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Volumetric Template Fitting for Human Body
Reconstruction from Incomplete Data

Tsz-Ho Kwok, Kwok-Yun Yeung, and Charlie C.L. Wang

Abstract—In this paper, we present a method for reconstruct-
ing 3D human body from incomplete data, which are point clouds
captured by inexpensive RGB-D cameras. Making use of the
volumetric mesh in a template, the fitting process is robust.This
method produces high quality fitting results on incomplete data,
which are hard to be offered by the surface fitting based methods.
The method is formulated as an optimization procedure, so that
the results of volumetric fitting rely on the quality of initi al
shape (i.e., the shape of template). In order to find a good initial
shape, we develop a template selection algorithm to choose a
template in an iterative manner by using the statistical models
of human bodies. Experimental results show that our method
can successfully reconstruct human body with good quality to be
used in design and manufacturing applications.

Index Terms—Template fitting, volumetric mesh, incomplete
data, human body reconstruction, RGB-D camera

I. I NTRODUCTION

T HREE-dimensional models of human body are widely
used in many applications of robotics, virtual reality,

design and manufacturing. At present, the most standard and
reliable method for reconstructing 3D human bodies is to use
structured-light or laser-based scanners, which can produce ac-
curate results of 3D scanning. However, these devices usually
occupy large space and are very expensive (e.g., the Cyberware
system [1] costs more than $240,000). Moreover, the scanning
procedure takes a long time (e.g.,>10 seconds). Another
common approach for human body modeling is the image-
based algorithms (e.g., [2], [3]); however, as lack of depth
information, they always produce results with low accuracy.

Recently, RGB-D cameras (e.g., Microsoft Kinect at a price
of ∼$100), have drawn much attention in the community of
computer graphics, design and manufacturing. The cameras
can provide both depth (D) and color (RGB) information. This
kind of small and inexpensive device allows consumers being
able to afford it out-of-laboratory. Therefore, many researchers
(e.g., [4], [5], [6]) have started to use Kinect in their 3D human
modeling applications. Unfortunately, these RGB-D cameras
provide noisy information in low resolution and the accuracy
of depth values drops tremendously when the distance between
camera and subject is large (see the detail analysis given by
Khoshelham [7]). In the recent work of Tong et al. [5], the
cameras are placed very close to the subjects. Three Kinect
sensors and one turntable platform are utilized to compensate
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Fig. 1. Hardware setup of our scanning system: two Kinect sensors are placed
to capture front and back of the major region (between neck and thigh) of a
human body.

for the narrow visible region. However, the major disadvantage
of their method is that the subject has to stand statically on
the platform about half a minute during the data collection.

Our work is motivated by building up a human body scanner
with inexpensive RGB-D cameras. This scanner is “instant”
because the step of data collection in our platform is just taking
a camera shot. Instant data-collection is a very important
feature for scanning impatient subjects (e.g., children).When
Kinect sensors are used to capture a full human body, they
must be placed at least three meters away from the subject.
However, on the other aspect, we need to place the cameras as
close as possible to obtain depth information in high accuracy.
We also try to reduce the number of sensors in the system.
This is because too many sensors will increase the complexity
of hardware installation (e.g., calibration) and meanwhile lead
to interference as mentioned by Maimone and Fuchs [8]. In
our system, two Kinect sensors are installed to obtain the
human shape. The relative position and orientation of the
sensors would affect the result of reconstruction. In order
to capture the major information of the subject’s shape, the
sensors are installed in the front and at the back of the subject
to harvest 3D information of the major body (i.e., from neck
to thigh) - see Fig.1 for an illustration. The two sensors are
calibrated by using a rectangular box which has some color
marker on its planar faces (see Fig.2). Each sensor should
be able to view at least 4 markers. Note that the dimension
of the box and the coordinates of each marker are prede-
fined and also known for the calibration algorithm. Based on
the correspondences between marks extracted from the color
images, the rigid transformation matrix of each sensor can
be obtained. With the help of these transformation matrices,
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Fig. 3. Overview of our framework for human body reconstruction: By iteratively applying the interlaced selection and fitting algorithms developed in this
paper, the 3D shape of a full human body can be reconstructed from the incomplete data captured by inexpensive RGB-D cameras.

Fig. 2. The figures show the noisiness and accuracy of the depth image
captured by RGB-D camera. The icon of eye shows the viewing direction of
camera. The surface of the point cloud in (a) captured by the camera is very
harsh, but the subject showed in photograph (upper) actually have a smooth
surface. It is showed the data from RGB-D sensor is noisy. Thefigure (b)
showing the RGB-D camera capturing an indoor envirnment. Two zoom views
show the objects placed at around 120cm (upper, right) and 260cm (upper,
left) away from the camera. It is clearly shown that the gap between each
pixels increasing with respect to the depth value.

the RGB-D images captured by front and back sensors can
be integrated together to represent the 3D point cloud of a
subject. The 3D model of a subject will be reconstructed from
this point cloud. Specifically, a volumetric template fitting
based algorithm is developed for reconstructing human models
from incomplete data. The template models are represented as
volumetric meshes, which provide volumetric information to
preserve the shape of human body robustly during the fitting
procedure. Features of human body (e.g., the feature curves
used in clothing industry) can be automatically extracted for
the subject when the template fitting is completed.

