 
entities under the WCSs of different CAD systems is consistent. 

All identified neutral modeling commands in this paper are 
shown as leaf nodes in Fig. 7. The non-leaf nodes represent the 
semantic abstraction of NMCs. 

  
Fig. 8  Translation between SMOs and NMCs 
 
 

4.2 Translation. 
In order to support the synchronized collaborative design, an 

NMC-based method for the real-time exchange of modeling 
operations among heterogeneous CAD systems is proposed, where 
the primary issue is how to effectively and efficiently implement 
the translation between SMOs and NMCs.  

4.2.1 Real-Time Translation between SMOs and NMCs. 
Fig. 8 illustrates the process of the real-time translation between 

SMOs and NMCs. As soon as a feature-based parametric design 
operation is applied on a local CAD system, the operation is 
captured by the SMO-to-NMC translator in the local add-on 
(shown in the left of Fig. 8). The SMO-to-NMC translator 
matches the operation in the local NMC-library to find a 
corresponding NMC-template. The NMC-library is system-
dependent – in other words, an NMC will have different NMC-
templates in the NMC libraries for various client CAD systems, 
and the NMC libraries for the same system should be identical 
even if they are located on different sites. An NMC object is then 
created by the matched NMC-template and its system-dependent 
generateNMC() function is invoked with the captured operation as 
its input to determine necessary information of the NMC 
including all parameters, validation information, and optional 
geometric operations. Finally, the SMO-to-NMC translator calls 
the string serialization method to create a string representation of 
this NMC, which is sent to the other sites immediately. The 
process of the real-time translation from an NMC to SMOs is 
illustrated in the right of Fig. 8. As soon as an NMC string is 
received from the network, the local NMC-to-SMO translator 
finds out its corresponding NMC-template in the local NMC-
library through the command name of the received NMC. Then, 
an NMC object is created by the matched NMC-template and its 
system-dependent generateSMO() is invoked with the received 
NMC string as input to generate related SMOs. After the SMOs 
are completed by the local CAD system, the validation of the 
product model is executed. 

4.2.2 Implementation of generateNMC() and 
generateSMO(). 

The function generateNMC() plays a principal role in the 
process of encoding an SMO into an NMC, which is responsible 
for generating all the necessary information of a matched NMC-
template. Its detailed tasks are: 

• Generating all parameters of an NMC object by an SMO 
– the corresponding NMC parameters of an SMO 
usually consist of two parts: direct and indirect 
parameters, where direct parameters refer to those are 
also parameters of the SMO and hence can be directly 
obtained from the SMO, and the indirect parameters are 
calculated from the product model or the design history 
by the generateNMC() function (e.g., for the SMO of 
extruding from a sketch to a face, the extrusion depth is 
implicitly defined by the position of the selected face, 
which is an indirect parameter to be computed by 
generateNMC()); 

• Constructing the sequence of geometric operations of 
the NMC, where both the types and the parameters of 



 

each geometric operation are computed from the SMO 
applied on the product model; 

• Creating the validation information of the NMC – the 
mass properties of the updated solid model (e.g., the 
surface area and the center of gravity) are taken as the 
validation information. 

The implementation of generateNMC() for each NMC is 
system-dependent. 

Similarly, the other system-dependent function generateSMO() 
is responsible for decoding an NMC string into a sequence of 
system-dependent SMOs which is called SMO-group when 
receiving the NMC string, where the function’s tasks include: 

• Parsing the received NMC string and accessing its 
parameters – all parameters and validation information 
should be easily accessed; 

• Converting the NMC into an SMO-group – with all the 
parameters involved in the NMC as well as the 
parameters calculated from the product model and 
design history for certain cases. All the modeling 
operations involved in an SMO-group are executed on 
the local CAD system consecutively; 

• Verifying the updated product model – two mass 
properties: 1) the surface area and 2) the center of 
gravity are computed to verify the updated product 
model, where if the difference of mass properties 
between the local product model and the received 
validation information is greater than a given tolerance, 
the NMC is considered as being applied incorrectly. 

