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Abstract 

We investigate how to define a triangulated ruled surface interpolating two polygonal directrices that 

will meet a variety of optimization objectives which originate from many CAD/CAM and geometric 

modeling applications. This optimal triangulation problem is formulated as a combinatorial search 

problem whose search space however has the size tightly factorial to the numbers of points on the two 

directrices. To tackle this bound, we introduce a novel computational tool called multi-layer directed 

graph and establish an equivalence between the optimal triangulation and the single-source shortest 

path problem on the graph. Well known graph search algorithms such as the Dijkstra’s are then 

employed to solve the single-source shortest path problem, which effectively solves the optimal 

triangulation problem in O(mn) time, where n and m are the numbers of vertices on the two directrices 

respectively. Numerous experimental examples are provided to demonstrate the usefulness of the 

proposed optimal triangulation problem in a variety of engineering applications.  

Keywords: interpolation, ruled surface, weighted graph, global optimum, design and manufacturing.

                                                 
*
 corresponding author. 



 2 

1. Introduction 

Ruled surfaces are widely used in computer-aided design and manufacturing (CAD/CAM) and 

computer graphics applications. For example, they are utilized to approximate freeform surfaces so 

that efficient NC tool paths can be generated [1]. In [2] mould drafts are created on freeform surfaces 

by approximating isoline surfaces with ruled surfaces. Ruled surfaces are also used in [3] to construct 

a surface by directionally offsetting 3D curves, where the resulting surface patches are useful 

elements in some engineering design applications (e.g., sheet metal products with flanges, overflow 

patches on a forging die, and cutting blades for a trimming die). Ruled surfaces are also the basic 

surface type for studying surface developability [4-6], which is an important surface property required 

in garment manufacturing. Mathematically, a ruled surface is the simplest form of surface 

interpolating two spatial curves: given two 3D C
1
 curves C1(t) and C2(t) defined on ]1,0[∈t , the ruled 

surface defined on them is the simple linear interpolation between the two corresponding points C1(t) 

and C2(t), i.e., 

  )()()1(),( 21 twCtCwwtS +−=            ( ]1,0[, ∈wt ),                                                (1) 

where the line segment <C1(t), C2(t)> is referred to be a ruling, and the two curves C1 and C2 are 

called the directrices, or rails sometimes. 

 Given a pair of directrices C1 and C2, depending on their parameterizations, different ruled 

surfaces can be generated, all interpolating the same two curves. Refer to Fig. 1 for an illustrative 

example. The different interpolations are best described by a parameterization mapping function )(tξ , 

which can be any mapping from [0,1] to [0,1], as long as it is monotone and C
1
 continuous. An 

interpolating ruled surface of C1 and C2 then is defined as  

   ))(()()1(),( 21 twCtCwwtS ξ+−=     ( ]1,0[, ∈wt ).    (2) 

  
(a)  (b)  

Fig. 1    Different parameterizations on the same two rails lead to different ruled surfaces 

 The problem we investigate is finding “optimal” mappings )(tξ to realize certain optimization 

objectives. For example, one such optimization objective could be “minimal area”, i.e., the 

corresponding ruled surface has the minimal area among all the ruled surfaces interpolating the same 
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two directrices. Another optimization objective is “maximal developability”, which seeks to maximize 

the number of “twist-free” rulings on a ruled surface, where a ruling is twist-free if all the surface 

normal vectors along it are parallel to each other – in case all the rulings are twist-free then the ruled 

surface is developable [4]. Theoretically, this is a variational optimization problem [7]. Let 
k
([0,1]) 

denote the vector space of all the class C
k
 real-valued functions defined on [0,1]. The problem of 

optimal mapping ( )tξ  then can be cast in the following variational form: 

   ( ) ( ) ( )( ) ( )( )dwdtttCtCwtFJ ∫ ∫= 1
0

1
0 21 ξξξ ,,,, ,     (3) 

where the functional ξ  is defined in 
1
([0,1]) and F(…) is a function, usually very complicated and 

non-rational, depending on the specific optimization objective. Conceivably, it is virtually impossible 

to find an exact solution to Eq. (3) due to the double integration and the intertwining nature of F(…). 

Therefore, only approximate and numerical solutions are possible. One natural approach is to restrict 

( )tξ  to a specific type represented by a set of real-valued coefficients {c1, c2, …,ck} for some k (e.g., 

band-limited B-splines with ci’s as the control points), and convert Eq. (3) to an energy minimization 

problem with ci’s as optimization variables, which can then be solved by traditional functional 

optimization techniques such as the conjugate-gradient method [8]. This heuristic numerical approach 

has seen some success in many disciplines, e.g., imaging processing [9].    

 In this paper, we propose a rather different approach than the heuristic energy minimization: we 

formulate the problem as a combinatorial optimization problem and propose efficient algorithmic 

solutions for it. To be a little bit specific, the two directrices are first approximated by polygonal 

chains, and a special type of triangulation is then sought to interpolate these two polygons that will 

realize the given optimization objective in its corresponding discrete form. Since integration has to be 

involved, any numerical approach must resort to discretization in t and w spaces; thus, our piecewise-

linear approximation of the directrices does not lose any data precision compared to numerical 

solutions. On the other hand, our algorithmic solution guarantees to find the global optimum, unlike 

numerical solutions such as the conjugate-gradient method which must deal with convergence issue 

and are never able to ensure the global optimality of the final result. For the record, in [10] we 

recently developed a technique of optimal triangulation for interpolating two polygonal chains that 

attempts to maximize the total “developability” of the triangulation; however, the triangulation 

algorithm in [10] is based on a heuristic method – no global optimum is guaranteed. The main 

contributions of the work presented in this paper can be summarized by the following three points: 

• A large spectrum of optimization objectives for interpolating ruled surfaces are proposed and 

mathematically formulated in their discrete form; they have direct relevance in a variety of 

diverse applications. 
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• A unified O(mn) algorithm is presented that achieves global optimizations for all the 

objectives defined, where m and n are the numbers of the sampling points on the directrices 

C1(t) and C2(t) respectively.  

• A large set of experimental examples are provided.  

The rest of the paper is organized as follows. After presenting necessary preliminaries in Section 

2, the various optimization objectives are rigorously formulated in Section 3. In section 4, we 

introduce the single-layer graph and give a detailed account on how to use it to achieve the majority 

of the optimization objectives defined in Section 3. The concept of multi-layer graph is then 

introduced in Section 5 which helps solve the optimization problems that a single-layer graph is 

unable to. A large set of experimental examples are then provided in Section 6 to demonstrate the 

functionality and usefulness of the proposed interpolation scheme, followed by our conclusion and a 

discussion on some future potential research topics.   

