
Intersection-Free and Topologically Faithful Slicing of Implicit Solid

Pu Huang1 Charlie C. L. Wang1,2∗ Yong Chen2

1Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong
2Epstein Department of Industrial and Systems Engineering, Universityof Southern California

Abstract

We present a robust and efficient approach to directly slic-
ing implicit solids. Different from prior slicing techniques
that reconstruct contours on the slicing plane by tracing the
topology of intersected line segments, which is actually not
robust, we generate contours by a topology guaranteed con-
tour extraction on binary images sampled from given solids
and a subsequent contour simplification algorithm which has
the topology preserved and the geometric error controlled.
The resultant contours are free of self-intersection, topolog-
ically faithful to the givenr-regular solids and with shape
error bounded. Therefore, correct objects can be fabricated
from them by rapid prototyping. Moreover, since we do not
need to generate the tessellated B-rep of given solids, the
memory cost our approach is low – only the binary image
and the finest contours on one particular slicing plane need
to be stored in-core. Our method is general and can be ap-
plied to any implicit representations of solids.

Keywords: Direct slicing, Solid, Implicit representation,
Self-intersection free, Topologically faithful

1 Introduction

Slicing CAD models is a crucial operation for generating
tool paths in rapid prototyping. Prior slicing algorithms fo-
cus on computing the intersection curves between a model
represented by polygonal meshes and a sequence of parallel
planes, which becomes an unstable step for the whole proce-
dures of rapid prototyping if the triangular meshes are self-
intersected (or overlapped). In addition, more and more mod-
eling approaches represent objects with complex structures
by implicit solids since such representations are mathemati-
cally compact and robust. When conventional slicing meth-
ods are used, the implicit solids must be first tessellated into
triangular meshes and then be intersected by slicing planes.
However, generating a self-intersection free and topologi-
cally faithful polygonal model from an implicit solid is not
easy (see ref. [1, 2] for detailed discussions). Specifically,
the triangular models produced can have problems like gaps,
degenerated triangles, overlapped facets, non-manifold enti-
ties and self-intersections. Using conventional slicing tech-
niques to generate contours for rapid prototyping from such

∗Corresponding Author; Email: cwang@mae.cuhk.edu.hk

problematic triangular meshes will result in an incorrect ob-
ject. For example, as shown in Figs.1 and 2, unexpected gaps
are produced on the Buddha model fabricated byFused De-
position Modeling (FDM). This gap is caused by the self-
intersected polygonal model, which brings in inverse in/out
membership classifications to some planar contours (see the
contours on the plane with height=1.79 inch in Fig.2).

The topology of a fabricated model is usually required to
be homeomorphic to the given solid. This is very impor-
tant to applications such like biomedical engineering – e.g., a
fabricated model with an incorrect topology may merge two
tubes that should be separated into one, which is very dan-
gerous for medical treatments (see Fig.3). Meanwhile, shape
approximation errors between the extracted contours and the
exact ones defined by intersecting the given solid with the
slicing plane must also be controlled. To fabricate an object
with high accuracy in a conventional way of tessellation, a
massive number of triangles may be generated and storing
them in-core will use up the memory of a computer system.
This motivates our research to develop a direct slicing al-
gorithm to generate self-intersection free and topologically
faithful contours from a general implicit solid.

Problem Definition: For a given implicit solid H =

{p| f (p) ≤ 0,∀p ∈ ℜ3} and a slicing planeP, a contour
C = M∩P is defined as atopologically faithful contour when
M is a surfacer-homeomorphic to the exact surface bound-
ary, ∂H, of H. In this paper, we compute contours which
are

1. topologically faithful when the given solidH is r-
regular,

2. self-intersection free, and

3. with the shape approximation error minimized.

Our approach consists of three major steps. Firstly, a
binary imageB of an r-regular solidH is sampled on the
slicing planeP, where an appropriately selected sampling
distancer′ (with its bound relating to the valuer) ensures
that the contourC̄0 generated fromB is homeomorphic to
C. Secondly,C̄0 is iteratively smoothed intōCm by a con-
strained Laplacian operator that prevents topological changes
and self-intersections. Lastly, a constrained contour simpli-
fication is applied to simplifyC̄m into a contourC̃ which has
fewer line segments and̃C satisfies the three requirements
previously given in the problem definition. Proofs for the
correctness of̃C are also given in this paper. A flowchart of
our direct slicing approach is presented in Fig.4.

1



Figure 1: Incorrect contours generated by slicing a given model will produce a model with unwanted gaps (and/or membranes)
in rapid prototyping: (a) the given Buddha model in implicitrepresentation (actually Layered Depth-Normal Images (LDNI)
[3]), (b) the correct model fabricated from contours generated by our approach, (c) the problematic object fabricated by slicing
the locally self-intersected polygonal model extracted from (a) using a variation [4] of dual-contouring [5], and (d) azoom-view
of the incorrect layer. The models are fabricated by FDM.

Figure 2: Tool path of five consecutive layers generated in InsightT M version 7.0 by slicing a polygonal model extracted from
the implicit Buddha solid given in Fig.1(a) by [4]. Each layer is in thickness of 0.01 inch, and the regions of the Buddha model
and the supporting structures are displayed in green and cyan respectively. Pay attention that an incorrect in/out membership
classification is given on the layer with height=1.79 inch, which is caused by a local self-intersection on the polygonal model.
As a result, the inside of the Buddha model is filled with supporting structure by mistake.

Figure 3: A example of tubes in biomedical engineering:
(left) the expected tubes configuration, (right) the manufac-
tured model with incorrect topology merging two tubes that
should be separated – this is very dangerous for medical
treatments.

The technical contribution of our approach is two-fold.

• For anr-regular solid represented by the implicit indi-
cator function (i.e., ‘−’ for inside and ‘+’ for outside),
the contours generated by our approach are topologi-
cally faithful, self-intersection free and with the shape

approximation error controlled. Therefore, the topology
and shape of the final model fabricated by using these
contours are preserved. Rigorous proofs of these good
properties are given.
• As a direct slicing approach, it is efficient in computa-

tion and memory-usage since only the information on
a particular slicing plane is involved, which is different
from those techniques which first polygonize a given
solid into B-reps and then generate contours from the
B-reps (ref. [6]).

