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Abstract problematic triangular meshes will result in an incorrdst o
ject. For example, as shown in Flgs.1 and 2, unexpected gaps
We present a robust andfieient approach to directly slic- are produced on the Buddha model fabricated-bsed De-
ing implicit solids. Diferent from prior slicing techniques position Modeling (FDM). This gap is caused by the self-
that reconstruct contours on the slicing plane by tracimg th intersected polygonal model, which brings in invers@irn
topology of intersected line segments, which is actually no membership classifications to some planar contours (see the
robust, we generate contours by a topology guaranteed coneontours on the plane with heigtt.79 inch in Fid.2).
tour extraction on binary images sampled from given solids  The topology of a fabricated model is usually required to
and a subsequent contour simplification algorithm which hasbe homeomorphic to the given solid. This is very impor-
the topology preserved and the geometric error controlled.tant to applications such like biomedical engineering - @.g
The resultant contours are free of self-intersection, ltmppo ~ fabricated model with an incorrect topology may merge two
ically faithful to the givenr-regular solids and with shape tubes that should be separated into one, which is very dan-
error bounded. Therefore, correct objects can be fabdcate gerous for medical treatments (see [Hig.3). Meanwhile,eshap
from them by rapid prototyping. Moreover, since we do not approximation errors between the extracted contours and th
need to generate the tessellated B-rep of given solids, theexact ones defined by intersecting the given solid with the
memory cost our approach is low — only the binary image slicing plane must also be controlled. To fabricate an dbjec
and the finest contours on one particular slicing plane needwith high accuracy in a conventional way of tessellation, a
to be stored in-core. Our method is general and can be apimassive number of triangles may be generated and storing
plied to any implicit representations of solids. them in-core will use up the memory of a computer system.
This motivates our research to develop a direct slicing al-
gorithm to generate self-intersection free and topoldlyica
faithful contours from a general implicit solid.
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Problem Definition;: For a given implicit solidH =

: {pIf(p) < 0,Vp € R3} and a slicing planeé®, a contour

1 Introduction C = MnPis defined as #opologically faithful contour when
M is a surface-homeomorphic to the exact surface bound-

Slicing CAD models is a crucial operation for generating ary, 0H, of H. In this paper, we compute contours which

tool paths in rapid prototyping. Prior slicing algorithnts f
cus on computing the intersection curves between a modef'j1re . : . .
represented by polygonal meshes and a sequence of parallell' topologically faithful when the given solidH is -
planes, which becomes an unstable step for the whole proce- regu!ar, ]
dures of rapid prototyping if the triangular meshes are-self 2+ Self-intersection free, and

intersected (or overlapped). In addition, more and moremod 3. with the shape approximation error minimized.

eling approaches represent objects with complex strusture

by implicit solids since such representations are mathemat ~ Our approach consists of three major steps. Firstly, a
cally compact and robust. When conventional slicing meth- binary imageB of anr-regular solidH is sampled on the
ods are used, the implicit solids must be first tessellatied in  Slicing planeP, where an appropriately selected sampling
triangular meshes and then be intersected by slicing planesdistancer” (with its bound relating to the valug ensures
However, generating a self-intersection free and topelogi that the contouC® generated fronB is homeomorphic to
cally faithful polygonal model from an implicit solid is not C- SecondlyC® is iteratively smoothed int€™ by a con-
easy (see ref[ 1] 2] for detailed discussions). Specificall Strained Laplacian operator that prevents topologicatgba
the triangular models produced can have problems like gaps@nd self-intersections. Lastly, a constrained contoupBim
degenerated triangles, overlapped facets, non-manifald e~ fication is applied to simplifiC™ into a contoulC which has
ties and self-intersections. Using conventional slicieght ~ fewer line segments and satisfies the three requirements
niques to generate contours for rapid prototyping from such Previously given in the problem definition. Proofs for the
correctness of are also given in this paper. A flowchart of
*Corresponding Author; Email: cwang@mae.cuhk.edu.hk our direct slicing approach is presented in[Hig.4.
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Figure 1: Incorrect contours generated by slicing a givedehwill produce a model with unwanted gaps (fordnembranes)
in rapid prototyping: (a) the given Buddha model in impli@presentation (actually Layered Depth-Normal ImagesNDD
[3]), (b) the correct model fabricated from contours getestdy our approach, (c) the problematic object fabricaieslicing
the locally self-intersected polygonal model extractedf(a) using a variatiof [4] of dual-contouring [5], and (d)a@m-view
of the incorrect layer. The models are fabricated by FDM.