2. Preliminaries  

 For notational purpose, we first introduce the term of a strip, as given below.  

Definition 1 A strip defined on C1(t) and C2(t) is a closed 3D polygon made of two discrete 

directrices P = {p1, p2, …, pm-1, pm} and Q = {q1, q2, …, qn-1, qn}, and the two straight lines linking 

their endpoints (i.e., p1q1 and pmqn), where P and Q are the polygonal chains approximating C1(t) and 

C2(t), with m and n vertices respectively. 

The vertices in P and Q can be sampled on C1(t) and C2(t) either uniformly in t or adaptively 

according to chordal heights. From descriptive geometry [11], we define a special type of 

triangulation on a strip, called boundary bridge triangulation (or BBT). In a BBT, there can only be 

two types of edges: (1) bank edges, i.e., the line segments on P and Q themselves (e.g., pipi+1 and 

qjqj+1), and (2) bridge edges, those whose two end points fall on different directrices (e.g., piqj). Two 

bridge edges are called adjacent to each other if they belong to a same triangle in the BBT. Based on 

these terms, the formal definition of a boundary bridge triangulation is given below. 

Definition 2 A boundary bridge triangulation (BBT) defined on two directrices P and Q is an 

ordered collection of triangles M = {T1, T2, …, TN}, which is formed by iteratively applying the 

following two operators starting from the bridge edge p1q1 and ending at pmqn: 

P-succeed: when this operator is applied to a bridge edge piqj, a new triangle defined by the three 

edges piqj, pi+1qj and pipi+1 is formed; 

Q-succeed: this operator constructs a new triangle with three edges piqj, piqj+1 and qjqj+1, when 

applied to a bridge edge piqj. 
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In a BBT, each triangle is formed by two bridge edges and one bank edge. It is trivial to see that there 

are exactly m+n-2 bank edges in any M. Since every bank edge contributes to exactly one triangle, 

and vice versa, there are exactly a total of m+n-2 triangles in any M. Moreover, all the bridge edges  

in an M satisfy a partial ordering relationship, called no-crossing relationship: for any two bridge 

edges piqj and pkql, either i k and j l or k i and l j.    

One can interpret a BBT M as a discrete approximation of the parameterization map ( )tξ  as in Eq. 

(2). A bridge edge piqj is exactly a ruling on the ruled surface, with pi = C1(ti) and qj = C2( ( )itξ ), for 

some ti. Since all the vertices on both P and Q are fixed, by choosing different vertices on Q to form 

bridge edges with vertex pi, one effectively realizes different ( )itξ . Taking into consideration of the 

no-crossing relationship between the bridge edges, the set of all the BBTs then constitute discrete 

approximations of )(tξ . These approximations approach to a continuum )(tξ  when the number of 

sampling points on C1 and C2 tends to infinity (i.e., ∞→m  and ∞→n ). In Fig. 2, we show several 

different BBTs, all on a same pair of P and Q.  

    

(a) (b) (c) (d) 

Fig. 2    Different BBTs on the same directrices P and Q in (a) 

It is important to point out that, for two arbitrary directrices P and Q with m and n vertices 

respectively, there is a total of 
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triangulations (refer to the proof given in [10]). This is an extremely formidable number. To help 

appreciate its magnitude, for just a small n = m =100, this number is larger than 10
49

! Our task is to 

find one particular BBT from this huge pool that will optimize certain given scalar objective (e.g., the 

total amount of bending angle between the triangles in the triangulation). Obviously, exhaustive 

search is neither plausible nor practical. Our main contribution is that this search is reduced into a 

single-source shortest path problem on a weighted graph, so that the optimal order of triangulation 

operators can be determined with the help of well-established shortest path algorithms [12]. The idea 

of using weighted graph for optimal triangulation was explored by other authors before, e.g., the work 

of [13] for minimal area triangulation. However, it is by no means a trivial effort to extend their work 

to a more general optimal triangulation with complicated optimization objectives. Moreover, for some 

of the optimization objectives stipulated in this paper, such as the minimization of total bending 

energy, the weights on the edges in the graph are no longer static – they become dynamic and path 
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dependent; as a result, traditional single-source shortest path algorithms (e.g., the Dijkstra’s algorithm) 

can not be directly used. As we will show, delicate and novel techniques need to be developed to deal 

with this path-dependence, so that traditional single-source shortest path algorithms such as the 

Dijkstra’s become applicable again. But before that, though, we need to provide a carefully defined 

set of optimization objectives, in the next section. 

3. Classification of Types of Optimization  

A total of six types optimization objectives are defined and discussed. 

3.1 Minimal surface area   

The first optimization objective, also perhaps the simplest, is the minimization of the total surface 

area. 

Definition 3  For a given BBT M, the surface area function A(M) is the summation area of all  the 

triangles in M.  

 Minimal surfaces are defined as surfaces with zero mean curvature [4]. Pertaining to our setting, 

minimal surfaces may also be characterized as surfaces of minimal surface area for given boundary 

conditions, which is a problem in the calculus of variations known as Plateau's problem. By fixing the 

representation form of surfaces, the Plateau’s problem is reduced to a sub-problem (e.g., the Plateau-

Bézier problem [14], which focuses on finding a Bézier surface with minimal area from among all 

Bézier surfaces with a prescribed border). Similarly, the Plateau-Ruled-Surface problem refers to 

determining a ruled surface with minimal surface area interpolating the given directrices. The 

functional that can be adjusted in a Plateau-Ruled-Surface problem is exactly the parameterization 

map )(tξ . In the discrete form, this translates to finding a bridge boundary triangulation with the 

minimal surface area function value, thus the following objective. 

Objective 1 Minimal surface area: Given two discrete directrices P and Q, find a boundary bridge 

triangulation M with minimal A(M) among all the possible BBTs on P and Q. 

3.2 Maximal Developability   

The next optimization objective relates to the developability of a ruled surface. A ruled surface is 

not developable in general. However, if the rulings move along the directrices in such a way that the 

tangent plane to the surface remains the same at each ruling, the surface is then developable. This is 

known as the common tangent plane condition, which leads to the concept of normal twist on a BBT. 

Definition 4 The two normal vectors at vertices pi and qj of a bridge edge piqj on a BBT is defined as: 

i

i

i

pji

pji

p
tqp

tqp
n

×

×
=  and 

j

j

j

qji

qji

q

tqp

tqp
n

×

×
=                                                    (4) 
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where 
ipt  and 

jqt  are tangents on P and Q at pi and qj. 