Solids represented by several implicit representations, in-
cluding Layered Depth-Normal Images (LDNI) [3, 4], Bi-
nary Space Partition (BSP) [34] and Adaptively Supported
Radial Basis Functions (RBF) [35], are tested in this paper
to demonstrate the functionality of our approach.

The remainder of the paper is organized as follows. After
reviewing the related work in Section 2, Section 3 presents
the method to generate the first topologically faithful con-
tours. The smoothing technique presented in Section 4 is ap-
plied to the contours to further improve their fairness while
preventing self-intersections. A variational shape approx-
imation algorithm is introduced in Section 5 to generate

2



Figure 4: A flowchart of our direct slicing approach.

topology-preserved and error-bounded contours which have
fewer line segments from the smoothed ones. The experi-
mental results are discussed in Section 6 and our paper ends
with the conclusion section.

2 Related Work

The basic problem for directly slicing an implicit solid is to
compute the intersection between the solid and a plane. Ac-
cording to a review in [8], the methods can be classified into
two categories: analytical and numerical. Analytical meth-
ods find precise intersection points by solving polynomial
equations derived from implicitization [9]. However, these
methods can only be applied to algebraic surfaces and the
computing speed is generally slow. Numerical strategies like
subdivision [10] and marching [11,12] do not require precise
analytical representation of surface boundary. Subdivision
methods intersect a tessellated piecewise linear approxima-
tion of the given implicit surface with a plane, which have the
problem that some small intersection loops will be missed if
the subdivision stops at an improper level. Marching based
methods (e.g. [13]) always start from an initial point, and
then proceed to march along a curve, but they suffer from
robustness problem at critical points of contours (i.e., the
point where two loops join into one). Tracing based contour
generation algorithms like [13] may also miss some small
loops. In a follow-up work in [14], the authors divide the
MLS surfaces into several slabs with each slab having the
same topology, then use a tracing strategy to generate con-
tours for each slab separately. However, unlike our approach,
their method is specialized forMoving Least-square Surfaces
(MLS) and they do not provide rigorous proof of the self-
intersection free property and the topological faithfulness as
our approach. Recently, their work is further extended to use
Point Set Surface (PSS) to compute spline NC paths for high-
speed machining (ref. [15]).

In the computer graphics community, divide-and-conquer
algorithms like Marching Cubes (MC) [16, 17] and Dual

Contouring (DC) [5] have been developed to polygonize im-
plicitly defined scalar fields. To generate a smooth surface,
real values are defined on grid nodes. In [18], authors intro-
duced a compact method for extracting smooth isosurfaces
on grids with only binary values stored on nodes, which in-
spires the constrained smoothing step in our approach (Sec-
tion 4). The theoretical work presented in [19] provides the
criteria of topological equivalence between a 3D object sur-
face and the model reconstructed from discrete binary sam-
ples stored on grid nodes. We apply these criteria to our
approach to govern the steps of binary image sampling and
contour extraction (see Section 3).

The last step of our algorithm needs to simplify a contour
into a new one with fewer line segments. This relates to mesh
simplification work in literature, where some approaches col-
lapse mesh elements greedily (e.g., [20–23]) and others clus-
ter faces into several proxies like planes or quadratic surface
patches (e.g., [24–32]). Among these methods, theVaria-
tional Shape Approximation (VSA) method in [32] has the
global distortion error minimized. Our contour simplifica-
tion algorithm follows the strategy of VSA and is modified
to ensure that the simplified contour is intersection-free and
homeomorphic to the exact contour.

3 Sampling and Contour Generation

We start to analyze the appropriate sampling rate to guaran-
tee the extraction of topologically faithful contours by briefly
reviewing the relevant definitions and theorems given in [19].

Definition 1. A solid H ⊂ ℜ3 is calledr-regular if, for
each pointp ∈ ∂H, there exist two osculating open balls of
radiusr to ∂H at p such that one lies entirely inH and the
other lies entirely out.

Theorem 1. For anr-regular solidH, the boundary surface,
M, generated by atopology preserving method on cubic grids
is r-homeomorphic to the exact surface boundary,∂H, if the
cube widthr′ of grids satisfies

√
3r′ < r.

The above definition and theorem are derived from definition
1 and theorem 16 of [19], which is the foundation of our
binary image sampling and topologically faithful contouring.
Note thatr′ here is different fromr′ used in [19]. Details
about thetopology preserving methods can also be found in
[19].

3.1 Sampling

To generate topologically faithful contours so that a model
homeomorphic to the exact boundary ofH can be fabricated
from them, we sample the 2D solid,H ∩ P, into a binary
imageI and then generate a contourC̄0 from I. The follow-
ing theorem is derived to guarantee thatC̄0 is topologically
faithful.

Proposition 1. For anr-regular solidH, the contour gen-
erated by atopology preserving method on square grids is
topologically faithful if the widthr′ of the squares satisfies√

3r′ < r.

3



Figure 5: A binary image sampled from a Dragon solid: (a)
the solidH is intersected by a slicing planeP, (b) the region
of H̄ = H ∩ P on the binary image, and (c) a zoom-view of
the binary image, where the nodes insideH̄ are displayed in
solid dots while outside nodes are shown in hollow.

Figure 6: Binary image generation of slicing in different ori-
entations: (left) with slicing direction (0,1,0) and (right)
slicing along (1,1,1). The bottom row shows the binary im-
ages generated on example slicing planes.

Proof. Without loss of generality, we can assume that the
slicing planeP overlaps the boundary of a layer of 3D grids
used in Theorem 1. Moreover, the square grids are the
boundary of these 3D grids. Therefore, when

√
3r′ < r is

given on the planar grids, the criterion given in Theorem 1 is
also satisfied.