Height=1.77 inch Height=1.78 inch Height=1.79 inch Height=1.80 inch Height = 1.81 inch

Figure 2: Tool path of five consecutive layers generatedsight' ¥ version 7.0 by slicing a polygonal model extracted from
the implicit Buddha solid given in Figl.1(a) byl[4]. Each laygin thickness of 0.01 inch, and the regions of the Buddhdeho
and the supporting structures are displayed in green antdregpectively. Pay attention that an incorreg¢bit membership
classification is given on the layer with heigtit 79 inch, which is caused by a local self-intersection @npblygonal model.
As a result, the inside of the Buddha model is filled with sutipg structure by mistake.

approximation error controlled. Therefore, the topology
and shape of the final model fabricated by using these
contours are preserved. Rigorous proofs of these good
properties are given.

e As a direct slicing approach, it idficient in computa-
tion and memory-usage since only the information on
a particular slicing plane is involved, which isfidirent
from those techniques which first polygonize a given
solid into B-reps and then generate contours from the

B-reps (ref.[6]).

Figure 3: A example of tubes in biomedical engineering: Solids represented by several implicit representations, i
(left) the expected tubes configuration, (right) the maoufa cluding Layered Depth-Normal Images (LDNI)I (3, 4], Bi-
tured model with incorrect topology merging two tubes that Nary Space Partition (BSF)_[34] and Adaptively Supported

should be separated — this is very dangerous for medicalRadial Basis Functions (RBF) [B5], are tested in this paper
treatments. to demonstrate the functionality of our approach.

The remainder of the paper is organized as follows. After
. o ] reviewing the related work in Secti@h 2, Sectidn 3 presents
The technical contribution of our approach is two-fold.  he method to generate the first topologically faithful con-
¢ For anr-regular solid represented by the implicit indi- tours. The smoothing technique presented in Setlion 4 is ap-
cator function (i.e.,~' for inside and %+’ for outside), plied to the contours to further improve their fairness whil
the contours generated by our approach are topologi-preventing self-intersections. A variational shape appro
cally faithful, self-intersection free and with the shape imation algorithm is introduced in Sectidd 5 to generate




Implicit Solid £ (Input) Contouring (DC)[[5] have been developed to polygonize im-

3 plicitly defined scalar fields. To generate a smooth surface,
Stage1: Sampling and Contour Generation real values are defined on grid nodes.[In [18], authors intro-
Binary Image Sampling duced a compact method for extracting smooth isosurfaces
. L : on grids with only binary values stored on nodes, which in-
Marching Square Contour Generation . . . .
spires the constrained smoothing step in our approach (Sec-
¥ tion[d). The theoretical work presented in [19] provides the
Stage 2: Contour Smoothing criteria of topological equivalence between a 3D object sur
 Constrained Laplacian Smoothing face and the model reconstructed from discrete binary sam-
o § ples stored on grid nodes. We apply these criteria to our
Stage 3: Contour Simplification approach to govern the steps of binary image sampling and
imasiationalSegmentationy contour extraction (see Sectioh 3).
Topology and Disttrtion Verification The last step of our algorithm needs to simplify a contour
3 into a new one with fewer line segments. This relates to mesh

& owwat simplification work in literature, where some approachés co
lapse mesh elements greedily (e/g.] [20—23]) and othess clu
ter faces into several proxies like planes or quadratiaserf
patches (e.g./ [24-32]). Among these methods,\éréa-
tional Shape Approximation (VSA) method in [[32] has the

topology-preserved and error-bounded contours which havedlobal distortion error minimized. Our contour simplifica-

fewer line segments from the smoothed ones. The experi-tion algorithm follows the strategy of VSA and is modified
ensure that the simplified contour is intersection-freg a

mental results are discussed in Secfibn 6 and our paper end® ;
with the conclusion section. homeomorphic to the exact contour.

Figure 4: A flowchart of our direct slicing approach.

2  Related Work 3 Sampling and Contour Generation

We start to analyze the appropriate sampling rate to guaran-

The basic problem for directly slicing an implicit solid is t tee the extraction of topoloaically faithful contours by
compute the intersection between the solid and a plane. Ac- ee the extraction of topologically faithful contours bty

cording to a review in([8], the methods can be classified into reviewing the relevant definitions and theorems given i1j.[19
two categories: analytical and numerical. Analytical meth Definition 1. A solid H ¢ R? is calledr-regular if, for
ods find precise intersection points by solving polynomial each pointp € dH, there exist two osculating open balls of
equations derived from implicitization|[9]. However, tees radiusr to dH at p such that one lies entirely iH and the
methods can only be applied to algebraic surfaces and theother lies entirely out.

computing speed is generally slow. Numerical strategies i
subdivision[[10] and marchin@ [11,12] do not require precis
analytical representation of surface boundary. Subdirisi
methods intersect a tessellated piecewise linear appesxim
tion of the given implicit surface with a plane, which have th
problem that some small intersection loops will be missed if The above definition and theorem are derived from definition
the subdivision stops at an improper level. Marching basedl and theorem 16 of [19], which is the foundation of our
methods (e.g.[[13]) always start from an initial point, and binary image sampling and topologically faithful contangi
then proceed to march along a curve, but theffesurom Note thatr’ here is diferent fromr’ used in [19]. Details
robustness problem at critical points of contours (i.eg th about thetopology preserving methods can also be found in
point where two loops join into one). Tracing based contour [19].