Definition 5 The normal twist of a bridge edge piqj is defined as 
ji qpji nnqpTw ⋅−= 1)( ; the total 

normal twist – NT(M) – on a boundary bridge triangulation M is then defined to be the summation of 

normal twists of all the bridge edges in M. 

 Since the normal twist on a bridge edge is non-negative, the NT(M) of any M is also non-negative. 

When NT(M) = 0, which means that the normal twist on every bridge edge is zero, we say that this M 

satisfies the common tangent plane condition everywhere. The scalar NT(M) can then be adopted as a 

measurement of the developability of M, which leads to our second optimization objective.  

Objective 2 Minimal total twist: finding a boundary bridge triangulation M that minimizes the total 

normal twist NT(M) for given directrices P and Q. 

In [15], Frey proposed a relatively weak condition for measuring the developability of a boundary 

triangulation: every interior edge must be locally convex in a developable boundary triangulation. 

Since our bridge boundary triangulation is a special type of boundary triangulation, this proposition 

also applies. The local convexity is defined below. 

Definition 6 A bridge edge piqj is said to satisfy the local convexity property if it lies on the convex 

hull of the six points { pi-1, pi, pi+1, qj-1, qj, qj+1}, otherwise it is said to be concave.  

 The local convexity provides another means for measuring the developability of a ruled surface. 

When the sampling density tends to infinitesimal (i.e., the numbers of sampling points m and n turn to 

), the local convexity at a bridge edge becomes the common tangent plane condition at that ruling. 

The following maximization is thus in order. 

Objective 3 Maximal convexity: finding a boundary bridge triangulation M that maximizes the 

number of locally convex bride edges for given directrices P and Q. 
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Fig. 3    Bending energy calculation on a bridge edge 

3.3  Minimal bending energy   

The strain energy of a ruled surface gives an integral measure of the curvature of the surface. 

Since a BBT is discrete, its strain energy is represented in the form of bending energy. Suppose that in 

an M, the bridge edge piqj is shared by two adjacent triangles Tk and Tk+1 with Tk lying in the x-y plane 
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and piqj coincident with the y-axis. Figure 3 illustrates the bending between Tk and Tk+1 along piqj. 

Assuming that the bending angle is very small, the energy due to this bending is (ref. [10]) 

( )
ds

R

sEI
U

L

∫=
0 22

                                                                             (5) 

which can be further simplified into a form 

2

2
sin

L

A
KU

θ
=                                                                              (6) 

where K is a coefficient determined by the thickness of the sheet and the Young’s modulus (for detail 

derivations, see [10]). Since only relative value is needed for comparison purpose, we simply set K  to 

one. For a boundary bridge triangulation, there are exactly m+n-1 bridge edges; so the total bending 

energy on a given boundary bridge triangulation M can be computed by 

( ) ∑=
−+

=

1

1

nm

k
kUMU                                                                             (7) 

with Uk representing the bending energy on the k
th
 bridge edge. The first (k = 1) and last (k = m+n-1) 

bridge edge on a BBT are assumed to be in natural state, i.e., free of bending. We hence set up the 

following objective. 

Objective 4 Minimal bending: For given directrices P and Q, find a boundary bridge triangulation 

M that minimizes the total bending energy U(M). 

3.4  Minimal mean curvature variation   

The shape quality of a surface is sometimes measured by the variation of curvatures on it [16], 

and a fair surface is defined as one with little curvature variation. On a BBT, curvature only exists 

cross bridge edges since the 2
nd

 derivative of ),( wtS  with respect to w is zero (i.e., the curvature along 

bridge edges is zero). For any bridge edge e, the mean curvature vector defined on it can be computed 

by (ref. [17]) 

e
e

e neH )
2

cos2(
θ

=                                                                          (8) 

where eθ  is the dihedral angle of the edge e, e  is the length of bridge, and en  is unit normal vector 

on the bridge edge. The unit normal vector on e can be calculated by 
rl

rl
e

nn

nn
n

+

+
=  with ln  and rn  

being the unit normal vectors of its left and right adjacent triangles respectively. Thus, the norm of 

difference vector on the mean curvature vectors of two adjacent bridge edges can be adopted to 

measure the fairness of a BBT.  

Definition 7 For a boundary bridge triangulation M with a sequence of ordered bridge edges {e1, 

e2, …, ei, ei+1, …, em+n-1}, the mean curvature difference between ei and ei+1 is defined by  
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1+
−=∂

iii eee HHH ,                                                                        (9) 

and the total  mean curvature variation on M is given by 

( ) ∑ ∂=
−+

=

2

2

nm

i
ei

HMH .                                                                         (10) 

Similar to the bending case, there is no mean curvature defined on the first and last bridge edge. 

Therefore, the fairness of a BBT M can be measured by the integral H(M), which leads to the 

following optimization objective. 

Objective 5 Minimal mean curvature variation: For given directrices P and Q, find a boundary 

bridge triangulation M that minimizes the total mean curvature variation H(M). 

3.5  Minimal normal variation   

A boundary bridge triangulation can also be utilized as an approximation of a blending surface. 

Suppose that two surfaces Ma and Mb have polygonal boundaries Ba and Bb respectively, and the 

Hausdroff distance between Ba and Bb is small. By taking Ba and Bb as the directrices, a BBT fills the 

gap between Ma and Mb, thus blending the two into a single polygonal mesh. When two surfaces are 

blended, the blending BBT is expected to follow the original normal vectors along Ba and Bb as much 

as possible. We introduce the following terms on a BBT to gauge this conformity. 

Definition 8 The normal variance of a bridge edge piqj is defined as 

)1()1()(
jjii qqppjiv nnnnqpN ⋅−+⋅−=                                                 (11) 

where 
ipn  and 

jqn  are discrete unit surface normal vectors as given in Eq. (4), 
ipn  is the unit normal 

vector to surface Ma at pi, and 
jqn  the one to surface Mb at qj; the total normal variation of M is then 

the summation of the normal variances over all the bridge edges ei, as 

∑=Μ
i

iv eNV )()( .                                                                    (12) 

The corresponding optimization objective is then the following. 

Objective 6 Minimal normal variation: For given directrices P and Q, find a boundary bridge 

triangulation M that minimizes the total normal variation V(M). 