�

Following this proposition, we sample a binary imageI
from H̄ on the slicing planeP with the pixel distancer′. We
first rotate the given solidH into the coordinate system with
x-o-y plane parallel to the slicing planeP. Then, the dimen-
sion of the binary image can be determined by the intersec-
tion betweenP and the bounding box ofH. The resolution
is defined according to the value ofr′. Fig.5 shows an ex-
ample of the binary image sampled from a solid of Dragon
model. Note that the sampling of binary image is not limited
to the planes perpendicular to the major axes. As long as the

Figure 7: Lookup table for the marching square method with
topology preserved. Sticks are in yellow. Sampling nodes
inside the solidH are shown in black while the outside nodes
are displayed in white. The contour edges linking sticks are
labelled asE.

in/out membership tests can be efficiently conducted on the
given solidH, we can generate the binary image on a slicing
plane in any orientation. Fig.6 demonstrates the binary im-
ages generated by the slicing planes in different orientations.

3.2 Topologically faithful contouring

After obtaining a binary image, the marching square
method introduced in [16] is used to generate an approxi-
mate contourĈ0 that is topologically faithful. Defining the
edge on a square grid with different in/out status on its two
endpoints as astick, the contourĈ0 can be formed by the
line segments linking the middle points of sticks in all grids.
Note that, in the rest of this paper, endpoints are not included
when we refer to astick (i.e., it is defined on an open in-
terval). Fig. 7 shows the lookup table we used in marching
square method to construct contour edges.

Proposition 2. The contour generated by using the lookup
table shown in Fig.7 is topologically faithful.

Proof. The proof is straightforward and quite similar to that
of Proposition 1. As the binary imageI is sampled at a rate
according to Proposition 1 and the planar square grids are
considered as the boundary of 3D grids, the only topolog-
ically ambiguous configuration shown in the lookup table
(i.e., Fig.7(d)) is derived by the topology preserving contour-
ing method (e.g., Ball Union in [19]). Note that, ambiguity of
the configuration shown in Fig.7(d) comes from that the con-
tours in this square could be either 1) two edgesE1 = (v1, v2)
andE2 = (v3, v4) or 2) another two edgeE1 = (v1, v3) and
E2 = (v2, v4).

Specifically, the contour reconstructed in this way on a
slicing planeP can also be considered as using the planeP
to intersect a discrete surface of∂H generated by the Ball
Union method presented in [19]. Its topology in each square
is the same as what we list in Fig.7.

�

3.3 r-Regularity and Accuracy in Rapid Pro-
totyping

The contour generated by the above method is ensured
to be on a surface homeomorphic to the boundary of anr-
regular solidH. Although not all implicit solids arer-regular,
this assumption is reasonable to the models to be fabricated
by rapid prototyping (RP). The value ofr actually relates

4



Figure 8: An example model fabricated from the contours generated by our method withr′ = 3.93× 10−3: (a) the given Donna
model in the LDNI representation, (b) the sliced contours ofrespective layers at 2.30, 3.00 and 3.66 inch heights, and (c) the
resultant model fabricated by FDM.

to the smallest component that can be fabricated by an RP
machine (e.g., the diameter of plastic filaments on an FDM
machine as well as the finest position that can be provided
by motion controller). Most commercialx-y positioning sys-
tems used in rapid prototyping can achieve the precision of
10−3 inch. The diameter of plastic filaments is usually greater
than 10−2. Moreover, for an implicit solid represented by
LDNI [3, 4], the accuracy of the solid is also limited by the
resolution of LDNI. It is meaningless to make the grid width
of binary image smaller than that of LDNI. Therefore, take
the Donna model shown in Fig. 8 as an example, we choose
r′ = 4.00×10−3 to generate the binary images, slightly larger
than that of LDNI (3.93× 10−3). Usually, selectingr′ with
a value no larger than 5× 10−3 is good enough for models
fabricated by FDM. For models with very small values ofr,
our algorithm needs a grid with very high resolution which
could be a problem of computer memory. In this case, solid
models need to be processed tor-regular with a largerr by
using the techniques like morphological operators.

4 Constrained Smoothing

Since line segments on the contourC̄0 are generated by link-
ing the middle point of sticks, there is no self-intersection
on C̄0. However, the shape of̄C0 is not smooth (e.g., the
contour shown in Fig. 10(a)), so, we apply a Laplacian op-
erator based smoothing technique to improve it. The advan-
tage of Laplacian smoothing is its efficiency and stability, but
the major drawback is that the unwanted shrinkage always
occurs when it is iteratively applied to a closed shape (in
2D or 3D). A constrained Laplacian smoothing is developed
here, which intrinsically solves the shrinkage problem since
we guarantee to generate topologically faithful contours.In
other words, the smoothed contours cannot violate the in/out
status of any sampling node on the binary imageI. To ensure
that, a good strategy is to constrain each vertexvi on the con-
tour so that it must stay on the stick on which it initially lies.

In addition, by applying this ‘sliding-on-stick’ strategy, we
can guarantee that the resultant contours are self-intersection
free.

Proposition 3. When moving the vertices on a contour,
no intersection occurs if the vertices are only moved on the
sticks holding them.

Proof. For a vertexvi that is generated from the stickti, slid-
ing it on ti can only bring itself to a new position belonging to
the point set{p|p = αps

i +(1−α)pe
i ), α ∈ (0,1)}, whereps

i and
pe

i are the two endpoints ofti respectively. For any contour
edgeE, if we allow its two verticesvi andv j to slide only on
their respective sticksti and t j, E can sweep out a rangeΦ
which contains any of its possible occurrence position.

For the contour edges withvi andv j located on two ad-
jacent sticksti and t j, the regionΦ is a triangular region
formed by the endpoints ofti andt j excluding the boundaries
not overlapped withti or t j (e.g.,p1p3 andp4 in Fig.9(a)).
For the contour edges withvi andv j on two opposite sticks
(e.g., Fig.9(b)),Φ is a square excluding the boundaries not
overlapped withti or t j (e.g., p1p2 and p3p4 in Fig.9(b)).
Since the sweeping envelopes of the edges on the contour
do not have any overlap with each other, the proposition is
thus proved.

�

Proposition 4. Deforming a topologically faithful contour
by moving its vertices only on the sticks holding them will
generate a contour which is still topologically faithful.