generation algorithms like [13] may also miss some small

loops. In a follow-up work in[[14], the authors divide the 3.1 Sampling

MLS surfaces into several slabs with each slab having the T logically faithful h del
same topology, then use a tracing strategy to generate con- 0 generate topologically faithtul contours so that a mode

tours for each slab separately. However, unlike our approac homeomorphic to the exact boundarytdican be fabricated

their method is specialized fdoving Least-square Surfaces from them, we sample the 2D soliii n P, into a binary
(MLS) and they do not provide rigorous proof of the self- !magel and t_hen generate a contadit frgm . The fo_llow-
intersection free property and the topological faithfemas Ing theorem is derived to guarantee titis topologically
our approach. Recently, their work is further extended & us faithful.
Point Set Surface (PSS) to compute spline NC paths for high- Proposition 1.  For anr-regular solidH, the contour gen-
speed machining (ref. [15]). erated by aopology preserving method on square grids is
In the computer graphics community, divide-and-conquer topologically faithful if the widthr” of the squares satisfies
algorithms like Marching Cubes (MC) [16,117] and Dual V3r’ <r.

Theorem 1. For anr-regular solicH, the boundary surface,
M, generated by #opology preserving method on cubic grids
is r-homeomorphic to the exact surface boundéty, if the
cube widthr’ of grids satisfiesv3r’ <r.
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Figure 5: A binary image sampled from a Dragon solid: (a)
the solidH is intersected by a slicing plarig (b) the region

of H = H n P on the binary image, and (c) a zoom-view of
the binary image, where the nodes inskd@re displayed in
solid dots while outside nodes are shown in hollow.

(a)

(b)

Figure 6: Binary image generation of slicing irfférent ori-
entations: (left) with slicing direction (Q,0) and (right)
slicing along (11, 1). The bottom row shows the binary im-
ages generated on example slicing planes.

(c)

(d)

Figure 7: Lookup table for the marching square method with
topology preserved. Sticks are in yellow. Sampling nodes
inside the solicH are shown in black while the outside nodes
are displayed in white. The contour edges linking sticks are
labelled a<E.

in/out membership tests can bffigently conducted on the
given solidH, we can generate the binary image on a slicing
plane in any orientation. F[d.6 demonstrates the binary im-
ages generated by the slicing planes fifiedient orientations.

3.2 Topologically faithful contouring

After obtaining a binary image, the marching square
method introduced in[[16] is used to generate an approxi-
mate contoucC? that is topologically faithful. Defining the
edge on a square grid withftBrent ifout status on its two
endpoints as atick, the contourC® can be formed by the
line segments linking the middle points of sticks in all grid
Note that, in the rest of this paper, endpoints are not ireziud
when we refer to atick (i.e., it is defined on an open in-
terval). Fig[T shows the lookup table we used in marching
square method to construct contour edges.

Proposition 2. The contour generated by using the lookup
table shown in Fi@l7 is topologically faithful.

Proof. The proof is straightforward and quite similar to that
of Proposition 1. As the binary imadds sampled at a rate
according to Proposition 1 and the planar square grids are
considered as the boundary of 3D grids, the only topolog-
ically ambiguous configuration shown in the lookup table
(i.e., FiglZ(d)) is derived by the topology preserving camt

ing method (e.g., Ball Union in[19]). Note that, ambiguify o
the configuration shown in FIg.7(d) comes from that the con-

Proof. Without loss of generality, we can assume that the tours in this square could be either 1) two edBes= (v1, )

slicing planeP overlaps the boundary of a layer of 3D grids
used in Theorem 1.
boundary of these 3D grids. Therefore, wheBr’ < r is

andE; = (v3,V4) or 2) another two edgg; = (vi,v3) and

Moreover, the square grids are theEz = (v2,Va).

Specifically, the contour reconstructed in this way on a

given on the planar grids, the criterion given in Theorem 1 is slicing planeP can also be considered as using the plne

also satisfied.
O

Following this proposition, we sample a binary image
from H on the slicing plan& with the pixel distance’. We
first rotate the given soliéh into the coordinate system with
x-0-y plane parallel to the slicing plari2 Then, the dimen-

sion of the binary image can be determined by the intersec-

tion betweenP and the bounding box dfi. The resolution
is defined according to the value df Fig[3 shows an ex-

to intersect a discrete surface @f generated by the Ball
Union method presented in [19]. Its topology in each square
is the same as what we list in Hi{).7.