3.6  Coupled optimization    

The optimization objectives so far prescribed are individual and independent of each other. They 

can also be combined to form a coupled optimization. This is particularly appealing in the case of 

Objective 3 whose corresponding function values are integers: two BBTs M and M’, which both 

maximize the number of locally convex bridge edges, can have very different total bending energy 

U(M) and U(M’). Explicitly, there are two optimization objectives in a coupled optimization problem 
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– the primary objective and the secondary objective – and the final goal is to meet the primary 

objective while at the same time try to be as close as possible to the secondary objective. For the 

particular coupled optimization problem that we are interested in this paper, the primary optimization 

objective is Objective 3, i.e., to maximize the number of locally convex bridge edges, while two 

secondary optimization objectives are considered: 1) Objective 4, i.e., try to minimize the total 

bending energy U(M), and 2) Objective 5, attempt to minimize the mean curvature variation H(M). 

 

(a)

(b)

(c)

Convex Bridge

Non-convex Bridge

Sample point on P

Sample point on Q

 
Fig. 4    Failure of local optimum approach in finding a global optimum 
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Vm-1,1 Vm-1,2 Vm-1,3 Vm-1,n-2 Vm-1,n-1 Vm-1,n

Vm,1 Vm,2 Vm,3 Vm,n-2 Vm,n-1 Vm,n

Every link is assigned a weight 

 
Fig. 5    An example single layer graph constructed from P and Q with m and n points respectively 

4.  Optimization Based on Single Layer Graphs 

Having rigorously defined all the optimization objectives on a BBT, we now proceed to present 

our algorithmic solutions for achieving them. By Definition 2, a boundary bridge triangulation is 

generated on given directrices P and Q by applying P-succeed and Q-succeed operators iteratively. 

Thus, the problem is to find a right sequence of P-succeed and Q-succeed operators for a given 

optimization objective. As already alluded earlier in the beginning of the paper, a local optimum 

approach specifically for Objective 3 (i.e., maximizing the number of locally convex bridge edges) 
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was developed by us in [10]. That approach is strictly local because the search is strictly sequential: 

starting from the default bridge edge p1q1, when determining the next bridge edge after the current 

active bridge edge piqj (which together form a new triangle), the local costs made by piqj – pi+1qj and 

piqj – piqj+1 are compared, and the one with the smaller cost will be picked to be the next bridge edge; 

no back-track thus is performed. As a result, global optimum can be easily missed. For example, for 

the configuration (the directrices and the locally convex bridge edges) given in Fig. 4(a) and with the 

optimization objective being Objective 3, the local optimum approach of [10] would output a BBT  

shown in Fig.4(b). However, it is not hard to find another BBT (e.g., Fig. 4(c)) that has more locally 

convex bridge edges. This manifestation of inability of local optimum approaches applies to all the 

optimization objectives laid out in Section 3. Therefore, we need to develop search algorithms that 

must be of global nature.  

Our basic idea is to convert the triangulation problem into a single-source shortest path problem 

on a weighted graph; the Dijkstra’s algorithm can then be utilized to obtain the shortest path which 

uniquely determines an ordered sequence of P- and Q-succeed operators that generates a global 

optimum. The type of graph introduced in this section is referred to as the Single Layer Graph (SLG), 

while the other type of graph called Multi-Layer Graph will be discussed in the next section.  A single 

layer graph Γ  corresponding to the directrices P and Q is constructed by following the rules below: 

__________________________________________________________________________________ 

Single_Layer_Graph_Construction: 

• For every bridge edge piqj, it has a corresponding node jiV ,  in Γ ; 

• A directed link < jiV , , jiV ,1+ > is defined for every pair of “horizontally” neighboring nodes 

pointing from jiV ,  to jiV ,1+  with 1,,2,1 −= mi L ; and similarly a “vertical” directed link < jiV , , 

1, +jiV > is defined for every pair of “vertically” neighboring nodes pointing from jiV ,  to jiV ,1+ ; 

and 

• Every directed edge is assigned a weight. 

__________________________________________________________________________________ 

 Figure 5 gives an example of a single layer graph. Traveling on Γ , any path h  from 0,0V  to nmV ,   

indicates a unique BBT on the given strip, and vice versa. Every link in h  can be viewed as an 

operator applied on the current bridge edge to form a new triangle. The horizontal links pertain to P-

succeeds while the vertical links correspond to Q-succeed operators. Thus, the path h  in fact gives an 

ordered sequence of operators which generates a valid BBT for the given directrices.  

By taking 1,1V  as source and nmV ,  as target, a shortest path *h  linking them can be determined by 

using the well-known Dijkstra’s algorithm. This shortest path has the smallest summation of the 
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weights of the links among all the possible path linking 1,1V  and nmV ,  in Γ .  By setting appropriate 

weights to the links in Γ  according to different optimization objectives, a shortest path in Γ  

effectively realizes an globally optimal BBT for the strip. The optimization objectives that can be 

realized by this single level graph scheme are Objective 1 (minimal area), Objective 2 (minimal total 

twist), Objective 3 (maximal convexity), and Objective 6 (minimal normal variation), which we 

describe in details one by one next.  

4.1  Triangulation with minimal area 

To generate a BBT for Objective 1, we invoke procedure Single_Layer_Graph_Construction to 

build a single layer graph Γ  comprising mn nodes and (2mn-m-n) links. The weight assigned to a link 

is the area of the triangle formed by the two incident nodes of the link; that is, the link from jiV ,  to 

jiV ,1+  is assigned the weight equal to the area of 1+∆ iji pqp , and the weight on the directed link < jiV , , 

1, +jiV > is set to be the area of 1+∆ jji qqp . After that, the Dijkstra’s algorithm is applied to Γ  to 

determine a shortest path from 1,1V  to nmV , , which is a sequence of operators that generate a BBT with 

the minimal total area.  

4.2 Triangulation with minimal total twist 

Following Definition 5, the normal twist on a bridge edge jiqp  is measured by 

ji qpji nnqpTw ⋅−= 1)( , where the two discrete surface normal vectors 
ipn  and 

jqn  are determined by 

Eq. (4).  To evaluate 
ipn  and 

jqn , the tangents at ip  on P and at jq  on Q are requested. If P and Q 

are sampled on two C
1
 continuous parametric curves, the tangents on them at ip  and jq  will be 

adopted for 
ipt  and 

jqt respectively. On the other hand, if only P and Q are available, to enhance data 

precision, we approximate the tangents at ip  and jq by fitting a quadratic curve 2
210)( tataatC ++=  

locally on the discrete points. Let 1)0( −= ipC , 1)1( += ipC , and ipC =)(α , the )(tC  can be determined 

as  

10 −= ipa  

111
1)1(

11
+−

−
+

−
+

+
−= iii pppa

α

α

ααα

α
                                                 (13) 

112
1

1

)1(

11
+−

−
+

−
+= iii pppa

αααα
 

where 
11

1

+−

−

+
=

iiii

ii

pppp

pp
α , i.e., by taking the chordal length parameterization on 1−ip , ip , and 

ip (assuming all the sample points are distinct). From )(tC , 
ipt  can be determined by  

21 2)( aaCt
ip αα +=′= .                                                              (14) 
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For the tangents at the two ending points of P, we simply let 010
ppt p −=  and 1−−= mmp ppt

m
; when  

01 =−ii pp  or 01 =+ii pp , to avoid singularity, 
2

1
=α  is chosen. The tangent of every point on Q is 

determined in the same manner. 