For template fitting algorithms, a good template (as an initial
guess) can always help to improve the quality of fitting. Taking
advantage of statistical analysis in shape space, we propose
an iterative selection algorithm in this paper to find a good
template. A “good” template is defined as the one that are
highly similar to the target shape. Overview of the proposed

framework is shown in Fig.3.

A. Related work

Literature review is taken in two categories including
human body reconstruction and statistical models.

Human Body Reconstruction
There are many approaches in literature that focus on the
human body reconstruction from point clouds generated by
structured-light-based or laser-based scanners (ref. [1], [9]).
However, such scanners are too expensive to be used out-of-
laboratory. Therefore, we mainly focus on the camera-based
approaches below.

Tong et al. [5] used three Kinect sensors to collect the 3D
data from different parts of human body, and perform pair-
wise non-rigid registration and global registration iteratively
to combine the data sets collected in different time instances.
A full human body can be reconstructed after the registrations.
Weiss et al. [4] estimated body shape by fitting image silhou-
ettes and depth data to SCAPE models [10]. The resultant
model is a best match among all candidates instead of being
generated from the data itself. The optimization step in their
framework takes more than one hour. Wang et al. [6] used
a single fixed 3D camera to scan a full body. They propose
a part-based cylindrical representation for the human model,
and estimate 3D shape of a human body from four key views
extracted from a depth video sequence (captured by RGB-
D camera). However, the data collection time for all above
methods is too long for practical usage.

When the collected data is incomplete or with clothes, we
need to estimate the underlying body shape. Hasler et al. [9]
employed ICP method and proposed a human body estimation
approach for dressed subjects by inputting the point clouds
obtained from 3D laser scanners. Guan et al. [11] estimated
pose and shape of human models from single image by giving
a number of manually specified correspondences between
the image and the subject to be reconstructed. Hasler et al.
[12] proposed a multilinear model of human pose and body
shape estimation from a set of images. Bălan and Black [13]
introduced a solution to reconstruct loosely dressed subjects.
Each subject is photographed several times with a setup



KWOK et al.: VOLUMETRIC TEMPLATE FITTING FOR HUMAN BODY RECONSTRUCTION FROM INCOMPLETE DATA 3

of multiple cameras, and the subject is wearing different
clothes and in different poses at each time. By combining the
gathered constraints, their method is able to generate a 3D
shape of the underlying subject. The optimization is improved
by performing skin color detection in the images. A major
limitation is that multiple (more than two) calibrated cameras
are required.

Statistical Model
Statistical models have been used in prior researches (e.g.,
[14], [15]) to reconstruct or estimate human body models.
A large database of 3D human bodies makes it possible to
build a statistical model that guides the shape deformation
of human bodies based on silhouettes, 3D point clouds,
or depth images. Given a database of scanned 3D human
bodies, the major issue for formulating a statistical modelis
to estimate the parameters (normally in a lower dimension)
of a model that explains the variation among all scans. As
a famous prior work, SCAPE [10] encoded shape variations
by applying thePrincipal Component Analysis(PCA) on the
3D positions of vertices of human models in the training
set. Hasler et al. [15] expressed pose and shape variations
by a different encoding method that is invariant to rotation
and translation. Once the statistical model is well-defined,
new 3D shapes that are not in the database can be created
by substituting new parameters. This is known as model
synthesis. However, the main problem in model synthesis
is that we can hardly determine the range of parameters so
that the newly generated model is in a reasonable shape (i.e.,
not being a “monster”). Another common application using
statistical model is individual recognition. An input datacan
be projected to the space spanned by the statistical model,
and a set of parameters is obtained. The parameters are used
to determine a match in the database by the ranged search.
Related techniques can be found in face recognition [16]
and image processing [17]. In this paper, we also employ
the ranged search in the reduced dimensions of statistical
models for template selection. The aforementioned “monster”
problems in model synthesis can be avoided and a “good”
template can be chosen for the final fitting.

B. Main Results

In this paper, we develop algorithms for reconstructing a
full human body from incomplete data captured by two RGB-
D sensors. As a result, an instant scanning system for human
bodies is developed. Our technical contributions are as follows.

• A template fitting method using volumetric meshes is
proposed for reconstructing 3D human body. It is found
that employing volumetric mesh in template fitting is
more robust than using surface mesh, especially when the
input data are incomplete. A new algorithm is investigated
for fitting volumetric mesh onto a sparse point cloud with
the presence of noises and missing regions.

• We study the statistical model of shape-space by using
Principal Component Analysis(PCA), and propose some
practical ways to improve the quality of body shape
evaluation.

• An iterative method is investigated to select a “good”
template to reduce deflects in template fitting.

The paper is organized as follows. In Section II, we will first
introduce the template fitting methods based on surface meshes
and volumetric meshes, and then compare the performance of
these techniques. After that, our volumetric template fitting
algorithm is described in Section III. In Section IV, we
study the statistical analysis of human body’s shape-spaceand
propose an iterative selection algorithm to find a good template
from the database of human models. Experimental tests and
examples obtained by this framework are presented in Section
V. Finally, our paper ends with the conclusion section.

II. SURFACE V.S. VOLUMETRIC FITTING

This section studies the techniques of surface and volumetric
fitting, and evaluates their performance on the incomplete
point sets.