([l

3.3 r-Regularity and Accuracy in Rapid Pro-
totyping

The contour generated by the above method is ensured
to be on a surface homeomorphic to the boundary of-an

ample of the binary image sampled from a solid of Dragon regular solidH. Although not all implicit solids are-regular,

model. Note that the sampling of binary image is not limited

this assumption is reasonable to the models to be fabricated

to the planes perpendicular to the major axes. As long as theby rapid prototyping (RP). The value of actually relates

4



Figure 8: An example model fabricated from the contours gaee by our method with = 3.93x 10°3: (a) the given Donna
model in the LDNI representation, (b) the sliced contoursespective layers at20, 300 and 366 inch heights, and (c) the
resultant model fabricated by FDM.

to the smallest component that can be fabricated by an RPn addition, by applying thisdiding-on-stick’ strategy, we

machine (e.g., the diameter of plastic filaments on an FDM can guarantee that the resultant contours are self-itctéyae

machine as well as the finest position that can be providedfree.

by motion controller). Most commerciaty positioning sys-

tems used in rapid prototyping can achieve the precision of

1072 inch. The diameter of plastic filaments is usually greater

than 102. Moreover, for an implicit solid represented by

LDNI [B] 4], the accuracy of the solid is also limited by the Proof. For a vertew; that is generated from the stigk slid-

resolution of LDNI. It is meaningless to make the grid width ing itont; can only bring itself to a new position belonging to

of binary image smaller than that of LDNI. Therefore, take the pointsetplp = apf+(1-a)pf), a € (0, 1)}, wherep? and

the Donna model shown in Figl 8 as an example, we choosedf are the two endpoints df respectively. For any contour

r’ = 4,00x 1072 to generate the binary images, slightly larger edgeE, if we allow its two vertices; andv; to slide only on

than that of LDNI (393 x 1073). Usually, selecting’ with their respective stickg andt;, E can sweep out a range

a value no larger than % 1072 is good enough for models  which contains any of its possible occurrence position.

fabricated by FDM. For models with very small values of For the contour edges with andv; located on two ad-

our algorithm needs a grid with very high resolution which jacent stickst; andt;, the region® is a triangular region

could be a problem of computer memory. In this case, solid formed by the endpoints ¢fandt; excluding the boundaries

models need to be processed tmegular with a larger by not overlapped with; or t; (e.g.,pips andps in Fig[@(a)).

using the techniques like morphological operators. For the contour edges with andv; on two opposite sticks
(e.g., Fid.9(b))® is a square excluding the boundaries not
overlapped witht; or t; (e.g., p1p2 and psps in Fig[g(b)).

4 Constrained Smoothing Since the sweeping envelopes of the edges on the contour
do not have any overlap with each other, the proposition is

thus proved.

Proposition 3.  When moving the vertices on a contour,
no intersection occurs if the vertices are only moved on the
sticks holding them.

Since line segments on the cont@fare generated by link-
ing the middle point of sticks, there is no self-interseatio
on C°%. However, the shape @ is not smooth (e.g., the  Proposition 4. Deforming a topologically faithful contour
contour shown in Fig._10(a)), so, we apply a Laplacian op- by moving its vertices only on the sticks holding them will
erator based smoothing technique to improve it. The advan-generate a contour which is still topologically faithful.

tage of Laplacian smoothing is itfieiency and stability, but
the major drawback is that the unwanted shrinkage always
occurs when it is iteratively applied to a closed shape (in
2D or 3D). A constrained Laplacian smoothing is developed
here, which intrinsically solves the shrinkage problentsin
we guarantee to generate topologically faithful contolms.
other words, the smoothed contours cannot violate tloeitn
status of any sampling node on the binary imag&o ensure
that, a good strategy is to constrain each vevien the con- The constrained smoothing technique introducedlin [18]
tour so that it must stay on the stick on which it initiallydie ~ ensures every vertex sliding on its stick by projecting tise d

]

Proof. The proof of this proposition is straightforward. First,
deforming a contour in this way will not change the ‘in’-
‘out’ status of any samples on the binary imdgsince the
contour is not moved across any of the samples. Second,
self-intersections will not be generated during such a kihd
deformation (see Proposition 3).

O
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Figure 9: The sweeping envelopes for contour edges in grids
with different configurations. The regiah is displayed in
orange and the excluded vertices and edges are displayed in
blue.

placed vertex back to the nearest point of its stick. However
some vertex may eventually have orthogonal displacement to
its stick and the contour is stuck in an sub-optimal shape (se
Fig.[I0(e)). We observed that for each contour veveits

two adjacent verticeg_; andv;,; have only 5 configurations

for their position on dierent sticks with considering rota-
tional symmetry (see Fig.11). For all these configurations,
the line segment connecting_; andv;,; intersect with ei-
ther the stick holding; (configuration (b), (c), (d) and (e))

or an ending point of this stick (configuration (a)). Based on Figure 10: A comparison amongftrent smoothing strate-
this observation, we investigate a sliding-based comsthi  gjes on the contour generated for the binary image region
smoothing without using projection. On each vengxitis  shown in Fig.[b(c): (a) the contour reconstructed by the
performed in two steps. topology preserving marching square method, (b) the shrink
ing contour after ordinary Laplacian smoothing, (c) the re-
sultant contour after projection-based constrained shiaoot
ing, (d) the resultant contour after sliding-based coiirséh
smoothing, and (e) the zoom-in view of contour vertices

2. Movingv; in the ratio ofr towardsvin; stuck in sub-optimal shape.

1. Calculating the intersection poiat,; between the line
segment connecting_; andv;,; and the stick griping
v; with its two ending points counted.