Similar to the case of minimal area optimization, we build a single lever graph Γ  based on P and 

Q. When deciding the weights, for a node Vi,j, all the (directed) links that end at Vi,j are assigned the 

same weight of )( jiqpTw . The shortest path determined by the Dijkstra’s algorithm then gives a 

sequence of operators that generate a triangulation with the globally minimal total twist. 

4.3 Triangulation with maximal convexity 

The mechanism of using a single layer graph for achieving Objective 3 is exactly the same as the 

previous two cases, with the only difference in the weight assignment. For node jiV ,  in Γ , if the 

corresponding bridge edge jiqp  is locally convex, then the two (directed) links ending at jiV ,  are 

assigned a weight of 0; otherwise, these two links have a weight of 1. Figure 6 shows an example of 

graph Γ . Therefore, if a fully developable BBT M exists on P and Q (i.e., all the bridge edges in M 

are locally convex), the corresponding path of M in Γ  has zero total weight. Accordingly, a shortest 

path from 11,V  to nmV ,  in the constructed Γ  designates an M that will maximize the number of locally 

convex bridge edges among any BBTs of P and Q. 
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Fig. 6    An example single layer graph for developable triangulation 

4.4 Triangulation with minimal normal variation 

The optimization objective this time is given by Eq. (12). Again, everything else being the same, 

the only difference is in the weight assignment. For node jiV ,  in Γ , the two links ending at it are 

assigned the weight of ( )jiv qpN  , as defined by Eq. (11). A shortest path from 1,1V  to nmV ,  in Γ  

corresponds to a BBT that minimizes the total normal variation.  



 14 

5. Optimization Based on Multiple Layer Graphs 

The single layer graph method employed for solving the optimization problems presented in the 

previous section bears a distinct character: the weight on a link in the graph is completely determined 

by its two nodes (i.e., the two bridge edges). For instance, in the case of Objective 1, the weight of the 

link from Vi,j to Vi+1,j  is the area of the triangle made of the two edges piqj and pi+1qj, isolated from any 

other edges. However, this isolation no longer exists for Objective 4 (minimal bending) and Objective 

5 (minimal mean curvature variation). This is because, in these two cases, the weight on a link is path-

dependent – it depends not only on the two nodes of the link but also on the previous node in the 

current path leading to the current node. As a result, the single layer graph becomes insufficient. Our 

solution is to use a multiple layer graph. As a matter of fact, the number of layers needed depends on 

the specific objectives, which we entail next.   

5.1 Triangulation with minimal bending energy  

When using Eq. (6) to evaluate the bending energy at a bridge edge jiqp , one needs not only the 

operator that will generate the next bridge edge, but also the previous operator which has resulted 

jiqp . More specifically, as shown in Fig.7(a), there are four possible amounts of bending energy 

associated with jiqp , all depending on which two of the four pertinent triangles to be chosen on the 

final BBT: (1) jii qpp 1−∆  and jii qpp 1+∆ , (2) jii qpp 1−∆  and jji qqp 1+∆ , (3) 1−∆ jji qqp  and jii qpp 1+∆ , 

and (4) 1−∆ jji qqp  and jji qqp 1+∆ . The weights (which are the amounts of the associated bending 

energy) on edges <Vi,j, Vi+1,j> and <Vi,j, Vi,j+1> are not static – they are path-dependent, i.e., depending 

on the current path of search that arrives at node Vi,j.  

L

L

pi

pi+1pi-1

qj qj+1qj-1

L

L

pi

pi+1pi-1

qj qj+1qj-1

L

L

pi

pi+1pi-1

qj qj+1qj-1

L

L

pi

pi+1pi-1

qj qj+1qj-1

 

L

M

P-node Q-nodeSource

Target?

M M

L

L

L

 
(a) (b) 

Fig. 7    Building the dual layer graph for global minimum bending triangulation: (a) four configurations 

of triangles neighboring a bridge edge, and (b) dual layer graph 

To cater to this dynamic nature of weights, and still be able to utilize the Dijkstra’s algorithm, we 

introduce a two-layer graph Ω  called a dual layer graph (DLG). In this graph, every bridge edge has 

two corresponding nodes – one, called P-node, indicates that this bridge edge is generated by a P-
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succeed operation, and the other, called Q-node, tells that a Q-succeed operator was used to generate 

this bridge. Based on this dual node configuration, the non-unique weight problem is elegantly 

resolved. Specifically, when applying a P-succeed (respectively Q-succeed) operator on a node in Ω , 

regardless P- or Q-node, the graph edge should point to a P-node (respectively Q-node); and, for any 

graph node V, knowing whether it is a P- or Q-node, the weights on the two outgoing graph edges of 

V are uniquely determined by Eq. (6). Figure 7(b) offers a pictorial illustration of graph Ω : all the 

vertical graph edges indicate Q-succeed operators and all the horizontal graph edges denote P-

succeeds. 

The configuration at the first bridge edge 11qp  is unique – it is generated by neither P- nor Q-

succeed, so only one node is constructed to represent it in Ω . The optimal triangulation problem is 

still a single-source problem. Using the Dijkstra algorithm on Ω , the minimum-weight paths from the 

source node to all the other nodes in the graph can then be determined. For the two dual graph nodes 

of the ending bridge edge nmqp , we choose the one whose path from the source node has the less 

weight – the path from the source to this node then determines a sequent of P- or Q-succeed operators 

that generates a BBT of the strip between P and Q with guaranteed (globally) minimal total bending 

energy.  

5.2 Triangulation with minimal mean curvature variation 

For the minimal mean curvature variation problem, the weight on a link in the graph is assigned 

the mean curvature difference 
ieH∂  defined on the two adjacent bridge edges ei and ei+1 (see Eq. (9)). 