A. Fitting by SDM

Squared Distance Minimization(SDM) was originally pro-
posed for curve and surface fitting (ref. [18], [19]). When
fitting a surfaceS to a target shapeΓ represented by a
polygonal mesh or a point cloud, the problem is defined as
minimizing the following functional.

E(X) = FS 7→Γ(X) + λR(X) (1)

whereX = [xi]
n
i=1

are the variables to control the shape of
S. In this formulation,FS 7→Γ(X) is a fitting error term as

FS 7→Γ(X) =
∑

i

‖xi − Π(xi)‖2 (2)

with Π(xi) denoting the projection ofxi on Γ. R(X) is a
regularization term with the regularization factorλ controlling
the trade-off between smoothness and fitting criteria. One of
the most commonly used form of the regularization term is
Laplacian [20].

B. Regularization by Surface ARAP energy

Using a Laplacian-based regularization in SDM can produce
smooth and regular result. However, it cannot preserve spatial
relationship between vertices on the input model (see Fig.4
for an example). In order to maintain the model shape, the
As-Rigid-As-Possible(ARAP) energy of the boundary surface
(akin to [21], [22]) can be employed for regularization. Specif-
ically, for each trianglet ∈ S with three points (xt
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Tt can be decomposed by the “signed version” ofsingular
value decomposition(SVD) into Tt = UΣV

T , and the rigid
transformation can be enforced by lettingTt 7→ Lt with
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Fig. 4. Fitting tests on a template with cubic shape. Target is a point cloud sampled from a part of the cube (with middle part missing) and rotated 30
degrees around y-axis - therefore, it is mis-aligned with the template. Progressive results of fitting using different regularization terms are shown. The one
using volume ARAP energy is the most robust.

Lt = UV
T . By this formulation, the regularization term using

surface ARAP energy is expressed as follows.

RS(X) =
∑

t

At‖Tt − Lt‖2F , (3)

where ‖· ‖F is the Frobenius norm, andAt is the area
of triangle. Minimizing RS(X) is to release triangles from
shearing and scaling (i.e., only rotation and translation are
allowed). The energy is defined for all triangles on the surface
S, so it is called surface ARAP.

C. Regularization by volumetric ARAP energy

Surface ARAP can help in preserving the rigidity of the
triangles inS; however, the solution of this minimization is
not unique. For example, if a piece of paper is pushed from two
ends, the paper can be bended to form either a convex or a con-
cave shape even the rigidity of each local small region (i.e., the
triangles when the paper is represented by a triangular mesh)
is maintained. The lack of uniqueness can lead to an abnormal
fitting result. For the example shown in Fig.5, even after using
the surface ARAP energy as regularization term, the fitting
error is still high. Allen et al. [14] introduce a smoothness
term by minimizing the differences of transformation matrices
between triangles. However, the smoothness error term cannot
solve the aforementioned problem of uniqueness. Here, we
solve the problem by introducing volumetric information into
the regularization term.

Specifically, surface ARAP energy is extended to a volu-
metric ARAP energy defined on a tetrahedral mesh,M , that
is compatible toS on its boundary (i.e.,∂M = S). The

volumetric ARAP energy is then defined as

RV (X) =
∑

tet

∆tet‖Ttet − Ltet‖2F . (4)

It is applied to every tetrahedrontet (having four vertices)
instead of surface triangles, and∆tet is the volume of the
tetrahedrontet.

D. Comparisons

Template fitting using 1) Laplacian, 2) surface ARAP en-
ergy, and 3) volume ARAP energy as the regularization terms
are evaluated in this section. As shown in Fig.4, the first test
tries to fit the mesh surface of a cube (as the template) onto a
point cloud sampled from the cube. To evaluate the robustness
of fitting, the target point cloud is rotated 30 degrees around
y-axis and removed the middle region. The test is to simulate
the input of our scanner that the subject could be mis-aligned
with the template model. For surface fitting with Laplacian as
the regularization term, a result with low fitting error can be
obtained. However, the fitting result does not respect the spatial
relationship of vertices in the original cube, and the shapeof
template has been significantly distorted. For a fitting using
surface ARAP energy, although it can preserve the rigidity
of triangles, surface of the template cube is highly distorted.
These fitting results have large distortion, this is becausethe
regularizations are not robust enough to drive the templateto
rotate during the iterative fitting procedure. For a fitting using
volumetric ARAP energy, the stiffness of interior tetrahedra
strongly contributes to the regularization term. Therefore, the
distortions on interior tetrahedra must be absorbed by rotating
the template model, so that the fitting procedure can achieve
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Fig. 5. Fitting tests on a template with freeform shape - human body. Target is a point cloud sampled from the mesh model by simulating the incomplete
data to be obtained by our RGB-D camera based scanner. Again,the point cloud is rotated 30 degrees around y-axis to mis-align with the template. The color
maps show the shape-approximation-errors on the fitting results using different regularization terms. The ‘Avg’ and ‘Max’ show the average and the maximal
point-to-point distances. Fitting with volume ARAP energyas regularization term presents the best result.

a better optimum. Meanwhile, cubic shape of the template is
fully preserved on the fitting result.