One received NMC may be decoded into more than one SMOs, 
for example, for the received NMC of extrusion whose bi-
extrusion attribute is true, the generateSMO() defined on the 
system not supporting bi-extrusion will translate the bi-extrusion 
NMC into two one-side-extrusion operations based on the same 
sketch. If a received NMC does not match any NMC-template in 
the local NMC-library, the local product model will be updated by 
the geometric operations involved in the received NMC. 

4.2.3 Processing Method for Modification and Deletion. 
Differing from data exchange systems, the synchronized 

collaborative design system must support the function of real-time 
modification and deletion. The synchronized modification and 
deletion of a feature are more difficult to be achieved than the 
synchronized creation because they depend on some existing 
features. Before any modification or deletion operation is 
performed, we need to determine these depended features. The 
attribute operationState of each NMC is set to creation, 
modification or deletion to distinguish the three states, and the 
attribute operationObject indicates the feature of product model to 
be manipulated. 
Before presenting the method to process modification or deletion 
requests, let us introduce a concept about NMC-based design 
history, which associates each NMC object to its affected portions 
of the product model. The design history of collaborative design 
can actually be presented in a list of NMCs received by the 
management server and sorted by the receiving time. Similarly, 
the NMCs being sent out and received at every client site also 
form a design history of the local product model if these 
commands are sorted chronologically. The list of sorted NMCs on 
one site is maintained to be consistent with the lists of NMCs 
recorded in the other sites, where the NMCs having the same ID 
are identical (e.g., as shown in Fig. 9, the lists of NMCs in two 
different CAD systems have the same order of commands). The 
list of sorted NMCs on one site is called the local NMC-based 
design history of this site. In a local NMC-based design history, 
every NMC is stored together with the pointers to one or more 
affected features in the model (shown in Fig. 9). Therefore 
through one-to-one mapping between the identical NMC IDs, the 

  
Fig. 9  The NMC-based design history concept for associating affected 
portions of heterogeneous product models 
 
 
corresponding features on heterogeneous product models in 
different CAD systems can be associated effectively. An 
illustration of such association is shown in Fig. 9. Note that, for 
the same NMC in the NMC-based design histories recorded on 
different sites, the number of the pointers stored with the NMC 
may be different. For instance, for the bi-extrusion NMC on one 
site with a CAD system supporting bi-extrusion, there is only one 
pointer stored with it; while the bi-extrusion NMC on another site 
with a CAD system not supporting bi-extrusion has two pointers 
stored with it, each of which points to a one-side-extrusion feature.  

With the help of NMC-based design history concept introduced 
above, when a feature is modified by an SMO locally, it is easy to 
find its corresponding features on the other sites with following 
four steps: 

i. In a local CAD system where an SMO is applied, by 
traversing the local NMC list, we find out the NMC 
whose pointer also points to the feature modified by the 
SMO just applied; 

ii. The found NMC’s ID is then determined; 
iii.  On a remote site, using the determined ID, we locate the 

corresponding NMC in the local NMC list; 
iv. Using the pointers stored together with the located NMC, 

the affected features of the product model on the remote 
site is also determined. 

If a deletion request is given, all corresponding features should 
be deleted on an arbitrary remote site could also be determined 
using the similar steps listed above in a real-time manner. 

By this associating mechanism of features, we deal with 
modification requests as follows. First, the SMO-to-NMC 
translator captures a modification operation and finds out its 
modified feature on the product model. According to the type of 
the modified feature, a corresponding NMC-template is chosen by 
searching the NMC-library and a new NMC instance Ψ is created 
with its operationState set to “modification”. The generateNMC() 
function of Ψ is then invoked, where the modified feature of the 
captured SMO is used to find out a creation-NMC (i.e., the NMCs 
with operationState as “creation”) that created this feature in the 
local NMC-based design history. The ID of the found NMC is 
assigned to the attribute operationObject of Ψ. The consequent 
steps such as generation of parameters and validation information 
are the same as generating a creation-NMC. Regarding a deletion 
operation, the processing method is similar to that of processing a 
modification operation but with all parameters of the NMC being 
null. 