The mean curvature vector defined on a bridge edge (from Eq.(8)) itself needs a certain configuration 

of triangles around it. Therefore, compared to the bending energy case, more information is needed 

here for calculating the weights and a mere dual layer graph no longer suffices. Instead, a new type of 

multi-layer graph called quadruple layer graph (QLG) is required. In a quadruple layer graph Ξ ,  for 

an arbitrary bridge edge piqj, four (quadruple) nodes are defined for it: 

1) QQ-node QQ
jiV , : the bridge piqj is preceded by Q-succeed and followed by Q-succeed; 

2) PP-node PP
jiV , : the bridge piqj is preceded by P-succeed and followed by P-succeed; 

3) QP-node QP
jiV , : the bridge piqj is preceded by Q-succeed and followed by P-succeed; and 

4) PQ-node PQ
jiV , : the bridge piqj is preceded by P-succeed and followed by Q-succeed. 

The QQ-node represents the configuration around piqj as indicated by the upper-left part in Fig. 7(a); 

the PP-node symbolizes the configuration of the upper-right part in Fig. 7(a); and the QP- and PQ-

node stand for the configurations corresponding to the lower-left and lower-right part in Fig. 7(a) 

respectively. An example of quadruple layer graph is depicted in Fig. 8. Note that only Q-succeed can 

be applied to a bridge piqj when mi =  and only P-succeed can be operated on piqj when nj = ; thus 

the last row of Ξ  has neither PP- nor QP-nodes while at the last column only PP- and QP-nodes will 
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be allowed. By the same reasoning, for the first row (i.e., 1=i ) in a QLG, only QQ- and QP- nodes 

are included; and similarly, the first column contains only PP- and PQ- nodes. The nodes for the 

boundary edges 11qp  and nmqp  should be specially treated (since there is only one triangle linking 

each of them). Adopting the natural condition, the mean curvature vector is set to zero at both of them, 

and only one graph node is needed and used to represent each of the two edges. 

Once all the nodes have been created in Ξ  for all the bridge edges, we need to establish correct 

links between the nodes as well as to assign appropriate weights to the links. From the QQ-node (and 

PQ-node) of the bridge piqj, two links are established to point to the QP- and QQ- node of the bridge 

edge piqj+1, that is, the direct links < QQ
jiV , , QP

jiV 1, + >, < QQ
jiV , , QQ

jiV 1, + >, < PQ
jiV , , QP

jiV 1, + >, and < PQ
jiV , , QQ

jiV 1, + > 

are established. The reason for having these four links is that the two adjacent nodes Vi,j and Vi,j+1 must 

agree with each other – if a node V of piqj specifies that its ensuing operator is Q-succeed, which 

means that the next bridge edge to take is piqj+1, then V must point to a node V’ of piqj+1 whose 

preceding operator is Q-succeed too. By the same token, another four direct links – < PP
jiV , , PP

jiV ,1+ >, 

< PP
jiV , , PQ

jiV ,1+ >, < QP
jiV , , PP

jiV ,1+ >, and < QP
jiV , , PQ

jiV ,1+ > – are created to reflect the P-succeed and P-Precede 

relationship between edges piqj and of pi+1qj. Since every node has knowledge of both its preceding 

and succeeding operators, the mean curvature vector associated with the node is fully determined by 

Eq. (8); the weight of a link is then readily decided by taking the norm of the difference vector 

between the mean curvature vectors at the two linked nodes (using Eq. (9)). As for the two special 

unitary nodes 1,1V  and nmV , , since their mean curvature vectors vanish by assumption of natural 

condition, links should be established between them and all their adjacent edges; or explicitly, we 

have < 1,1V , PP
jiV ,1+ >, < 1,1V , PQ

jiV ,1+ >, < 1,1V , QP
jiV 1, + >, and < 1,1V , QQ

jiV 1, + > for 1,1V , and < PP
nmV ,1− , nmV , >, < QP

nmV ,1− , 

nmV , >, < PQ
nmV 1, − , nmV , >, and < QQ

nmV 1, − , nmV , > for nmV , . One example of quadruple layer graph is shown 

in Fig. 8. 
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Fig. 8    Building the quadruple layer graph for the BBT with minimal mean curvature variation  
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By applying the Dijkstra’s algorithm to the thus prescribed quadruple layer graph Ξ , the shortest 

path from 1,1V  to nmV ,  can be determined – this is the operation sequence that generates a boundary 

bridge triangulation with minimal mean curvature variation. 

5.3 Triangulation with coupled optimization objectives  

By now, all the individual optimization objectives have been addressed. The common solution is 

to establish a one-to-one correspondence between the BBTs and paths in a weighted graph (single- or 

multi-layers) and utilize efficient shortest-path algorithms to find a shortest path. The cost or weight 

assigned to a link in the graph is exclusively decided by the individual objective. In order to be able to 

use the same idea for coupled optimizations, we need to device a suitable weight assignment scheme 

that will cater to both the primary optimization objective and the secondary. We demonstrate how this 

can be done by solving two specific coupled optimization problems, as follows.    

Maximal Convexity+ Minimal Bending Energy 

To keep the number of locally convex bridges maximal while at the same time try to reduce the 

bending energy as much as possible, we first construct a dual layer graph Ω  just like the case of 

minimizing the total bending energy as described in Section 5.1. Let Wmax denote the maximum total 

weight of any paths in Ω , i.e., it is the total weight of the longest path in Ω  from source V1,1 to the 

target Vm,n (this can be readily obtained by negating the original weights on the links and then 

applying the Dijkstra’s algorithm). Next, for every link edge e in Ω , whose weight Ue is the bending 

energy due to Eq. (6), its weight is scaled down from Ue to 11)(90 ./. max +WU e . We then examine 

every node in the graph, no matter whether it is a P- or a Q-node: if the bridge edge of this node is 

locally convex, the weights of all the links – two of them – pointing to this node are set to zero. After 

these two types of modifications on the weighs in Ω , a shortest path from V1,1 to Vm,n  gives a BBT 

that will maximize the number of locally convex bridge edges, and at the same time minimize the 

summation of the bending energy on the concave bridges in the triangulation. In Appendix a formal 

proof is given for this assertion. Thus, through the manipulation of weights, we have successfully 

achieved the primary optimization and also the constrained secondary optimization. 