To evaluate the performance on freeform models, another
fitting experiment is conducted on a human model (see
Fig.5). Similarly, a point cloud is sampled from the model
with artificially removed regions to simulate incomplete data,
and the point cloud is rotated 30 degrees along y-axis. As
the ground truth is the shape of the template model itself,
we are able to measure the distance errors at every vertex
by comparing to those in the ground truth. This error is
named asshape-approximation-errorin this paper. The shape-
approximation-error is computed on the fitting results using
different regularization terms. As shown in Fig.5, average
errors on the fitting result with volumetric ARAP energy are
less than1/10 of the errors on the other two methods.

III. T EMPLATE FITTING

Although our template-fitting framework can be applied to
general inputs with 3D points, we mainly focus on the inputs
from RGB-D sensors. To build an instant body scanner by
using two RGB-D sensors, each sensor will only capture a part
of the body like the point cloud shown in the zoom-view of
Fig.1. We assume that the input of our template-fitting frame-
work only covers the main body of a subject. The alignment
and scaling of template models can be automatically conducted
by using this prior information. All points are assigned with an
initial orientation that is pointing to its corresponding camera.
The orientation-aware PCA is then applied to estimate accurate
normal vectors, which are important to improve reliabilityof
the fitting process.

A. Algorithm of fitting

The 3D model of a human body can be reconstructed from
an incomplete point cloud by fitting a template model. This
is in fact an optimization procedure to minimize the energy
function defined in Eq.(1). Without loss of generality, Eq.(1)
can be rewritten into the form of

E(X) = ‖AfitX− bfit‖2 + λ‖AregX− breg‖2, (5)

where Afit and bfit are derived from the fitting energy
FS 7→Γ(X), and Areg and breg are derived from the regu-
larization termRV (X). In other words, the function is in a
least-square form. As a result, the positions of vertices,X,
on a templateM are updated by solving the following over-
determined linear system

[

Afit√
λAreg

]

X =

[

bfit

breg

]

(6)

during the optimization. After each update ofX, Π(xi) in
Eq.(2) andLv in Eq.(4) must also be updated.

Target Position
Generally, for a vertexxi ∈ ℜ3 on the templateS, the
target positionsΠ(xi) in Eq.(2) can be itsnearest neighbor
(NN) in the point cloudΓ. If Γ is a complete data, some
approaches (e.g., [13]) have proposed to use bidirectional
search to determineΠ(xi) in the fitting process. ForΓ with
missing data, Hasler et al. [9] proposed to use point distance
and normal difference betweenxi and its NN to filter out
mismatched pairs. However, this filtering cannot always avoid
matching several vertices inS onto the same target inΓ
that may produce unwanted stretches. This scenario happens
when some regions of the point cloud,Γ, are sparser than the
distribution of vertices on the template.

As illustrated in the top row of Fig.6, whenΓ is dense
and complete, all vertices (i.e.,x1,x2, . . . ,x6) of the template
model can search their corresponding NN around them on
Γ. The fitting result is satisfactory. However, whenΓ is
incomplete (middle row), e.g., the region aroundx3 andx4 is
missing, the NNs found forx3 andx4 may lead to stretched
result even when theTangent Distance(TD) [19] is used.
Note that, point distance and normal difference filters cannot
eliminate the mis-matched pairs ofx3 (or x4).

An inverse NN search strategy is developed to solve the
target-tracking problem on an incomplete data set. Insteadof
searching NNs inΓ for xi ∈ S, we search NNs onS for all
the points inΓ. In this case,x3 andx4 will not be associated
to any points by mistake (see the bottom row of Fig.6).
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Fig. 6. Illustration of comparison between the NN search,S 7→ Γ, and the
inverse NN search,Γ 7→ S, in incomplete data.

When the point cloud is incomplete, this inverse NN search
is more reasonable since the template is always complete.
Moreover, point distance and normal difference can filter out
outliers in the point cloud when conducting this inverse NN
search. Those vertices inΓ sharing the same NN are grouped
together and form a cluster. If a cluster (corresponding toxi)
on Γ consists of more than one point, we fit aMoving Least
Square(MLS) surface andΠ(xi) is the projection ofxi on
the MLS surface; otherwise, TD ofxi is used forΠ(xi).
Figure 7 shows an example to demonstrate the functionality
of the inverse NN searching.

Factor of Regularization
The only parameter in this framework is the factor of
regularization,λ, in Eq.(1). We allow this factor to change
in the whole process. Generally, it is known that if a larger
value is chosen forλ, a smoother result is obtained. On the
other aspect, using a smallerλ will obtain a fitting result with
lower shape-approximation-error. We adjust the value ofλ in
different phases of the fitting process as follows:

• In Alignment Phase: a large factor (∼1/200) is used for
the orientation and posture alignment.

• In Fitting Phase: a smaller factor (∼1/500) is applied to
generate a smooth result in the final fitting.

Moreover, a different regularization factor (∼1/5000) is
adopted for the template selection (details can be found in
Section IV-A).

Dense Mesh for Visualization
For the sake of efficiency, a template mesh cannot be too
dense. Therefore, we use volumetric meshes that have only
around 3.4k vertices on the boundary surface in the template
fitting. In order to give a better illustration for the details of
human bodies, each coarse mesh in the database is paired up
with a dense surface mesh, which has around 33k vertices.