Because the features to be modified or deleted need to be 
determined firstly, unlike a creation-NMC, the generateSMO()  



 

 
 
Fig. 10  An example for illustrating the association mechanism of 
SMO-group, the SMO execution and dissemination path among 
heterogeneous CAD systems, and the NMC traversing and matching 
path in the NMC-based design history 
 
 
function’s implementation of a modification-NMC (i.e., the NMC 
with operationState as “modification”) or a deletion-NMC (i.e., 
the NMC with operationState as “deletion”) is quite different. 
With the help of ID stored in the operationObject parameter of an 
NMC, the previous creation-NMC that constructed the requested 
feature is found out from the local NMC-based design history. 
Following the associated pointers of the found creation-NMC, the 
features to be modified or deleted are determined on the local site 
so that they can be finally updated. It is worth noting that for the 
case that the found creation-NMC has more than one associated 
pointers, all the features referred by the associated pointers are 
modified or deleted, i.e. multiple SMOs are generated and 
executed. The NMC-to-SMO translation of the modification-
NMC of a bi-extrusion on the site with a CAD system not 
supporting bi-extrusion is an example of such case. 

Fig. 10 illustrates an example of creating and modifying a bi-
extrusion feature collaboratively using various CAD systems 
some of which support bi-extrusion feature while the other ones 
do not. After one SMO “bi-extrusion feature” has been executed 
locally in SolidWorks system and disseminated remotely 
(indicated in Fig. 10 as bold arrows), the identical replicas of an 
NMC item (shown as rectangles in the middle of Fig. 10) are 
appended to the NMC list of every site. Every replica binds with 
one or more affected feature objects in the local system with the 
help of pointers (shown as slim doubly connected links) stored in 
this NMC item. The bound affected feature objects are called as 
SMO-group of this NMC. From this figure, it can be clearly seen 
that, for the same NMC, the SMO-group of Autodesk MDT 
contains two one-side-extrusion features, whereas there is only 
one bi-extrusion feature in SolidWorks and Pro/ENGINEER. 
Once Pro/ENGINEER issued a modification-NMC (shown as 
oblique rectangles), which is received by the other two systems 
and appended to their local NMC lists, a traversing and matching 
routine (shown as zigzags) uses the operationObject parameter of 
the modification-NMC as input and starts to find out the local 
feature objects. By traversing the local NMC list, an NMC can be 
matched with the given operationObject parameter. Using this 
matched NMC, the local affected feature objects within its SMO-
group could be determined using the NMC-SMO doubly 
connected links of this NMC, and then they are manipulated  

  
Fig. 11  UML class diagram of CompositedFeature 
 
 
further. Here we can see that two one-side-extrusion features 
within the SMO-group in Autodesk MDT are coherently 
determined and updated as one. 

4.2.4 Composite Features and User-Defined Features. 
Composite features and user-defined features (UDF) need to be 

specially processed in our proposed collaborative design 
environment, where a composite feature is a complex feature 
composed of several basic features (e.g., a composite hole) and a 
UDF is a special kind of features defined by users.  

To translate a composite feature operation, we decompose it 
into several basic features which are going to be translated into 
their corresponding NMCs. The NMCs for basic features are 
stored in the NMC for the composite feature as the auxiliary 
information. The abstract NMC class called CompositedFeature 
that represents the parent of all composite features is shown in Fig. 
11. Every concrete composite feature is represented by a subclass 
of class CompositedFeature, with the NMC objects corresponded 
to the decomposed basic features stored in the list named 
decomposedNmc (refer to the right-bottom part of Fig. 11). 