Proof. The proof of this proposition is straightforward. First,
deforming a contour in this way will not change the ‘in’-
‘out’ status of any samples on the binary imageI since the
contour is not moved across any of the samples. Second,
self-intersections will not be generated during such a kindof
deformation (see Proposition 3).

�

The constrained smoothing technique introduced in [18]
ensures every vertex sliding on its stick by projecting the dis-

5



Figure 9: The sweeping envelopes for contour edges in grids
with different configurations. The regionΦ is displayed in
orange and the excluded vertices and edges are displayed in
blue.

placed vertex back to the nearest point of its stick. However,
some vertex may eventually have orthogonal displacement to
its stick and the contour is stuck in an sub-optimal shape (see
Fig. 10(e)). We observed that for each contour vertexvi , its
two adjacent verticesvi−1 andvi+1 have only 5 configurations
for their position on different sticks with considering rota-
tional symmetry (see Fig. 11). For all these configurations,
the line segment connectingvi−1 andvi+1 intersect with ei-
ther the stick holdingvi (configuration (b), (c), (d) and (e))
or an ending point of this stick (configuration (a)). Based on
this observation, we investigate a sliding-based constrained
smoothing without using projection. On each vertexvi , it is
performed in two steps.

1. Calculating the intersection pointvint between the line
segment connectingvi−1 andvi+1 and the stick griping
vi with its two ending points counted.

2. Movingvi in the ratio ofτ towardsvint

vi
new = vi + τ(vint − vi)

whereτ = 0.4 is selected to balance the efficiency and
the stability of computation.

The contourC̄0 can be smoothed intōCm by repeatedly
applying these two steps to all vertices until the average
movement of vertices in an iteration is less than 10−3 of r′.
Figs.10(b), (c) and (d) give a comparison of the smoothing
results between sliding-based, projection-based constrained
smoothing and ordinary Laplacian smoothing. Besides, it is
obvious thatC̄m is homeomorphic tōC0 since no intersection
occurs during this contour evolution.

5 Contour Simplification

The smoothed contour,̄Cm, usually provides a very good
shape approximation of the exact contour generated by∂H ∩
P. However, to ensure the topological faithfulness, a relative
small value ofr′ may be selected for a model with large di-
mensions. This leads to contours with a lot of very short line
segments, which significantly increase the memory cost. The
situation becomes more serious if the software controlling
the RP machine does not run in an out-of-core manner (i.e.,
loading the contours for all layers from the contour file at the
same time). Moreover, using too many small line segments

Figure 10: A comparison among different smoothing strate-
gies on the contour generated for the binary image region
shown in Fig. 5(c): (a) the contour reconstructed by the
topology preserving marching square method, (b) the shrink-
ing contour after ordinary Laplacian smoothing, (c) the re-
sultant contour after projection-based constrained smooth-
ing, (d) the resultant contour after sliding-based constrained
smoothing, and (e) the zoom-in view of contour vertices
stuck in sub-optimal shape.

to represent the contours will dramatically decrease the effi-
ciency of subsequent processing steps in RP like generation
of supporting structure and tool-path planning. Based on our
observation, in the smoothed contours, there are always sev-
eral successive edges lying almost in the same straight line,
which implies these edges can be simplified into one single
edge with little distortion error introduced. Therefore, acon-
tour simplification algorithm preserving topology and shape
approximation error is investigated in this section to further
improve the topologically faithful contours for slicing im-
plicit solids.

5.1 Variational segmentation

The variational shape approximation approach [32] imi-
tates the well known Lloyd’s algorithm [33] to cluster mesh
entities into several regions, and for each region, it uses a
planar proxy to approximate the whole region. Lloyd’s al-
gorithm based relaxation procedure is employed to minimize
the global shape distortion error. We adopt their basic idea
and develop our constrained simplification algorithm for 2D
contours.

For any contour, at the very beginning, we randomly select
n edges{Ei} as seeds which will be used to start growing a
cluster. The number of clusters,n, can be selected to be pro-
portional to the total number of edges on this contour (1

α
with

6



Figure 11: All the five configurations for the position ofvi−1

andvi+1 on different sticks with considering rotational sym-
metry.

a positive integerα as clustering ratio). Here, each proxy is
a line defined by a pointxi on the line and a normal vector
ni perpendicular to the direction of the line. The proxies,Qi,
are initialized by the seed edges.

We need to grow the proxies on the contour simultane-
ously and buildn clusters minimizing the shape approxima-
tion error. For each seed edgeEi, we insert its two adjacent
edges,E j and Ek, into a minimal queue,Υ. The queue is
keyed by the distortion error presented on the edges accord-
ing to a particular proxy (e.g., the edgesE j andEk inserted
according to the proxyQi have the weights,D(E j,Qi) and
D(Ek,Qi), in Υ). Note that it is possible to have an edge in-
serted in the queue more than once (i.e., by different proxies
adjacent to the edge). Here, the distortion error is measured
by L2 norm. Generally, theL2 error metric for any regionR
and its proxyQ is defined as

L2(R,Q) =
∫ ∫

x∈R
‖x − ΠQ(x)‖2dx (1)

whereΠQ(x) means the orthogonal projection of the argu-
ment on the proxyQ. The L2 distortion errorD(E,Q) be-
tween an edgeE and the linear proxyQ can be evaluated
by

D(E,Q) =
1
3

(d2
0 + d2

1 + d0d1)‖E‖ (2)

whered0 andd1 are the orthogonal distance from two end-
points ofE to the line defined onQ and‖E‖ represents the
length of edgeE.

The growing of clusters is performed by repeatedly re-
moving the edge from the top ofΥ (i.e., the edge with the
smallest distortion error). For each edgeEt removed from
Υ, we check if it has been assigned to a proxy. If not, we
assign it to the proxyQp which is used to evaluate its distor-
tion error,D(Et,Qp), in Υ. Otherwise, no operation is given
according toEt. After the edgeEt is assigned to a proxyQp,
the two edgesEl andEr adjacent toEt are inserted intoΥ ac-
cording to the weights,D(El,Qp) andD(Er,Qp), if they have
not been assigned to any proxy. The removing and inserting
operations will not stop untilΥ becomes empty, i.e., when
every edge has been assigned to a proxy. This relaxation
based clustering process always provides connected and non-
overlapped segmentations on a contour.