Fig. 7. When the scanned point cloud is incomplete (see left), the NN search
S 7→ Γ gives poor fitting result (see middle) near the boundary of missing
region. The inverse NN searchΓ 7→ S results in a human body reconstruction
with better surface quality.

After fitting the coarse mesh to a target shape, the dense
surface mesh associated with the template model is deformed
onto the fitting result by using t-FFD [24].

B. Dressed subjects

Our template fitting framework can also reconstruct human
models for dressed subjects by taking minor modifications. To
achieve this goal, the basic change of above fitting algorithm is
that the fitting result should entirely lie in the region bounded
by the scanned point cloud - calledfeasible region. Meanwhile,
the reconstruction must be in the shape of a human body (i.e.,
does not have the “monster” problem).

To prevent the fitting result running out of the feasible
region, we penalize the matching pairs inFS 7→Γ(X) with a
higher weighting (×10) when the vertices ofS go outside.
Whether a vertexxi ∈ S is outside the feasible region can
be detected by computing the dot product:((Π(xi) − xi) ·
n(Π(xi))); here,Π(xi) is the projection ofxi on the input
point cloudΓ andn(· · ·) gives the oriented normal vector. If
a negative value is returned by this check,xi is considered as
being outside of the feasible region.

Another problem to be solved is how to ensure the fitting
result being a shape of human body. For a similar purpose,
Hasler et al. [9] applied a so-calledhumanizationstep by
projecting the result onto the solution manifold (represented
by a statistical model). Bălan and Black [13] controlled the
shape coefficients within three standard deviations from the
mean. Chu et al. [25] constructed a convex hull for the human
body database and projected the infeasible parameters ontothe
surface of convex hull. However, the projection based methods
have several drawbacks.

• It is computational expensive for constructing convex hull
in high dimensional space.

• It is over-constrained to restrict the solution being within
the convex hull or falling in three standard deviations.
Counterexamples can be easily found.

• Such projection can induce large fitting error.

Our volumetric ARAP fitting framework shows a good prop-
erty that can well preserve the shape of models. Therefore, we
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do not need to project the fitting result by a post-processing
step. However, on the down side, the volumetric ARAP energy
based regularization term can be too strong that the fitting
result may be quite different from the shape of target point
cloud. To overcome this difficulty, we develop a template
selection method in next section to automate the procedure
of selecting a similar template.

IV. T EMPLATE SELECTION

In this section, we first brief how to build a statistical model
by Principle Component Analysis(PCA). After that, we will
discuss the limitations of PCA-based selection and investigate
methods for improvement. Finally, a template selection algo-
rithm will be presented.

A. Template searching

Principle Component Analysis(PCA) has been used to
establish statistical models for analyzing high-dimensional
datasets including 3D human models (e.g., [14], [10], [9],
[26]). The major advantage of PCA is that the relationship
between exemplars with low variance can be discarded after
analysis. The full dataset can be greatly reduced to represent
the original exemplars in an approximation form. As a result,
both the computational time and the size of storage can be
reduced.

Given a point cloudΓ as the target shape to be recon-
structed, we are going to search for a model that is the most
similar to the target. This model will be used as the template
for fitting. Suppose that the surface representation,SΓ, of Γ
has been reconstructed, and then the corresponding coefficients
of this model in terms of theprinciple components(PCs)
can be obtained by the bijective mapping betweenSΓ and all
exemplars in the database. In other words, the representation
of SΓ (the query model) by the statistical model is obtained.
An efficient method is needed to take search by the PCs of a
query model. Different distance metrics could be used for the
search (e.g.,L1-norm or Mahalanobis distance metrics were
studied by Draper et al. [27] to provide the best result in face
recognition). For an efficient implementation, we employ kD-
tree in theApproximate Nearest Neighbor(ANN) library [28]
for searching, which is based onL2-norm.

An example is shown in Fig.8. Without loss of generality,
the statistical model of all human bodies in a database is
represented by three PCs. Only four examples (ModelsA,
B, C and D) are stored in the database here and their
corresponding coefficients of the first three PCs are shown
in Fig.8. For a query model (e.g.,E, F , G or H), once its
triangular mesh, which is compatible to the models in the
database, is obtained (e.g., by fitting), its projection onto the
PCs can be obtained. As a result, the most similar model in the
database can be found by theL2-norm based search using the
coefficients of PCs (see the illustration shown at the bottom
of Fig.8). By a well-defined statistical model, shape of the
searching results is quite similar to the query model.

Fig. 8. Four example models (A, B, C andD) are used to form a database;
their corresponding coefficients for the first three PCs are shown in the top
row. Four query models (E, F , G andH) and their corresponding coefficients
for the first three PCs are shown in the middle row. These coefficients are
used to search the most similar models from the database byL2-norm - see
the illustration shown in the bottom row where the three PCs are used as three
axes inℜ3.