Similarly, a UDF also consists of several basic features. 
However different from composite features, for constructing itself, 
a UDF usually has some user-defined parameters, which are called 
driving parameters. Therefore, the NMC class for a UDF will 
have another list to store the driving parameters besides 
decomposedNmc. 

5 Results and Discussions 
Based on the proposed approach for integrating heterogeneous 

CAD systems into a collaborative design environment, we have 
implemented a prototype collaborative design platform with 
SolidWorks 2003, Autodesk MDT 6.0 and Pro/ENGINEER 
Wildfire 2. For each of these three systems, both SMO-to-NMC 
and NMC-to-SMO translators are implemented with Visual C++ 
6.0 and the C++ API functions of the selected CAD systems. The 
translators are complied into add-ons of each CAD system, 
running as a background application after the host CAD system 
starts to work. The program serving as a management server is 
also written in C++, and it communicates with client sites using 
Transmission Control Protocol/Internet Protocol (TCP/IP).  

Our first example is a bracket model which is shown in Fig. 12. 
With our prototype platform, three geographically dispersed users, 
using SolidWorks, Autodesk MDT and Pro/ENGINEER 
respectively, build and refine the bracket model in a collaborative 
manner. The designer using SolidWorks acts as both the 
coordinator and the modifier initially. At the beginning of the co-
design session, the user using SolidWorks creates a base extrusion 
feature. Instantaneously, the SMO-to-NMC translator stationed in 
the SolidWorks is triggered by the featureCreated event. Based on 
the captured information about the extrusion feature, the NMC-
template that corresponds to the extrusion feature is found out 
from the NMC-library and an instance of it is created. Using the 
instance’s generateNMC() function, all parameters and the mass 
properties for validation are computed, which are finally serialized 
into an XML string and transmitted to all the other sites through 
the management server. After receiving the XML string of this 



 
 
Fig. 12  Example I: collaborative modeling of a bracket model using SolidWorks, Autodesk MDT and Pro/ENGINEER 
 
 



 

 
Fig. 13  Example II: collaborative modification of a real mechanical part using SolidWorks and Autodesk MDT 
 
 
NMC on the sites of MDT and Pro/ENGINEER, the NMC-to-
SMO translators stationed on those sites convert the command 
into an SMO that is going to be performed on the local client 
CAD systems. Then, the user on the MDT site feels that the 
extruded base part needs to have its four corners filleted, so this 
user asks for the modification permission from the coordinator by 
sending a request via a chatting channel. Being the modifier, the 
user on the MDT site fillets the base extrusion feature and the 
corresponding NMCs are generated and broadcasted to all the 
other sites after being confirmed by the coordinator. After fillets 
added, the modification permission is passed back to the 
coordinator (the user of SolidWorks). After the user of 
SolidWorks extrudes a block on top of the base part, the user of 
Pro/ENGINEER is authorized to create a reference plane based on 
the block and extrude a cylinder which is perpendicular to the 
block’s back face. In the following, the user on the MDT site drills 
a through hole on the cylinder and the user of SolidWorks drills 

four small through holes on the base part consecutively. Go on the 
modeling, the bracket model is finally constructed by three users 
in a collaborative manner. Fig. 12 shows the progressive results. 

Note that, after the user on the SolidWorks site constructs a bi-
extrusion feature as a rib, the NMC for bi-extrusion is translated 
into two one-side-extrusion operations in the MDT system since 
there is no bi-extrusion operation supported by MDT (see the 4th 
row in Fig. 12 and its corresponding feature trees in the middle-
right of Fig. 12 – two extrusion features are shown in the feature 
tree of MDT system). Pro/ENGINEER has the bi-extrusion 
operation, so just one bi-extrusion SMO is conducted 
synchronously. After modeling the rib and changing its thickness 
(shown in the 5th row in Fig. 12), the user of MDT deletes one of 
the two one-side extrusions that correspond to the bi-extrusion 
feature created in SolidWorks. The final result is as shown in the 
last row of Fig. 12 and its corresponding feature trees are shown 
in the bottom-right of Fig. 12. 