After obtaining ann-clustering result from a set of seed
edges, we need to update each proxyQi in order to mini-

mize the distortion error betweenQi and its corresponding
regionRi (the cluster). We update the linear proxyQi by re-
computing its normal directionni and the site pointxi where
the line passes through.xi is simply the barycenter of its
corresponding regionRi, which is given by

xi =

∑

E∈Ri
‖E‖(vs + ve)

2
∑

E∈Ri
‖E‖ (3)

wherevs andve are the two endpoints of an edgeE. ni could
be determined by computing the eigenvector corresponding
to the smallest eigenvalue of the covariance matrix ofRi. The
covariance matrixMi of Ri can be calculated by

Mi =
∑

E∈Ri

‖E‖(ACAT +vsvs
T +vsvb

T +vbvs
T )−xixT

i

∑

E∈Ri

‖E‖

(4)
where

A =
[

ve − vs 0
]

, C =
[

1
3 0
0 0

]

andvb =
1
2(ve − vs).

After updating alln proxies, we search a new seed edgeEi in
each regionRi which has the smallest distortion error accord-
ing to the new proxy. Then, a new segmentation is computed
starting from these new seed edges.

After applying this growing-updating process for several
iterations (e.g., 20 iterations always can provide satisfactory
results), the whole contour has been successfully segmented
into n regions and the overall distortion error has been mini-
mized (see Fig.12(a) for an example).

5.2 Topology and distortion verification

After performing the segmentation of a smoothed contour
C̄m, the simplest way to generate a simplified contour is to
replace the edges on̄Cm by n edges where each links the
starting and the ending points of a regionRi. However, sim-
plifying contours in this way will make some sample points
on the binary imageI which are originally ‘inside’ the re-
gion, H ∩ P, become ‘outside’, or vice versa – i.e., topo-
logical faithfulness is not preserved. Moreover, as shown in
Fig.13, intersections and degenerate contours can be gener-
ated on the contours which are intersection-free before the
simplification. Another important issue we concern about
is the bound of distortion error introduced by simplification.
As shown below, we investigate a novel verification proce-
dure to solve both the topology faithfulness and distortion
error bound problems together. We notice that every vertex is
guaranteed to be still on its corresponding stick after smooth-
ing. In other words, the variational clustering actually starts
from a topologically faithful and intersection-free contour.
The verification procedure is based on this assumption of the
input contour.

Proposition 5. For a region on the contour defined by a
sequence of connected vertices{v1, v2, · · · , vn}, it can be sim-
plified into a single edgēE connectingv1 andvn by sliding
its (n − 2) internal vertices{v2, v3, · · · , vn−1} on their respec-
tive sticks{t2, t3, · · · , tn−1} if and only if the resultant edgēE
intersects all of the sticks:{t2, t3, · · · , tn−1}.

7



Figure 12: An illustration of contour simplification for the
smoothed contour shown in Fig.10(d): (a) the variational
clustering result on the contour with different line type repre-
senting different regions, and (b) the final simplified contour
after topology and distortion verification.

Proof. See Fig. 14 for an illustration.
(1) Sufficiency: Suppose the resultant edgēE intersects all of
the sticks{t2, t3, · · · , tn−1}, the intersection pointv′k between
Ē andtk is on bothĒ andtk. Since bothvk andv′k is on tk, it
is obvious thatvk can move tov′k just by sliding ontk. Hence,
the whole contour region can be simplified intōE by sliding
then−2 internal vertices{v2, v3, · · · , vn−1} on their respective
sticks{t2, t3, · · · , tn−1}.
(2) Necessity: Suppose that the contour region can be sim-
plified into a single edgeĒ by sliding then − 2 internal
vertices{v2, v3, · · · , vn−1} on {t2, t3, · · · , tn−1}, eachvk on tk
(k ∈ [2, n − 1]) can have a corresponding pointv′k projected
on the simplified segment̄E by slidingvk on tk. v′k is on both
tk andĒ. Thus,tk andĒ intersect each other.
This proposition is thus proved.

�

Deforming an intersection-free and topologically faithful
contour by sliding the vertices on the sticks holding them
will NOT change the properties of topological faithfulness
and intersection-free (see Propositions 3 and 4). Because of
this, we develop the verification procedure below.

For each segmented regionRi, we first estimate its sim-

Figure 13: A contour that is originally intersection-free could
become intersected or degenerate by replacing the curved re-
gion with line segments.

Figure 14: Sliding the six vertices on their respective sticks
in order to form a single edge connecting the starting and
ending vertices of this region.

plified edgeĒi by connecting its two ending vertices. We
verify whetherĒi can be obtained from sliding the internal
vertices on their corresponding sticks by testing ifĒi inter-
sects all these sticks(see Proposition 5 for the correctness of
such a test). IfĒi intersects all the tested sticks, we go to the
distortion error test. The distortion error betweenRi and Ēi

can be evaluated by

D′(Ri, Ēi) =
∑

E∈Ri

D(E, L(Ēi)) (5)

whereL(Ēi) gives the line equation of̄Ei. The simplifica-
tion on Ri can pass this test only ifD′(Ri, Ēi) <= ǫ, where
ǫ is a user specified distortion tolerance. If either of these
two tests fails, the regionRi is further separated into two re-
gions which are determined by a local variational clustering
conducted only inRi. This trial-and-error procedure is re-
cursively performed until all the segmented regions on the
contour satisfy both of the two verifications. Then, each seg-
mented region is converted into a simplified edge of the con-
tour. Note that this trial-and-error procedure is guaranteed
to stop since in the worst case, each region is a single edge
on the smoothed contour̄Cm. Still, the topologically faithful
condition is satisfied and the distortion error for every such
region is simplyzero. The effectiveness of our verification
technique is demonstrated in Fig. 12(b).

8



Figure 15: An example of slicing the Filigree model: (a) a mesh tessellated from implicit Filigree model, (b) the contours and
their corresponding tool path (in green) generated by InsightT M version 7.0 on the layer with 0.77 inch height, (c) the contours
generated by our approach for the same layer and their corresponding tool path, (d) the rendered slicing contours generated by
our approach.