B. Limitations and adjustments

PCA is a powerful tool that can identify the most meaning-
ful bases to approximate a large dataset with fewer coefficients.
Approximating the given dataset by the new PCs (in lower
dimensions) can reveal the hidden structure and filter out the
noises. However, when positions of vertices on 3D human
bodies are used for PCA, the analysis is highly sensitive to
the distribution of vertices. Specifically, after scaling,trans-
lating, rotating a human body, or changing its posture, the
analysis could result in very different coefficients for PCs. As
demonstrated in Fig.9, when scaling modelA smaller (×0.8)
to getA′, translating modelB alongx-axis to a new position
B′, rotating modelC aroundy-axis 90 degrees toC′, and
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Fig. 9. Principal component analysis of human bodies using vertices is very
sensitive to the change of vertex-positions. (Top) From left to right, scaling,
translating, rotating and changing poses will make models (A′, B′, C′ and
D′) to have very different coefficients of PCs comparing to their original
shape (A, B, C andD). (Bottom) Changes according to the most significant
two PCs are plotted in a 2D chart for better understanding.

deforming modelD to a different postureD′, their coefficients
are changed significantly.

To solve these problems in PCA-based statistical models,
human models stored in a database are recommended to take
the following changes:

1) Be scaled to the same height (e.g., the average height);
2) Be adjusted to have the same orientation (e.g., facing

front);
3) Be shifted to the same center (e.g., the middle point

between the belly-button and its corresponding point at
the back);

4) Be posed in a similar posture.
This is callednormalization. The processes 1-3 can be au-
tomatically conducted. However, it is tedious to adjust the
posture of every human model in the database. Instead of
adjusting the human models’ posture one by one, Hasler et al.
[9] encode the triangles’ relative rotation matrices for doing
PCA, but their method creates a very high dimensional space
that is expensive in both storage and processing time. Here,
a simple and practical solution is used to solve this problem.
Our study finds that the shapes of some unimportant parts (e.g.,
forearms, legs, and head) have significant effects on PCA. To
avoid biasing the analysis, unimportant parts are excludedfrom

Fig. 10. When using all vertices of human models in PCA, the NNsearch
for the query inputG will return the modelC as the ‘most similar’ model
by mistake. However, the shapes ofG andC are quite different from each
other. After excluding unimportant parts as suggested in this paper, the NN
search forG will return the modelD. The shape of modelD is more similar
to G. The reason whyG is not close toD before applying the normalization
is that the poses of their lower bodies are different from each other.

Fig. 11. The shape-approximation-error (visualized as thecolor map) can
be reduced when the reconstruction is conducted on the PCs obtained by the
normalized human bodies. Five PCs are used in the reconstruction.

the PCA and in the template search. This modification can
be easily implemented because that the bijective mapping has
been defined among all models in database. Figure 10 shows
an example to demonstrate how these steps of normalization
can improve the quality of PC-based template search. Again,
the search is based onL2-norm in the space of PCs.

To further verify the functionality of the normalization,
we compare the results of PCA-based synthesis before and
after applying the normalization in Fig.11. In the synthesis of
human models, five most significant PCs are kept from 30 PCs.
PCA without taking the normalization is biased by the poses of
exemplar. As a result, the human model synthesized by the set
of parameters that is same as the original model presents large
shape-approximate-error. After taking the normalization, the
remained PCs mainly focus on the variation of body shapes;
therefore, the body shape with small shape-approximation-
error can be reconstructed even when five PCs are used only.
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Fig. 12. Flow chart of template selection.

C. Iteration procedure

To search the best template in database by a query model
(as explained in Section IV-A), one needs to find the surface
bijective mapping between the query model and human models
stored in the database. However, for a query input obtained by
RGB-D camera, this mapping is not available. We propose an
algorithm to solve this problem by running the fitting step
and the template selection step iteratively. Flow chat of the
algorithm is shown in Fig.12. We first use a universal template,
which is the average model of all models in the database,
to fit the target shapeΓ (by a small regularization factor
λ = 1/5000). Then, the fitting result is used to select a new
template, and the new template is applied to fit the target shape
again. Here, the fitting result owns the bijective mapping to
models in the database so that it can be used to search a new
template by the method presented in Section IV-A. During
these iterations, templates that are more and more similar to
the input Γ will be selected and the fitting results will be
progressively improved. Illustration of the whole processhas
been shown in Fig.3.

V. RESULTS

We have implemented the proposed framework by Visual
C++ and run the experimental tests on a PC with Intel
Core(TM) i7-3770 CPU @ 3.40GHz, 8GB RAM and Win7
64bit OS. Our database of human models has 43 male sub-
jects and 36 female subjects, which come from a European
database [15]. The point clouds of all subjects are converted
into a mesh surface by the Poisson reconstruction [29]. The
surfaces are remeshed to have the same connectivity by cross-
parameterization[30], [31]. each model is represented as a
tetrahedral mesh with 7k vertices and 31k tetrahedra. Among
these 7k vertices, 3.4k are on the boundary surface and about
half of them are used in the fitting term (as the input is a
set of incomplete data). Several experimental tests have been
taken on this platform. With the point clouds (with about 400k
points) generated by Kinect sensors, the whole procedure of
human reconstruction can be completed in around 30 seconds.
A video to illustrate and demonstrate our approach can be
accessed at: http://youtu.be/ZFeunAB41I.