NEeW _ ;. X —_\/: . .
Vi"™ = Vi 7(Ving - Vi) to represent the contours will dramatically decrease ffie e

) , ciency of subsequent processing steps in RP like generation
wherer = 0.4 is selected to balance théfieiency and ¢ 5\50rting structure and tool-path planning. Based an ou
the stability of computation. observation, in the smoothed contours, there are always sev
eral successive edges lying almost in the same straight line
which implies these edges can be simplified into one single
edge with little distortion error introduced. Thereforeaam-
tour simplification algorithm preserving topology and shap
approximation error is investigated in this section toHert
improve the topologically faithful contours for slicing #m
plicit solids.

The contourC® can be smoothed int€™ by repeatedly
applying these two steps to all vertices until the average
movement of vertices in an iteration is less than316f r’.
Figsl10(b), (c) and (d) give a comparison of the smoothing
results between sliding-based, projection-based canstta
smoothing and ordinary Laplacian smoothing. Besides, it is
obvious thaC™ is homeomorphic t€° since no intersection
occurs during this contour evolution.

5.1 \Variational segmentation

5 Contour Simplification The variational shape approximation approach [32] imi-
tates the well known Lloyd’s algorithm [33] to cluster mesh

The smoothed contou™, usually provides a very good entities into several regions, and for each region, it uses a
shape approximation of the exact contour generatedHy planar proxy to approximate the whole region. Lloyd’s al-
P. However, to ensure the topological faithfulness, a nedati  gorithm based relaxation procedure is employed to minimize
small value ofr” may be selected for a model with large di- the global shape distortion error. We adopt their basic idea
mensions. This leads to contours with a lot of very short line and develop our constrained simplification algorithm for 2D
segments, which significantly increase the memory cost. Thecontours.

situation becomes more serious if the software controlling For any contour, at the very beginning, we randomly select
the RP machine does not run in an out-of-core manner (i.e.,n edges{E;} as seeds which will be used to start growing a
loading the contours for all layers from the contour file @& th cluster. The number of clusters, can be selected to be pro-
same time). Moreover, using too many small line segmentsportional to the total number of edges on this cont(%uw(th



mize the distortion error betwed®, and its corresponding
regionR; (the cluster). We update the linear pro®y by re-
computing its normal direction; and the site point; where
the line passes throughyx; is simply the barycenter of its
corresponding regioR;, which is given by

,/’/’le

~ Zeer lENI(vs + Ve)
' 2Y e IIEI

wherevs andv, are the two endpoints of an edgen; could

be determined by computing the eigenvector corresponding
to the smallest eigenvalue of the covariance matriR ofrhe
covariance matriM; of R; can be calculated by

®)

Figure 11: All the five configurations for the position\gf;
andv;,; on different sticks with considering rotational sym-

metry.

Mi = D> IIEIACAT +vevs +vevy” +vovs ) x| > IIEl|
a positive integerr as clustering ratio). Here, each proxy is EeR EeR
a line defined by a point; on the line and a normal vector (4)

n; perpendicular to the direction of the line. The proxigs, ~ Where

are initialized by the seed edges.
We need to grow the proxies on the contour simultane-

ously and buildh clusters minimizing the shape approxima- ) ) )
tion error. For each seed edfe we insert its two adjacent  After updating alin proxies, we search a new seed eégén

edges E; andEy, into a minimal queueY. The queue is each regiofir which has the smallest distortion error accord-
keyed by the distortion error presented on the edges accordNd t0 the new proxy. Then, a new segmentation is computed

ing to a particular proxy (e.g., the edgEsandEy inserted ~ Starting from these new seed edges.
according to the proxy; have the weightsD(Ej, Q) and After applying this growing-updating process for several

D(Ex, Q). in ). Note that it is possible to have an edge in- iterations (e.g., 20 iterations always can provide sattefg
serted in the queue more than once (i.e., liedént proxies results), the whole contour has been successfully segohente
adjacent to the edge). Here, the distorti(’)n error is medsure Nto nregions and the overall distortion error has been mini-
by L2 norm. Generally, th&.2 error metric for any regioR ~ Mized (see Fig.12(a) for an example).

and its proxyQ is defined as

2 _ B 2
L2RQ) = f f Ix=TigPa )

wherelIlg(x) means the orthogonal projection of the argu-
ment on the proxyQ. The L? distortion errorD(E, Q) be-
tween an edg& and the linear proxyQ can be evaluated

by

Wl

A:[ve—vs 0],C=[

0
0 andvy, = 2(ve — Vs).

o

5.2 Topology and distortion verification

__After performing the segmentation of a smoothed contour
C™, the simplest way to generate a simplified contour is to
replace the edges a@™ by n edges where each links the
starting and the ending points of a regign However, sim-
plifying contours in this way will make some sample points