Figure 16: An example of slicing the Truss model: (a) a mesh tessellated from implicit Truss model, (b) the contours and
their corresponding tool path (in green) generated by InsightT M version 7.0 on the layer with 2.44 inch height, (c) the contours
generated by our approach for the same layer and their corresponding tool path, (d) the rendered slicing contours generated by
our approach.

6 Results and Discussion

We have implemented the proposed approach in a C++ pro-
gram. The examples shown in this paper are all tested on a
PC with Intel Core 2 Quad CPU Q6600 2.4GHz.

The two engineering models shown in Figs.15 and 16 give
a comparison between prior slicing algorithm (in commer-
cial software) and our approach. Due to the self-intersection
in the tessellated triangular meshes from implicit solids,prior
slicing algorithm may produce incorrect contours, and con-
sequently the tool path of part material will also have defects
(see Figs.15(b) and 16(b)). Unwanted films will be produced
for both of the two examples as a result. In addition, the
filigree and truss models demonstrate that our approach can
easily handle the solids with complex topology.

In order to verify the effectiveness of our topology verifi-
cation technique, we analyzed the resultant contours for Bud-
dha and Truss models which are shown in Figs.17 and 18.
For the layer at 2.90 inch height of Buddha, self-intersection

will be removed if we use the topology verification (see
Fig.17(c) and (d)). Meanwhile, the topology verification
technique can successfully prevent degenerate contours (see
Fig.18(c) and (d)) caused by narrow intersection regions.

Three biomedical models, Donna, Hand-complex and
Spine are shown in Figs.8, 21 and 22 respectively. From the
rendered slicing contours shown in Figs.21(b) and 22(b) and
the fabricated model by FDM in Fig.8(c), we can see that
the resultant contours provide very good shape approxima-
tion of the original solids. For Hand-complex and Spine, we
conduct a study on the effect of clustering ratioα (see Sec.5)
to the performance of our approach. As can be seen from
Figs.21(c) and 22(c), the maximum regional distortion error
are generally increasing asα increases. However, the rate of
error increasing becomes slow asα becomes larger because
the approach has to perform more topology and distortion-
error verification operations under this situation. We also
compare the number of resultant contour edges and the time
consumption for different values ofα. The resultant con-

9



Figure 17: A comparison between resultant contours with
and without topology verification: (a) the given Buddha
model in the LDNI representation, (b) a binary image sam-
pled from the layer with 2.90 inch height, (c) the resultant
contour without topology verification, (d) the resultant con-
tour with topology verification.

tour edge number first decreases as expected whenα < 10,
while it increases slowly afterα ≥ 10. This is because the
contours require at least certain number of edges to guaran-
tee topologically faithful and distortion-error bounded prop-
erties. Once the variational segmentation does not provide
enough regions to satisfy these two properties, more regions
will be generated through subdividing regions locally in ver-
ification stage. Since the subdivided regions cannot freely
move to optimally fit the contour shape as what they can do
in the variational segmentation stage, the more subdivision is
applied, the more contour edges tend to be generated on the
results. Time consumption increases quickly asα becomes
too large because we need to perform more verification op-
erations, which repeatedly check whether two line segments
intersect each other to detect violation of topologically faith-
ful property. Based on our experimental tests, selectingα
between 10 and 15 shows a good trade-off. All testing re-
sults presented in this paper are generated by usingα = 10.

Our direct slicing approach is general for any implicit rep-
resentations. Fig.19 and 20 give demonstration of our ap-
proach on BSP and RBF solids respectively. In our pro-
totype implementation of slicing RBF solids, we use the
adaptively supported RBF generator which is available on
Ohtake’s software website1. Statistics of experimental tests
are shown in Table 1-3 for LDNI, BSP and RBF representa-
tions respectively. For all the tests on LDNI, the grid width
r′ of binary images is set to be no less than that of the in-
put LDNI solid. Hence, the resolution of LDNI should be
large enough to make sure the value ofr′ is in the order of
10−3. The column, max(D′(Ri, Ēi)), reports the maximum
regional distortion error defined by Eq.(5) on simplified con-
tours. In our tests, the tolerance of regional distortion error is
actually set as square ofr′. Therefore, it is easy to find that

1http://www.den.rcast.u-tokyo.ac.jp/˜yu-ohtake

Figure 18: A comparison between resultant contours with
and without topology verification: (a) the given Truss model
in the LDNI representation, (b) a binary image sampled from
the layer with 0.30 inch height, (c) the resultant contour
without topology verification, (d) the resultant contour with
topology verification.

our constrained shape simplification can successfully bound
the distortion error with respect to the tolerance. We use the
thickness of 0.01 inch for all the slicing tests, and the number
of slicing layers are listed in the last column of the tables.

7 Conclusion

In this paper, we present a direct slicing approach for implicit
solids. We investigate two main techniques, constrained
Laplacian smoothing and contour simplification, which can
produce self-intersection free and topologically faithful con-
tours. In addition, we provide the proofs for the correctness
of our approach. The approach presented in this paper also
allows good distortion error control on the generated con-
tours and has been shown to be very efficient.

Even though uniform binary image works well, the whole
approach could be more efficient if we can make it in an
adaptive resolution. We consider this as our near future work.
The challenge is to retain the self-intersection free and topo-
logically faithful properties on the contours after movingthe
computation into an adaptive sampling strategy. Meanwhile,
the distortion error introduced between layers will also be
considered and modeled to further improve the quality of
models fabricated from the contours generated by our ap-
proach.

Acknowledgement

The research conducted in this paper is supported
by Hong Kong RGC/GRF grants (CUHK/417109 and
CUHK/417508). The third author is supported by the Na-
tional Science Foundation grant CMMI-0927397. The au-
thors would like to thank Yuen-Shan Leung and Allan Mok
for generating the LDNI solid and the FDM object shown at
the beginning of this paper, and Ms. Siu Ping Mok for proof
reading the manuscript.