 

  
 
Fig. 14  Example III: collaborative assembly of a mechanical structure using SolidWorks and Pro/ENGINEER 



 
  
Fig. 15  An example for a bi-extrusion NMC in XML format 
 
 
The second example is a real mechanical part shown in Fig. 13, 
which is recently used in [34] to demonstrate the functionality of 
their approach. Since the end of rectangle extrusion should align 
with the outer borders of disk base and hexagonal cap due to the 
fact that three points or components should be coplanar, the user 
of MDT modifies the length of rectangle extrusion to meet this 
requirement. After enlarging the radius of hexagonal face fillet, 
the user on the site of SolidWorks finally modifies the circular 
pattern from quarter-instances to hex-instances to adapt other 
connectors. 

Based on the NMC-based approach, we have also implemented 
a collaborative assembly module in our co-design platform. The 
third example shown in Fig. 14 demonstrates this function, where 
two users work together to assemble five parts – a bracket, a cam, 
a hand knob, a cam follower lever, and a camshaft into a 
mechanical structure. 

The data size per NMC and the data exchange rate have also 
been tested on our prototype platform using PentiumTM IV 
2.6GHz PCs with 512 MB RAM running Windows XP 
Professional SP2. The average size per NMC (represented in 
XML format – e.g., Fig. 15) is 1843 bytes which is sampled by 
using 50 NMCs (including all NMCs identified in Fig. 7). Based 
on this data size, the network transmission time under different 
network speeds could be calculated as: 

• Using a local area network (LAN) with 100Mbps 
(million bits per second) bandwidth, the transmission 
time is (1843×8bit)/(100×10242 bit/second) = 0.141×10-

3second; 
• Using a standard dial-up modem with 56Kbps (kilobits 

per second) bandwidth, the transmission time is 
(1843×8bit)/(56×1024 bit/second) = 0.257 second. 

 

 
 
Fig. 16  Average computing times on SolidWorks and MDT 

 
 
Fig. 17  The size comparison of datasets between NMCs in XML 
format and other offline schemes 
 
 

Considering about the SMO-to-NMC and the NMC-to-SMO 
translation time, the client add-on program on SolidWorks 2003 
spends 3.672 seconds to generate 50 NMCs and 19.421 seconds to 
execute 50 NMCs. The same tests also have been performed on 
MDT 6.0 system. The average computing times of SMO-to-NMC 
translation and NMC-to-SMO translation on these two systems are 
shown in Fig. 16. Therefore, even using a modem, a common 
“SMO(SolidWorks)→NMC→SMO(MDT)” exchange will take 
0.577seconds (0.0734+0.257+0.247), and a common 
“SMO(MDT)→NMC→SMO(SolidWorks)” exchange takes 
0.713seconds (0.0678+0.257+0.388). This data exchange rate can 
be considered as a real-time one.  

At the same time, when comparing to those offline product data 
exchange schemes, the size of data exchanged in our approach is 
much smaller. Based on a model having 34 features, the size 
comparisons between the NMCs in XML format (NMC-XML) 
and the initial graphics exchange specification (IGES) file (text-
based .igs file), the standard for the exchange of product data 
(STEP) file (text-based .step file), the MDT file (binary-based 
.dwg file), and the SolidWorks file (binary-based .sldprt file) are 
shown in Fig. 17. The differences are even much greater after 
these files are compressed by GNU zip with default compression 
level. NMC-XML performs better in both the compressed size and 
the compression ratio due to the higher percentage of descriptive 
tags than the other four. Note that the whole list of NMCs is only 
sent in the initialization phase. During the collaborative design, 
the NMCs are delivered progressively, so that the actual size of 
data transferred on the network is even less. 