1 on the binary image which are originally ‘inside’ the re-
D(E,Q) = é(dé +d + dodh)|E (2)  gion, H n P, become ‘outside’, or vice versa — i.e., topo-
logical faithfulness is not preserved. Moreover, as shawn i
points of E to the line defined oQ and||E|| represents the Figll3, intersections and.degene'rate con'tours can be-gener

ated on the contours which are intersection-free before the

length of edgeE. AR : .
The growing of clusters is performed by repeatedly re- _5|mpl|flcat|on. Another important issue we concern about

moving the edge from the top of (i.e., the edge with the is the bound of distortion error introduced by simplificatio
smallest distortion error). For each e'dﬁferemoved from As shown below, we investigate a novel verification proce-
r, we check if it has been assigned to a proxy. If not, we dure to solve both the topology faithfulness and distortion
assign it to the proxy, which is used to evaluate its distor- error bound p“’b'ems together. we not!ce th?t every vestex|
tion error,D(Ey, Qp), in . Otherwise, no operation is given guaranteed to be still on its corresponding stick after gtmoo

according tcE;. After the edgeE; is assigned to a prox@p, ing. In other W(_)rds, the_ varlatlona_ll clusterl_ng actuallgrss

the two edge&, andE; adjacent t&; are inserted int&" ac- from a quol_oglcally fa|thfg| and mtersec;uon-free cputo
cording to the weight€(E;, Qp) andD(E;, Qp), if they have The verification procedure is based on this assumption of the
not been assigned to any proxy. The removing and insertingIanlt contour.

operations will not stop until' becomes empty, i.e., when Proposition 5. For a region on the contour defined by a
every edge has been assigned to a proxy. This relaxatiorsequence of connected vertiges, vo, - - -, vp}, it can be sim-
based clustering process always provides connected and norplified into a single edg& connectingv, andv, by sliding

wheredy andd; are the orthogonal distance from two end-

overlapped segmentations on a contour. its (n — 2) internal verticegvy, vs, - - -, Vn-1} ON their respec-
After obtaining ann-clustering result from a set of seed tive sticksit,, t3, - -,t,_1} if and only if the resultant edge
edges, we need to update each pr@¥yin order to mini- intersects all of the sticksty, t3, -« -, th-1}.
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Figure 12: An illustration of contour simplification for the
smoothed contour shown in Higl10(d): (a) the variational
clustering result on the contour withffiirent line type repre-
senting dfferent regions, and (b) the final simplified contour
after topology and distortion verification.

Proof. See Fig[CI¥ for an illustration.
(1) Sufficiency: Suppose the resultant edgentersects all of
the sticksft,, t3, - - -, 11}, the intersection poing, between
E andty is on bothE andty. Since bothvy andyv, is onty, it
is obvious thaty, can move tw, just by sliding orty. Hence,
the whole contour region can be simplified ifEdoy sliding
then—2 internal vertice$v,, vs, - - -, Vn_1} On their respective
StiCkS{tz, t3, -+, th-1}-
(2) Necessity: Suppose that the contour region can be sim-
plified into a single edgdée by sliding then — 2 internal
vertices{Vvo, Vs, -+, Vn_1} ON {to, t3, - -, th_1}, €achvy on ty
(k € [2,n - 1]) can have a corresponding poirjt projected
on the simplified segmerf by slidingvi onty. v, is on both
ty andE. Thus,t, andE intersect each other.
This proposition is thus proved.

O

Deforming an intersection-free and topologically faithfu
contour by sliding the vertices on the sticks holding them
will NOT change the properties of topological faithfulness

degenerate contour  intersection
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Figure 13: A contour that is originally intersection-fresutd
become intersected or degenerate by replacing the curved re
gion with line segments.

Figure 14: Sliding the six vertices on their respectivekstic
in order to form a single edge connecting the starting and
ending vertices of this region.

plified edgeE; by connecting its two ending vertices. We
verify whetherE; can be obtained from sliding the internal
vertices on their corresponding sticks by testingifinter-
sects all these sticks(see Proposition 5 for the correstnies
such atest). IE; intersects all the tested sticks, we go to the
distortion error test. The distortion error betwd®randE;
can be evaluated by

D'(R,E) = ) D(E, L(E))

EeR

®)

whereL(E;) gives the line equation d&;. The simplifica-
tion on R can pass this test only B'(R;, E;) <= ¢, where

€ is a user specified distortion tolerance. If either of these
two tests fails, the regioR, is further separated into two re-
gions which are determined by a local variational clustgrin
conducted only inR;.. This trial-and-error procedure is re-
cursively performed until all the segmented regions on the
contour satisfy both of the two verifications. Then, each seg
mented region is converted into a simplified edge of the con-
tour. Note that this trial-and-error procedure is guaratte
to stop since in the worst case, each region is a single edge
on the smoothed conto@™. Still, the topologically faithful

and intersection-free (see Propositions 3 and 4). Becduse ocondition is satisfied and the distortion error for everytsuc

this, we develop the verification procedure below.
For each segmented regid, we first estimate its sim-

region is simplyzero. The dfectiveness of our verification
technique is demonstrated in Hig] 12(b).
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Figure 15: An example of slicing the Filigree model: (a) a messsellated from implicit Filigree model, (b) the contoand
their corresponding tool path (in green) generated by hliyversion 7.0 on the layer with 0.77 inch height, (c) the corgou
generated by our approach for the same layer and their pamdsg tool path, (d) the rendered slicing contours gerdray
our approach.