10

 http://www.den.rcast.u-tokyo.ac.jp/~yu-ohtake


Table 1: Statistics of Experimental Tests on LDNI

Examples
Model Size
(L×W×H)

LDNI
Resolution

LDNI
Grid Width

r′
Time*

(in min)
max(D′(Ri, Ēi))

Contour Edges No.
Before vs. After
Simplification

Layer
No.

Dragon 0.90×2.00×1.41 1500 1.44e-3 1.50e-3 2.10 (0.48) 3.46e-9 458k / 79k 414
Spine 10.30×1.72×2.18 3000 3.77e-3 4.00e-3 7.68 (2.61) 1.49e-7 1305k/ 267k 218
Hand 4.65×6.63×2.27 3500 2.08e-3 2.50e-3 8.53 (3.01) 1.66e-8 1338k/ 255k 227
Donna 7.14×6.10×4.41 2000 3.93e-3 4.00e-3 12.55 (3.10) 6.02e-8 2468k/ 368k 441
Truss 2.40×5.82×2.54 1300 4.93e-3 5.00e-3 20.18 (0.88) 2.32e-7 3973k/ 1027k 254
Filigree 8.00×8.00×1.21 4000 2.20e-3 2.50e-3 43.13 (2.78) 3.96e-8 3110k/ 545k 121

*The reported time includes binary image sampling (parallelized using multi-thread processing library – OpenMP), contour reconstruction,
constrained Laplacian smoothing and contour simplification. The value in brackets represents time for binary image sampling.

Table 2: Statistics of Experimental Tests on BSP

Examples
Model Size
(L×W×H)

BSP Tree
Size

BSP Tree
Complexity#

r′
Time*

(in min)
max(D′(Ri, Ēi))

Contour Edges No.
Before vs. After
Simplification

Layer
No.

Oct-flower 3.50×3.50×2.49 151309 21 2.00e-3 4.89 (2.77) 3.13e-9 834k / 90k 249
Rocker-arm 5.00×1.52×2.57 156813 22 2.00e-3 5.25 (1.95) 3.13e-9 1359k/ 166k 257
B-Torus 5.05×5.05×3.86 225319 23 2.50e-3 18.41 (5.93) 1.40e-8 3823k/ 428k 386
Gear 6.35×6.35×3.90 50099 23 3.00e-3 20.8 (6.26) 2.49e-8 3897k/ 420k 390

*The reported time includes binary image sampling (parallelized using multi-thread processing library – OpenMP), contour reconstruction,
constrained Laplacian smoothing and contour simplification. The value in brackets represents time for binary image sampling.
#The complexity of BSP tree is defined as the average depth of its leaf nodes.

Table 3: Statistics of Experimental Tests on Adaptively Supported RBF

Examples
Model Size
(L×W×H)

Points No.
for Surface

Fitting

Basic
Functions
Number

r′
Time*

(in min)
max(D′(Ri, Ēi))

Contour Edges No.
Before vs. After
Simplification

Layer
No.

Armadillo 3.17×2.88×3.78 80000 72787 3.00e-3 9.16 (4.73) 3.01e-8 1548k/ 348k 387
S-chair 3.50×6.32×3.35 16113 14010 2.00e-3 14.98 (11.45) 1.01e-8 1366k/ 197k 335
Horse 5.02×2.30×4.17 19851 9797 2.00e-3 26.33 (20.61) 1.27e-8 2094k/ 294k 417
Bunny 6.23×4.83×6.17 34834 21068 3.00e-3 29.85 (18.68) 3.59e-8 3528k/ 588k 617

*The reported time includes binary image sampling (parallelized using multi-thread processing library – OpenMP), contour reconstruction,
constrained Laplacian smoothing and contour simplification. The value in brackets represents time for binary image sampling.

References

[1] Ju T. and Udeshi T. Intersection-free Contouring on An
Octree Grid, Proceedings of Pacific Graphics, 2006.

[2] Varadhan R., Krishnan S., Zhang L., and Manocha D.,
Reliable Implicit Surface Polygonization using Visibility
Mapping, Proceedings of Symposium on Geometry Pro-
cessing, 2006.

[3] Chen Y. and Wang C. C. L., Layered Depth-Normal Im-
ages for Complex Geometries - Part One: Accurate Sam-
pling and Adaptive Modeling. ASME IDETC/CIE 2008
Conference, 28th Computers and Information in Engi-

neering Conference, New York City, New York, 2008,
DETC2008-49432.

[4] Wang C. C. L. and Chen Y., Layered Depth-Normal
Images for Complex Geometries C Part Two: Manifold-
Preserved Adaptive Contouring. ASME International De-
sign Engineering Technical Conferences and Computers
and Information in Engineering Conferences, New York
City, New York, August 3- 6, 2008, DETC2008-49576.

[5] Ju T., Losasso F., Schaefer S. and Warren J., Dual Con-
touring of Hermite Data. ACM Transactions on Graphics,
21(3), 339-346, 2002.

11



Figure 19: A demonstration of our approach on BSP solid:
(a) the given Rocker-arm model in BSP representation and
the resultant rendered contours, (b) the binary image and cor-
responding contours for the layer with 1.66 inch height, (c)
the binary image and corresponding contours for the layer
with 0.85 inch height.

[6] Chua C. K., Leong K. F. and Lim C. S., Rapid Prototyp-
ing: Principles and Applications, World Scientific, Singa-
pore, 2003.

[7] Fan R., Wang C. C. L. and Jin X., General Transforma-
tion of LDNI Solid. Technical Report of CUHK. 2010.

[8] Luo R. C. and Ma Y., A Slicing Algorithm For Rapid
Prototyping and Manufacturing. Proceedings of IEEE
International Conference on Robotics and Automation,
1995, 3, 2841-2846, 1995.

[9] Farouki R. T., The Characterization of Parametric Sur-
face Sections. Computer Vision, Graph and Image Pro-
cessing, 33, 209-236, 1986.

[10] Lee R. B. and Fredericks D. A., Intersection of Para-
metric Surfaces and a Plane. IEEE Computer Graphics
and Application. 4(8), 112-117, 1981.