Maximal Convexity + Minimal Mean Curvature Variation 

The treatment for this coupled optimization is identical to that of the first, except that this time the 

graph is a quadruple layer graph Ξ , the original weights on the links in the graph are the mean 

curvature variations according to Eq. (8) and (9) (following the manner of Section 5.2), and the 

maximum total weight Wmax is the maximal total mean curvature variation of any BBTs. A shortest path  

from V1,1 to Vm,n in the weight-adjusted Ξ  then gives a BBT that will maximize the number of locally 

convex bridge edges, and at the same time minimize the total of the mean curvature variations 

occurring at the locally concave bridges in the triangulation. 
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6.  Experimental Results and Applications 

The first example, which we have briefly visited in Fig. 2, illustrates different strip triangulations 

with different optimization objectives on two simple discrete directrices; the various optimization 

objectives tested in this example are the minimal area (Fig. 9(b)), minimal twist (Fig. 9(c)), maximal 

number of locally convex edges (Fig. 9(d)), minimal bending energy (Fig. 9(e)), and minimal mean 

curvature variation (Fig. 9(f)). Their related computational statistics are listed in Table 1. From the 

table it is easily seen that when compared with each other, each triangulation method always achieves 

its intended optimization objective. Both the objectives of the minimal twist and the maximal 

convexity aim at achieving maximal developability of an interpolating ruled surface; however, the 

former is based on the original common tangent plane condition [4], while the latter is based on the 

local convexity proposition [15] for the discrete case. Conceivably, when the sampling is dense 

enough, these two would generate similar results, i.e., Fig. 9(c) vs. Fig. 9(d). Figure 10 depicts the 

paths that indicate the operation orders of the two triangulations, where the background is a matrix 

called the validity map – if the bridge edge piqj is locally convex, a black box with width h is 

displayed at coordinate (ih, jh); otherwise, the region is left white. As revealed in Fig.10, the paths 

corresponding to Fig. 9(c) and Fig. 9(d) have little difference. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 9    Example I: strip triangulation results of different objectives: (a) the directrices, (b) minimal area, 

(c) minimal twist, (d) maximal convexity, (e) minimal bending, and (f) minimal mean curvature variation 
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(a) (b) 

Fig. 10    Example I: comparison of paths on the validity map: (a) path of minimal twist BBT, and (b) 

path of maximal convexity BBT 

 

 

(a) the directrices  

  
(b) (c) 

  
(d)  (e)  

Fig. 11    Example II: strip triangulation with coupled objectives: (a) the directrices, (b) minimal area, (c) 

maximal convexity, (d) maximal convexity + minimal bending energy, and (e) maximal convexity + 

minimal mean curvature variation 

Example II is provided to illustrate triangulation results with coupled optimization objectives. For 

the strip given in Fig.11(a), a boundary bridge triangulation with minimal area is generated as given in 

Fig. 11(b), and a BBT with the maximal number of locally convex edges is shown in Fig. 11(c), 

where the red regions are non-developable (i.e., bounded by concave edges). In the BBT in Fig. 11(c), 

there are 180 locally convex bridge edges, out of a total of (n+m-1) = 267 bridge edges. When the 

objective of maximizing number of locally convex edges is coupled with that of minimizing the 

bending energy, the resultant BBT, shown in Fig. 11(d), still maintains a total of 180 locally convex 
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bridges while minimizing the bending energy on the remaining 87 concave bridge edges. Likewise, in 

Fig. 11(e) we display a triangulation resulted from the coupled optimization of maximal convexity + 

minimal mean curvature variation. From the statistics in Table 1, we can easily find that, comparing to 

the triangulations with other objectives, the BBT with minimal area gains a fine improvement – with 

more than 2% area reduced; however, the minimal area BBT gives worse result on the costs relating 

to other objectives (e.g., its bending energy is about 20 times of other BBTs’). This indicates that, 

when the directrices P and Q differ greatly from each other, we should carefully choose optimization 

objectives to determine appropriate boundary bridge triangulations. 

Table 1    Computational Statistics 

Example Objective Fig 
Total 

Area 

Total 

Normal 

Twist 

Convex 

Edge 

Ratio 

Bending 

Energy 

Mean 

Curvature 

variation 

Normal 

Variation 

Minimal area 9b 40.56 16.62 12/119 65.47 49.65 N/A 

Minimal twist 9c 40.94 5.28 105/119 4.07 14.94 N/A 

Maximal convexity 9d 40.94 5.29 112/119 3.97 14.50 N/A 

Minimal bending 9e 40.94 5.30 108/119 3.92 14.79 N/A 
I 

Minimal mean 

curvature variation 
9f 40.93 5.93 74/119 7.37 7.66 N/A 

Minimal area 11b 87.13 124.08 8/267 1168.67 218.29 N/A 

Maximal convexity 11c 89.22 77.00 180/267 60.86 53.98 N/A 

Maximal convexity 

+ Minimal bending 
11d 89.23 78.57 180/267 58.45 51.85 N/A 

II 

Maximal convexity 

+ Minimal mean 

curvature variation 

11e 89.22 77.42 180/267 71.81 51.10 N/A 

Minimal area 12b 12.10 20.54 5/501 49.03 32.34 N/A 
III 

Minimal bending 12c 12.15 23.32 10/501 22.84 29.19 N/A 

Maximal convexity 14b 0.15 10.73 153/385 35.34 2.41 N/A 

IV Maximal convexity 

+ Minimal bending 
14c 0.15 9.24 153/385 24.50 2.14 N/A 

Minimal bending 15e 41.85 3.02 103/221 44.18 29.54 7.39 

V Minimal normal 

variation 
15f 41.90 16.56 16/221 292.37 90.57 4.35 

 

The rest of the examples of the experiments demonstrate the application of optimal triangulations 

in various fields. The first one, Example III, deals with design of a ribbon which is useful for the 

design of DNA and proteins [18], where a ribbon can be modeled by specifying its two directrices. As 

shown in Fig. 12, when two directrices of a ribbon are given (Fig. 12(a)), we can generate a 

interpolating triangular surface with minimal area as in Fig. 12(c), and we can also construct a surface 

with minimal mean curvature variation (see Fig. 12(d)). The comparison of cost functions about 

different objectives is listed in Table 1. As confirmed by the table, in this particular example, the total 

bending energy on a minimal bending triangulation is less than half of that on a minimal area 

triangulation. 
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(a) (b) (c) 

Fig. 12    Example III: strip triangulation for ribbon design: (a) the directrices, (b) minimal area 

triangulation, and (c) minimal bending triangulation 

  

(a) (b) 

  

(c) (d) 

Fig. 13    Contour-based surface reconstruction in human body modeling: (a) the point cloud, (b) contours 

generated, (c) surface by “sewing” the contours, and (d) shaded result 

The second application example is contour-based surface reconstruction. Using any data points 

sectioning technique (e.g., one in [19]), a human model, which is originally represented by a 3D point 

cloud (Fig. 13(a)), can be sliced into many parallel polygonal contours (Fig. 13(b)). By interpolating 

consecutive neighboring pairs of the contours, a surface model can be reconstructed. Figure 13(c) 
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displays one based on the minimal area optimization objective. Of course, other objectives could also 

be selected to generate varieties of optimal surfaces – in [20], a detail review of this tiling problem 

could be found. 