The first example is shown in Fig.3. An incomplete data,Γ,
is captured by our setup of body scanner. The reconstruction
starts from the pose alignment (fitting with large regularization
factorλ = 1/200) by using the universal template. When the

displacements of all vertices are less than10−3, the template
selection starts and uses a very small regularization factor λ =
1/5000 to fit the volumetric mesh ontoΓ in around 10 fitting
steps. After that, a new template is selected from the database
by the most significant PCs. In our tests, 35 PCs are used for
male subjects while 30 PCs are used for female. Then, this new
template is fit ontoΓ again withλ = 1/5000. The interlaced
template selection and fitting steps are repeated until the newly
selected template is same as the previous one. Usually, the
template selection converges in 2-3 iterations. The last phase
of our framework is the final fitting procedure with the ‘best’
template and a regularization factorλ = 1/500.

In order to verify the quality of reconstruction, we test
our approach in four different scenarios: with point clouds
captured by laser scanner on 1) naked and 2) dressed bodies,
with point clouds obtained from Kinect RGB-D cameras on
3) naked and 4) dressed bodies. The laser scanner used in
this experiment is Vitus Smart XXL manufactured by Human
Solution [32]. Although we do not carry simultaneous capture
for both laser and Kinect scans, they are taken one after one in
a very short time, so the shape difference between scans can
be neglected. In order to verify the quality of reconstruction,
we compare the reconstructed result with the ground truth. To
build a ground truth for the experimental tests, the point cloud
captured by laser scanner is reconstructed into a surface and
remeshed in the same way as that in preparing the database.
First of all, starting from the universal template, we test if
our template selection algorithm can pick the ground truth out
from the dataset as the final optimal template. We add the
model of ground truth into the database in the example of
Fig.13, and the result is encouraging, where the ground truth
is successfully selected for all testing scenarios (see Fig.3 for
the selection process). Note that, we does not have the ground
truth in general cases, but this test verifies the success of our
iterative template selection method. Another example using
the database without ground truth is shown in Fig.14. In this
example, even European database is used for our Asian input,
we can still get reconstruction results in good quality. Second,
we check the shape-approximation-error of the reconstructed
human body w.r.t the ground truth. The color map of shape-
approximation-error has been shown in Fig.13. Finally, we also
conduct anthropometry measurements on five feature curves to
verify the results. The measurements are shown in the table
of Figs.13 and 14. From these tests, we can find that:

• Our iterative template selection routine can well-capture
the target body shape, and the best template is selected.

• Our framework can accurately reconstruct the body shape
from the point cloud generated on naked body by laser
scanner (i.e., the shape-approximation-errors and anthro-
pometry measurement errors are very small).

• The result obtained from the naked body captured by
RGB-D cameras is not as accurate as the result from
laser scanner, but it is better than the result obtained by
dressed body scanned by laser scanner.

• The results obtained from dressed subjects are relatively
poor. The region with the highest error is around the hip.
It is because that the shirt and pants worn by subjects

http://youtu.be/ZFeunA_B41I
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Ground Truth Laser on Naked Laser on Dressed Kinect on Naked Kinect on Dressed
Length Length Error Length Error Length Error Length Error

① under-bust girth 1.081 1.078 0.28% 1.088 0.65% 1.082 0.09% 1.087 0.56%
② waist girth 1.080 1.076 0.37% 1.084 0.37% 1.085 0.46% 1.103 2.13%
③ lower-waist girth 1.126 1.123 0.27% 1.127 0.09% 1.129 0.27% 1.143 1.51%
④ hip girth 1.138 1.138 0.00% 1.152 1.23% 1.142 0.35% 1.150 1.05%
⑤ vertical trunk 1.685 1.680 0.30% 1.675 0.59% 1.693 0.47% 1.698 0.77%

Fig. 13. To evaluate the error of our volumetric fitting basedhuman reconstruction, we first construct the ground truth ofa subject by scanning its human
body using a laser scanner. The surface mesh of this human body is reconstructed by the Poisson’s reconstruction [29] from the point cloud. Our algorithm is
applied to the point clouds obtained from four different setups: by laser scanner on 1) naked and 2) dressed bodies, by Kinect RGB-D cameras on 3) naked
and 4) dressed bodies. Shape-approximation-errors (w.r.t. the ground truth) at the main body are displayed as the colormaps, and anthropometry measurements
are taken at five feature curves to further verify the qualityof our reconstruction.

loosely cover the region of hip.

Improvements could be made if the database is enhanced
and includes more variations of body shapes. Currently, the
European database [15] is used in the tests, but the query
inputs for template selection are Asian. More reconstruction
results from dressed subjects scanned by RGB-D cameras are
shown in Fig.15.

The reconstructed human models own the same connectivity
with models in the database. Therefore, they can be used in
a variety of applications.

Application I: Extraction of Semantic Features
The problem to extract semantic feature, especially those
cannot be obtained by geometric extremities, is illy posed.
Our work provides a robust tool to extract semantic features
on 3D human models. Since our fitting framework can
generate results having the same connectivity as the template,
the feature curves defined on the template (see bottom-left in
Fig.14) can be easily transferred to the reconstructed results
(see the right-most model for all the four cases in Fig.14).
Based on the transferred feature curves, we can automatically
take anthropometry measurements on the reconstructed

models. Examples are shown in Fig.13 and 14. Specifically,
we measure (1) the under-bust girth, (2) the waist girth, (3)
the lower-waist girth at the belly-button, (4) the hip girth, and
(5) the vertical trunk, which are the most important features
for body shape in clothing industry.