5.1 Limitations. 
The integration-based approach presented in this paper has 

several limitations:  
• First of all, the approach relies on the mapping between 

SMOs and NMCs. If no such correspondence is found, 
we need to either expand the set of NMCs or define the 
corresponding geometric operations for each NMC. For 
this reason, every time when the C++ API version of an 
integrated CAD system is updated, we need to upgrade 
the client add-on program of this CAD system to reflect 
the change. 

• Secondly, the concurrency control method of our current 
implementation is relatively simple, where only one user 
is allowed to modify the product data in a specific time 
period. A more efficient way for the concurrent product 
development is to let multiple users work in their own 
portions of the product. In our future work, we are going 
to find a method to separate the whole product dataset 
into different critical sections, so that multiple modifiers 
can be assigned to different portions to work 
concurrently. For this issue, our current solution is to 



 

subdivide the product dataset into several isolated 
subsets in advance; we can then start several 
collaborative design sessions for each of the portions. 

• Furthermore, the current approach does not consider 
about the security problem. Every user in the 
collaborative design session can access every detail of 
the product data. This is not always allowed. Thus, we 
will further develop our current approach into a 
hierarchical structure in the future work, so that the 
product data is organized with layers and different users 
can only access and view the different authorized 
portions of product data in particular layers. 

• In our current implementation, the synchronization for 
the operations on composite features or user-defined 
features is primal. Therefore more studies will be 
conducted in the areas about how to efficiently and 
effectively decompose them into basic features provided 
by each system. 

• Another drawback of our approach is the method of 
verifying the results from SMOs because using mass 
properties is not an ideal solution. In some extreme 
cases, incorrect operations may also cause the same 
values of mass properties. We need to find some better 
methods to verify models. Our first thought is to adopt 
the implicit representation of product models.  

• Lastly, only three CAD systems have been investigated 
and integrated, more systems (e.g., CATIA, 
PowerShape and NX, etc.) need to be considered in our 
future work. 

Although the current implementation shows the above  
limitations, our contribution to the methodology for developing 
online collaborative design systems is significant – this will be 
summarized in the following conclusion section.  

6 Conclusion  
In this paper, an integration-based solution for a real-time 

online collaborative design platform is proposed. The platform 
developed by this method can consist of heterogeneous CAD 
systems. Different from the visualization-based approaches, 
product models are allowed to be constructed and modified from 
various sites using different client CAD systems synchronously. 
In addition, our approach is different from the homogeneous co-
design systems because users on our proposed platform can 
manipulate product models by the CAD systems they used to. Our 
approach is based on a mechanism for the translation between 
system modeling operations (SMO) and neutral modeling 
commands (NMC). Every operation given by a user on one site 
will be translated into an NMC and transferred through the 
network to all the other sites after being confirmed, and then the 
NMC are converted into corresponding SMOs on every other site. 
Since only commands but not model data are transmitted, the size 
of data under transmission is very limited. As a result, the real-
time synchronization can be achieved with a standard bandwidth. 
The prototype implementation of the proposed environment 
proves that our approach can integrate various current popular 
commercial CAD systems into a real-time collaborative design 
environment. In summary, compared with the other existing 
collaborative design solutions in the literature, our approach 
contributes a novel method for integrating heterogeneous CAD 
systems into a collaborative design platform, which shows the 
following advantages: 

• Not only the visualization but also the real-time 
manipulation of models is supported by our platform, 
which is the urgently requested function by industrial 
users; 

• The creation and modification of models could be 
performed collaboratively online in real-time; 

• Our collaborative design platform is based on an 
integration approach with heterogeneous CAD systems, 
so users on different sites can still manipulate models by 
using their familiar systems; 

• The architecture of our platform is open. In other words, 
it provides the possibility for more and more client 
systems to be integrated incrementally. 

In summary, the approach presented in this paper provides a 
new methodology to the research and development for online 
collaborative design systems with heterogeneous CAD systems. 
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