The third application example is surface wrinkle design, which is often needed in clothing or shoe 

design. For a given skirt (Fig.14(a)), wrinkles are required to be added at its bottom boundary. A 

“pattern” curve that reflects the general shape of wrinkles is first specified (i.e., the red curve in Fig. 

14(a)), which forms a narrow strip with the bottom boundary of the skirt. A wrinkle surface then is 

constructed by triangulating this strip. Figure 14(b) shows a triangulation with a single optimization 

objective – maximizing the number of locally convex edges (i.e., the developability), and Fig. 14(c) 

depicts the result with a coupled objective: maximal convexity + minimal bending. As seen in the 

figure, Fig. 14(c) gives a smoother surface. 

The next application example shows the usefulness of our triangulation as a blending tool. In shoe 

design, a common modeling method is to use parts of multiple existing shoe designs and patch them 

together to form a new design. For instance, the rear part of a shoe last (Fig. 15(a)) could be combined 

with the front part of another shoe last (Fig. 15(b)) to create a new design. These two parts need to be 

blended at their interfacing boundary curves so that a complete surface last can be formed. Figure 

15(d) and 15(e) show two BBT blending results, one with minimal bending energy and the other with 

minimal normal variation. As expected, the latter gives a better performance in terms of the 

smoothness in transition between the two parts (see Table 1).  

   

   
(a) (b) © 

Fig. 14    Example IV: surface wrinkle design: (a) the skirt and the directrices to specify surface wrinkles, 

(b) wrinkle strip generated with the maximal convexity objective, and (c) wrinkle strip generated with the 

coupled objective of maximal convexity + minimal bending 
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(a) (b) (c) 

   
(d) (d) (e)  

Fig. 15    Example V: strip blending in shoe design: (a) shoe last A, (b) shoe last B, (c) the rear part of A + 

the front part of B, (d) mesh representation of (c), (d) the blending strip with minimal bending energy, 

and (e) the blending strip with minimal normal variation. 

    
(a) (b) (c) (d) 

Fig. 16    Example VI: strip triangulation for design of a flange: (a) the sheet metal part to add a flange, (b) 

the directrices for optimal triangulation, (c) the flange as a BBT with minimal bending, and (d) top view 

The last example shows the application of the presented optimal triangulation technique in 

defining a flange off a sheet metal part. As demonstrated in Fig. 16, the boundary curve of the part is 

offset (along the direction of the surface normal vector) to generate another directrix (the red curve) 

which together with the boundary curve define a strip. This strip is then triangulated using a chosen 

optimization objective, i.e., with the minimal bending energy as shown in Fig. 16(c) and 16(d). 

7.  Summary and future research  

The primary goal of this paper is to develop an efficient algorithm for constructing an optimal 

triangulated ruled surface that interpolates two discrete directrices. We first provide a spectrum of 

rigorously defined optimization objectives for the construction that have application to a variety of 

practical problems. We then formulate this optimal triangulation problem as a combinatorial 



 24 

optimization problem whose search space nevertheless has a size that is factorially proportional to 

(m+n), with m and n being the numbers of vertices on the two directrices respectively. Our main 

contribution is the establishment of a one-to-one correspondence between the optimal triangulation 

problem and the single-source shortest-path problem on a weighted graph whose nodes and edges are 

both capped by the upperbound O(mn). Well-known single-source shortest-path algorithms such as 

the Dijkstra’s can then be employed to find a shortest-path on the graph. Since the graphs developed 

in our approach are all Directed-Acyclic-Graphs (DAGs), the formulated optimal triangulation 

problem is efficiently solved in O(mn) time. (The Dijkstra’s algorithm runs in O(|V|+|E|) time on 

DAGs, with |V| and |E| being the numbers of nodes and edges in the graph respectively, see [12].) 

Besides being efficient, the presented optimization algorithm is also straightforward to implement and 

robust – the conversion to the directed weighted graph is straightforward and the Dijkstra’s algorithm 

is well-known to be robust and fast. 

We are interested in some further extensions to the current. In the aspect of design, a more 

positive objective will be on how to modify the two given directrices P and Q, but within certain 

specified tolerance range, so that the resultant BBT is the optimum among all the possible designs of 

P and Q within the tolerance range. 
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Appendix 

For the coupled objective of maximal convexity + minimal bending energy, after modifying the 

weights on a Dual Layer Graph, how can we still guarantee that the resultant triangulation still has the 

maximum number of locally convex edges while at the same time it also minimizes the total bending 

energy on the concave edges? A formal proof is given below. 

Lemma A.  After rescaling the weight on each bridge edge from Ue to 1.1)/(9.0 max +WU e , the 

shortest path found on the corresponding DLG from V1,1 to Vm,n gives a BBT that not only has the 

maximal number of locally convex bridge edges but also at the same time minimizes the total bending 

energy on the concave edges.  

Proof. Let us consider two arbitrary paths from 1,1V  to nmV , : Path-I has 1n  locally convex edges and 

the summation of bending energy on its concave edges is 1U , and Path-II has 2n  locally convex edges 

and 2U  is the summation of the bending energy on its concave edges. There are totally 1−+ nm  
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bridges in a valid BBT, so there are exactly 2−+ nm  links on both passes. The weight on Path-I after 

rescaling is  

)2(11)(90 111 nnmWUW −−++= ./. max , 

and the adjusted weight on Path-II is 

)2(11)(90 222 nnmWUW −−++= ./. max . 

Consider the following situations: 

1) If 21 nn <  and 21 UU ≤ , we have )2(11)2(11 21 nnmnnm −−+>−−+ ..  and their difference is 

greater than one – since 1n  and 2n  are integers; also, we have )(90)(90 21 maxmax /./. WUWU ≤  

but with 1)(90)(90 21 <− maxmax /./. WUWU . Therefore, we get 21 ww >  – Path-II is shorter 

than Path-I. If 21 nn <  and 21 UU > , since )2(11)2(11 21 nnmnnm −−+>−−+ ..  and 

)(90)(90 21 maxmax /./. WUWU > , Path-II is still shorter. Either way, Path-II is chosen. 

2) For 21 nn > , we have )2(11)2(11 21 nnmnnm −−+<−−+ ..  and the absolute difference between is 

greater than one; regardless 21 UU ≤  or 21 UU > , because 1)(90)(90 21 <− maxmax /./. WUWU , 

the weights on the two paths satisfy 21 ww <  – that is, Path-I is shorter and hence is selected. 

3) Lastly, suppose 21 nn = . If 21 UU < , we have 21 ww < ; otherwise, 21 ww > . Either way, the path 

with less bending energy on the concave edges will be selected. 

Q.E.D.  

 