Application II: Human-centric Design Automation
After reconstructing a human model, the correspondences
between triangles on the template model and the reconstructed
model have been established. By this information, we can
use deformation techniques (e.g. [22], [33], [34]) to warp
an apparel product that is designed for the template model
to a new shape that fit for the new model. Examples are
shown in Fig.16. A suit and a wet-suit are designed for
the male and female template respectively, and they can
be automatically warped to fit the reconstructed human
models. The techniques developed in the paper enable a lot
of downstream applications like virtual try-on [35], real-time
clothing synthesis [36], garment resizing [37] and product
customization [38]. More discussions about this application
can be found in Wang’s book [26].
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Ground Truth Laser on Naked Laser on Dressed Kinect on Naked Kinect on Dressed
Length Length Error Length Error Length Error Length Error

① under-bust girth 0.837 0.835 0.24% 0.856 2.27% 0.847 1.19% 0.849 1.43%
② waist girth 0.792 0.787 0.63% 0.782 1.26% 0.791 0.13% 0.783 1.14%
③ lower-waist girth 0.827 0.826 0.12% 0.825 0.24% 0.826 0.12% 0.830 0.36%
④ hip girth 0.945 0.947 0.21% 0.996 5.40% 0.963 1.90% 1.003 6.14%
⑤ vertical trunk 1.683 1.682 0.06% 1.681 0.12% 1.664 1.13% 1.669 0.83%

Fig. 14. Another example is shown for verifying the quality results generated by our algorithm. Similar to Fig.13, the tests are conducted on four setups: by
laser scanner on naked and dressed bodies, by Kinect RGB-D camera on naked and dressed bodies. In this example, the groundtruth is not inserted into the
database. Instead, an existing model in the database is selected as the template. By our algorithm, the same template is automatically selected in all the four
scenarios. Again, shape-approximation-errors and anthropometry measurements are shown on the results obtained in these four scenarios. For the template
model with pre-defined feature curves, these features can beautomatically reconstructed on the fitting results.

Application III: Interior Structures Transferring
One interesting property of our volumetric fitting framework
is that the correspondences are not only defined on boundary
surface, but also defined in the whole volume. An example
of transferring the interior structures (e.g., muscles) tothe
reconstructed models is shown in Fig.17. This can be used
to create human models used in biomedical analysis and
simulations. A very good feature of such a kind of mapping
is that, as long as we can guarantee there is no degenerated
(i.e., zero or negative volume) tetrahedron produced in the
fitting, the mapping is bijective. This is different from the
deformation techniques used above; the wrapping function
does not guarantee an intersection-free transferring.

VI. CONCLUSION AND DISCUSSION

In this paper, we present a volumetric template fitting based
method for reconstructing 3D human models from incomplete
data, which are point clouds captured by inexpensive RGB-
D cameras. With the help of this new approach, we develop
a 3D body scanner by using two Kinect sensors. The data
acquisition can be completed by taking a camera shot, so that

our scanner is much faster than the conventional laser scanners
for human bodies (taking more than 10 seconds for a scan).
Although the data captured by this scanner are incomplete
and have relatively low resolution (e.g.,640 × 480 RGB-D
images are captured by Kinect sensors), the human bodies
reconstructed by our algorithm have high quality and the fitting
procedure is reliable. To further improve the result of template
fitting, statistical model is employed in this paper. It is used
to develop an iterative template selection routine for getting a
best template from the database to generate a fitting result with
smaller shape-approximation-errors. The whole procedureof
human body reconstruction can be finished in around 30
seconds on a consumer-level PC. Results have been tested and
demonstrated on the RGB-D images captured from both naked
and dressed subjects. It shows that this method can generate
3D human models with high quality, and it can benefit a variety
of applications.

In our current implementation, the selected template model
is automatically scaled according to the remained points on
the main body of the subjects. If the input point cloud is not
cropped as what is expected, the scaling could be inaccurate
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and lead to a poor fitting result. Fortunately, if our human
body reconstruction framework is used for a well calibrated
setup (e.g., our instant scanner based on RGB-D cameras), the
scaling problem can be solved by specifying a feature point
(e.g., the neck point) on the point cloud (ref. [39]). Moreover,
our algorithm relies pretty much on the exemplars stored in the
database of human models. If the shape of the subject cannot
be spun by our human model database, the fitting result will
not be satisfactory. In order to solve this limitation, we will add
more exemplars with a variety of shapes into the database in
our future work. For example, a database with Asian subjects
can be built.

Another limitation of the current implementation is that
the regularization factor,λ, is selected in a heuristic manner.
Although the suggestion about how to choose the values
in different phases of the algorithm (i.e., pose alignment,
template selection, and final fitting) has been given, it could be
different when the numbers of vertices and tetrahedra of the
template are changed. A better method to select an appropriate
regularization factor will be considered in our near future
work.
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Fig. 15. The estimation of 3D human bodies from different dressed subjects (captured by RGB-D cameras) obtained by our volumetric template fitting based
framework.

Fig. 16. A suit is designed for the male template, and a wet-suit is designed
for the female template (left). The designs can be transferred to fit the
reconstructed human models automatically.

Fig. 17. Volumetric template fitting can support the function of transferring
interior structures (e.g., muscles) onto the reconstructed human models.
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