[11] Barnhill R. E. and Kersey S. N., A Marching Method
for Parametric Surfacdsurface Intersection. Computer
Aided Geometric Design. 7, 257-280, 1990.

[12] Barnhill R. E., Farin G. E., Jordan M. and Piper B.R.,
Surface/surface Intersection. Computer Aided Geometric
Design. vol. 4, 3-16, 1987.

[13] Yang P. and Qian X., Adaptive Slicing of Moving Least
Squares Surfaces: Toward Direct Manufacturing of Point
Set Surfaces. ASME Transactions Journal of Computing
and Information Science in Engineering, 8(3), 2008.

[14] Qiu Y., Zhou X. and Qian X., Direct Slicing of Cloud
Data with Guaranteed Topology for Rapid Prototyping.
International Journal of Advanced Manufacturing Tech-
nology. accepted, 2010.

Figure 20: A demonstration of our approach on RBF solid:
(a) the given Armadillo model in adaptively supported RBF
representation and the resultant rendered contours, (b) the
binary image and corresponding contours for the layer with
2.90 inch height, (c) the binary image and corresponding
contours for the layer with 1.30 inch height.

[15] Liu Y., Xia S. and Qian X., Direct Numerical Control
(NC) Path Generation: From Discrete Points to Continu-
ous Spline Paths. ASME Transactions Journal of Comput-
ing and Information Science in Engineering, 12(3), 2012.

[16] Lorensen W. E. and Cline H. E., Marching Cubes:
A high Resolution 3D Surface Construction Algorithm.
Computer Graphics, 21(4), 163-169, 1987.

[17] Kobbelt L. P., Botsch M., Schwanecke U. and Sei-
del H., Feature Sensitive Surface Extraction from Vol-
ume Data. Proceedings of ACM SIGGRAPH 2001, 57-66,
2001.

[18] Chica A., Willliams J., Andujar C., Brunet P., Navazo
I., Rossignac J. and Vinacua A., Pressing: Smooth Isosur-
faces with Flats from Binary Grids. Computer Graphics
Forum. 27(1), 36-46, 2008.

[19] Stelldinger P., Latecki L. J. and Siqueira M., Topologi-
cal Equivalence between a 3D Object and the Reconstruc-
tion of Its Digital Image. IEEE Transactions on Pattern
Analysis and Machine Intelligence. 29(1), 126-140, 2007.

[20] Hoppe H., Progressive meshes. Proceedings of ACM
SIGGRAPH 1996, 99-108, 1996

[21] Klein R., Liebich G. and Strasser W., Mesh Reduction
with Error Control. IEEE Visualization Proceedings, 311-
318, 1996.

[22] Michael Garland and Paul S. Heckbert. Simplifying
Surfaces with Color and Texture using Quadric Error Met-
rics. Proceedings of IEEE Visualization, 263-269, 1998.

[23] Lindstrom P. and Turk G., Fast and Memory Efficient
Polygonal Simplification. Proceedings of IEEE Visualiza-
tion, 279-286, 1998.

12



Figure 21: An example of slicing the Hand-complex model: (a)the original Hand-complex model, (b) the rendered slicing
contours, (c) the chart of maximum regional distortion error versus the clustering ratioα, (d) the chart of simplified contour
edge number versusα, (e) the chart of time consumption versusα.

Figure 22: An example of slicing the Spine model: (a) the original Spine model, (b) the rendered slicing contours, (c) thechart
of maximum regional distortion error versus the clusteringratio α, (d) the chart of simplified contour edge number versusα,
(e) the chart of time consumption versusα.

[24] Maillot J., Yahia H. and Verroust A., Interactive Texture
Mapping. Proceedings of ACM SIGGRAPH 1993, 27-34,
1993.

[25] Kalvin A. D. and Taylor R. H., Superfaces: Polygonal
Mesh Simplification with Bounded Error. IEEE Computer
Graphics and Applications, 16(3), 64-77, 1996.

[26] Inoue K., Itoh T., Yamada A., Furuhata T. and Shi-
mada K., Clustering A Large Number Of Faces For
2-Dimensional Mesh Generation. Eightth International
Meshing Roundtable, 281-292, 1999.

[27] Sheffer A., Model Simplification for Meshing Using
Face Clustering. Computer Aided Design. 33. 925-934,
2000.

[28] Sander P., Snyder J., Gortler S. and Hoppe H., Texture
Mapping Progressive Meshes. Proceedings of ACM SIG-
GRAPH 2001, 409-416, 2001.

[29] Garland M., Willmott A. and Heckbert P. S., Hierarchi-
cal Face Clustering on Polygonal Surfaces. Proceedings
of the 2001 symposium on Interactive 3D graphics. 2001.

[30] Grinspun E. and Schröder P., Normal Bounds for
Subdivision-Surface Interference Detection. Proceedings
of IEEE Scientific Visualization, 333-340, 2001.

[31] Lévy B., Petitjean S., Ray N. and Maillot J., Least
Squares Conformal Maps for Automatic Texture Atlas
Generation. Proceedings of ACM SIGGRAPH 2002, 362-
371, 2002.

[32] Cohen-Steiner D., Alliez P. and Desbrun M., Varia-
tional Shape Approximation. Proceedings of ACM SIG-
GRAPH 2004, 905-914, 2004.

[33] Lloyd A. P., Least Square Quantization in PCM. IEEE
Transactions on Information Theory. 28(2), 129-137,
1982.

[34] Fuchs H., Kedem Z.M. and Nalor B.F., On Visible Sur-
face Generation by a Priori Tree Structures. Proceedings
of ACM SIGGRAPH 1980, 124-133, 1980.

[35] Ohtake Y, Belyaev A and Seidel H.P., 3D Scattered
Data Approximation with Adaptive Compactly Supported
Radial Basis Functions. Proceedings of the Shape Model-
ing International 2004, 31-39, 2004.

13


	Introduction
	Related Work
	Sampling and Contour Generation
	Sampling
	Topologically faithful contouring
	r-Regularity and Accuracy in Rapid Prototyping

	Constrained Smoothing
	Contour Simplification
	Variational segmentation
	Topology and distortion verification

	Results and Discussion
	Conclusion