(a) (b) () (d)

Figure 16: An example of slicing the Truss model: (a) a meskekated from implicit Truss model, (b) the contours and
their corresponding tool path (in green) generated by hslyversion 7.0 on the layer with 2.44 inch height, (c) the corgou
generated by our approach for the same layer and their pomdsg tool path, (d) the rendered slicing contours gerdrby
our approach.

6 Results and Discussion will be removed if we use the topology verification (see
Fig[IZ(c) and (d)). Meanwhile, the topology verification
We have implemented the proposed approach in-& @ro- technique can successfully prevent degenerate contees (s

gram. The examples shown in this paper are all tested on &19[18(c) and (d)) caused by narrow intersection regions.

PC with Intel Core 2 Quad CPU Q6600 2.4GHz. Three biomedical models, Donna, Hand-complex and
The two engineering models shown in Figs.15[and 16 give spine are shown in Figd/8.121 dnd 22 respectively. From the
a comparison between prior slicing algorithm (in commer- rendered slicing contours shown in Figs.21(b) @nd 22(b) and
cial software) and our approach. Due to the self-intersacti  the fabricated model by FDM in F[d.8(c), we can see that
in the tessellated triangular meshes from ImpIICIt SOlmk)r the resultant contours provide very good Shape approxima-
slicing algorithm may produce incorrect contours, and con- tion of the original solids. For Hand-complex and Spine, we
sequently the tool path of part material will also have defec  conduct a study on thefect of clustering ratia (see SeﬂS)
(see Fig§.T5(b) ard16(b)). Unwanted films will be produced to the performance of our approach. As can be seen from
for both of the two examples as a result. In addition, the Figs[27](c) anf22(c), the maximum regional distortion erro
filigree and truss models demonstrate that our approach camyre generally increasing asincreases. However, the rate of
easily handle the solids with complex topology. error increasing becomes slow abecomes larger because
In order to verify the &ectiveness of our topology verifi- the approach has to perform more topology and distortion-
cation technique, we analyzed the resultant contours fdr Bu error verification operations under this situation. We also
dha and Truss models which are shown in Figs.17[amd 18.compare the number of resultant contour edges and the time
For the layer at 2.90 inch height of Buddha, self-interggcti  consumption for dferent values ofr. The resultant con-
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Figure 18: A comparison between resultant contours with
and without topology verification: (a) the given Truss model
in the LDNI representation, (b) a binary image sampled from
the layer with 0.30 inch height, (c) the resultant contour
without topology verification, (d) the resultant contouthwi
topology verification.

Figure 17: A comparison between resultant contours with
and without topology verification: (a) the given Buddha
model in the LDNI representation, (b) a binary image sam-
pled from the layer with 2.90 inch height, (c) the resultant
contour without topology verification, (d) the resultanteo

tour with topology verification. our constrained shape simplification can successfully doun
the distortion error with respect to the tolerance. We use th
thickness of M1 inch for all the slicing tests, and the number

tour edge number first decreases as expected wherll0, of slicing layers are listed in the last column of the tables.

while it increases slowly aftex > 10. This is because the
contours require at least certain number of edges to guaran-

tee topologically faithful and distortion-error boundetmp- 7 Conclusion

erties. Once the variational segmentation does not provide

enough regions to satisfy these two properties, more region In this paper, we present a direct slicing approach for iaitpli

will be generated through subdividing regions locally im-ve  solids. We investigate two main techniques, constrained
ification stage. Since the subdivided regions cannot freely Laplacian smoothing and contour simplification, which can
move to optimally fit the contour shape as what they can do produce self-intersection free and topologically faitttfon-

in the variational segmentation stage, the more subdivisio  tours. In addition, we provide the proofs for the correctnes
applied, the more contour edges tend to be generated on thef our approach. The approach presented in this paper also
results. Time consumption increases quicklyealsecomes  allows good distortion error control on the generated con-
too large because we need to perform more verification op-tours and has been shown to be veffyoent.

erations, which repeatedly check whether two line segments Even though uniform binary image works well, the whole

intersect each other to detect violation of topologicadlgt- approach could be mordieient if we can make it in an
ful property. Based on our experimental tests, selecting adaptive resolution. We consider this as our near futuré&wor
between 10 and 15 shows a good tra¢le-@ll testing re- The challenge is to retain the self-intersection free apd+o
sults presented in this paper are generated by usiad0. logically faithful properties on the contours after movihg

Our direct slicing approach is general for any implicit rep- computation into an adaptive sampling strategy. Meanwhile
resentations. Fig.19 afd]20 give demonstration of our ap-the distortion error introduced between layers will also be
proach on BSP and RBF solids respectively. In our pro- considered and modeled to further improve the quality of
totype implementation of slicing RBF solids, we use the models fabricated from the contours generated by our ap-
adaptively supported RBF generator which is available on proach.

Ohtake’s software websile Statistics of experimental tests

are shown in Table 1-3 for LDNI, BSP and RBF representa-

tions respectively. For all the tests on LDNI, the grid width ACknOWledgement

r’ of binary images is set to be no less than that of the in-
put LDNI solid. Hence, the resolution of LDNI should be
large enough to make sure the valuerofs in the order of
1073, The column, max®’(R;, E;)), reports the maximum
regional distortion error defined by Ed.(5) on simplified €on
tours. In our tests, the tolerance of regional distortionras
actually set as square of. Therefore, it is easy to find that

The research conducted in this paper is supported
by Hong Kong RG@GRF grants (CUHK417109 and
CUHK/417508). The third author is supported by the Na-
tional Science Foundation grant CMMI-0927397. The au-
thors would like to thank Yuen-Shan Leung and Allan Mok
for generating the LDNI solid and the FDM object shown at
the beginning of this paper, and Ms. Siu Ping Mok for proof
Ihttp://www.den.rcast.u-tokyo.ac.jp/-yu-ohtake reading the manuscript.
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Table 1: Statistics of Experimental Tests on LDNI

Contour Edges No

Model Size LDNI LDNI , Time* , — Layer
Examples (LxWxH) Resolution| Grid Width ' (in min) max(®'(R. E)) Be.fore.\(s. After No.
Simplification
Dragon 0.90x2.00x1.41 1500 1.44e-3 | 1.50e-3| 2.10(0.48) 3.46e-9 458k/ 79k 414
Spine 10.30x1.72¢2.18 3000 3.77e-3 | 4.00e-3| 7.68 (2.61) 1.49e-7 1305k/ 267k 218
Hand 4.65x6.63x2.27 3500 2.08e-3 | 2.50e-3| 8.53(3.01) 1.66e-8 1338k/ 255k 227
Donna 7.14x6.10x4.41 2000 3.93e-3 | 4.00e-3| 12.55(3.10) 6.02e-8 2468k/ 368k 441
Truss 2.40x5.82¢x2.54 1300 4.93e-3 | 5.00e-3| 20.18 (0.88) 2.32e-7 3973k/ 1027k 254
Filigree 8.00x8.00x1.21 4000 2.20e-3 | 2.50e-3| 43.13(2.78) 3.96e-8 3110k/ 545k 121

*The reported time includes binary image sampling (parallelized using mudtathprocessing library — OpenMP), contour reconstruction,
constrained Laplacian smoothing and contour simplification. The valuakéts represents time for binary image sampling.

Table 2: Statistics of Experimental Tests on BSP

Contour Edges No

1 1 * —
eamples |Gty | s | Complesy | T | nmm | MHOREN | Beforevs Afer | L0
Simplification
Oct-flower | 3.50x3.50x2.49 | 151309 21 2.00e-3| 4.89(2.77) 3.13e-9 834k/ 90k 249
Rocker-arm| 5.00x1.52<2.57 | 156813 22 2.00e-3| 5.25(1.95) 3.13e-9 1359k/ 166k 257
B-Torus 5.05<5.05x3.86 | 225319 23 2.50e-3| 18.41 (5.93) 1.40e-8 3823k/ 428k 386
Gear 6.35x6.35x3.90 50099 23 3.00e-3| 20.8 (6.26) 2.49e-8 3897k/ 420k 390

*The reported time includes binary image sampling (parallelized using mudiathprocessing library — OpenMP), contour reconstruction,
constrained Laplacian smoothing and contour simplification. The valuegkets represents time for binary image sampling.
#The complexity of BSP tree is defined as the average depth of its leaf.nodes

Table 3: Statistics of Experimental Tests on Adaptively@ufed RBF

Model Size Points No. Bas_ic Time* _ Contour Edges No Layer
Examples (LxWxH) for Surface| Functions r’ (in min) maxD’ (R, E;)) Before vs. After NoO
Fitting Number Simplification '
Armadillo | 3.17x2.88x3.78 80000 72787 | 3.00e-3| 9.16 (4.73) 3.01le-8 1548k/ 348k 387
S-chair 3.50x6.32¢x3.35 16113 14010 | 2.00e-3| 14.98 (11.45) 1.01e-8 1366k/ 197k 335
Horse 5.02x2.30x4.17 19851 9797 2.00e-3| 26.33(20.61) 1.27e-8 2094k/ 294k 417
Bunny 6.23x4.83x6.17 34834 21068 | 3.00e-3| 29.85 (18.68) 3.5%-8 3528k/ 588k 617

*The reported time includes binary image sampling (parallelized using muétathprocessing library — OpenMP), contour reconstruction,
constrained Laplacian smoothing and contour simplification. The valuaakéts represents time for binary image sampling.
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Figure 21: An example of slicing the Hand-complex model: tfe) original Hand-complex model, (b) the rendered slicing
contours, (c) the chart of maximum regional distortion ekrersus the clustering ratie, (d) the chart of simplified contour
edge number versus (e) the chart of time consumption versus
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