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Volumetric Template Fitting for Human Body
Reconstruction from Incomplete Data

Tsz-Ho Kwok, Kwok-Yun Yeung, and Charlie C.L. Wang

Abstract—In this paper, we present a method for reconstruct-
ing 3D human body from incomplete data, which are point cloud
captured by inexpensive RGB-D cameras. Making use of the
volumetric mesh in a template, the fitting process is robustThis
method produces high quality fitting results on incomplete ata,
which are hard to be offered by the surface fitting based methds.
The method is formulated as an optimization procedure, so tht
the results of volumetric fitting rely on the quality of initi al

— 115cm

shape (i.e., the shape of template). In order to find a good itial

shape, we develop a template selection algorithm to choose a >

template in an iterative manner by using the statistical moels

of human bodies. Experimental results show that our method ’ il st
can successfully reconstruct human body with good qualityd be g : |

used in design and manufacturing applications. =

Index Terms—Template fitting, volumetric mesh, incomplete Fig. 1. Hardware setup of our scanning system: two Kinecsasenare placed

data, human body reconstruction, RGB-D camera to capture front and back of the major region (between neckthigh) of a
' ' human body.

|. INTRODUCTION

HREE-dimensional models of human body are wideljor the narrow visible region. However, the major disaduaet
“used in many applications of robotics, virtual realityof their method is that the subject has to stand statically on
design and manufacturing. At present, the most standard ané platform about half a minute during the data collection.

reliable method for reconstructing 3D human bodies is to Useo,r work is motivated by building up a human body scanner

structured-l:ght?r Iaser-bas_ed scanners, V‘;]h'Ch ganpmeliu- %ith inexpensive RGB-D cameras. This scanner is “instant”
curate results of 3D scanning. However, these deviceslysugje . ge the step of data collection in our platform is jushta

occupy large space and are very expensive (e.g., the Cyt&er\/\_é\a camera shot. Instant data-collection is a very important
system([1] costs more than $240,000). Moreover, the SC8NN@ ature for scanning impatient subjects (e.g., childrgvien

procedure takes a long time (e.g-10 seconds). Another yinect sensors are used to capture a full human body, they
common approach for human body modeling is the imaggs ot he placed at least three meters away from the subject.
based algorithms (e.g.1[2].1[3]); however, as lack of dep{fjoever, on the other aspect, we need to place the cameras as
information, they always produce res.ults with !ow acecuracy jose as possible to obtain depth information in high aagura
Recently, RGB-D cameras (e.g., IVI_|cro.soft Kinect at a PrSe also try to reduce the number of sensors in the system.
of ~$100), have drawn much attention in the community this is because too many sensors will increase the complexit

computer graphics, design and manufacturing. The camegas,, qware installation (e.g., calibration) and meanevtéad
can provide both depth (D) and color (RGB) information. Th_|§) interference as mentioned by Maimone and Fuths [8]. In

kind of small ‘_"md inexpensive device allows consumers be'Bgr system, two Kinect sensors are installed to obtain the
able to afford it out-of-laboratory. Ther(_efore,_many resbars human shape. The relative position and orientation of the
(e.g., [4], [5], [€]) have started to use Kinect in their 3Dnhan o< would affect the result of reconstruction. In order

modeling applications. Unfortunately, these RGB-D camerg, .41 re the major information of the subject's shape, the

provide noisy information in low resolution and the accyracengorg are installed in the front and at the back of the stibje
of depth values drops tremendously when the distance bBtWge 5\ est 3D information of the major body (i.e., from neck

camera and subject is large (see the detail analysis giVentBythigh) - see Fi@ll for an illustration. The two sensors are
Khoshelham[[7]). In the recent work of Tong et dll [5], thﬁ‘:alibrated by using a rectangular box which has some color

cameras are placed very close to the subjects. Three Kingel, o1 on its planar faces (see Flg.2). Each sensor should
sensors and one turntable platform are utilized to compensgy ape 1o view at least 4 markers. Note that the dimension

This work was supported by the Hong Kong RGC/GRF Grangf the box and the coordinates_ of _each ma_rker are prede-
(CUHK/417508 and CUHK/417109) and the Direct Research Grafined and also known for the calibration algorithm. Based on
(CUHK/2050518). _ _ the correspondences between marks extracted from the color

The authors are with Department of Mechanical and Automéafingineer- . he rigid f . . f h
ing, The Chinese University of Hong Kong. Corresponding bt Charlie Images, the rigid transiormation matrix of each sensor can

C. L. Wang (E-mail: cwang@mae.cuhk.edu.hk) be obtained. With the help of these transformation matrices
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Fig. 3. Overview of our framework for human body reconsiarct By iteratively applying the interlaced selection anitirfg algorithms developed in this
paper, the 3D shape of a full human body can be reconstruobed the incomplete data captured by inexpensive RGB-D casner

framework is shown in Figl3.

A. Related work

Literature review is taken in two categories including
human body reconstruction and statistical models.

Human Body Reconstruction
There are many approaches in literature that focus on the
human body reconstruction from point clouds generated by
structured-light-based or laser-based scanners (ref.[9]).
However, such scanners are too expensive to be used out-of-
laboratory. Therefore, we mainly focus on the camera-based
approaches below.

Tong et al. [[5] used three Kinect sensors to collect the 3D
data from different parts of human body, and perform pair-

Fig. 2. The figures show the noisiness and accuracy of thehdemge

captured by RGB-D camera. The icon of eye shows the viewinection of
camera. The surface of the point cloud in (a) captured by émeeca is very
harsh, but the subject showed in photograph (upper) agthalle a smooth
surface. It is showed the data from RGB-D sensor is noisy. fihee (b)
showing the RGB-D camera capturing an indoor envirnmenb Z@om views
show the objects placed at around 120cm (upper, right) afdri2§upper,
left) away from the camera. It is clearly shown that the gafwben each
pixels increasing with respect to the depth value.

wise non-rigid registration and global registration iteraly

to combine the data sets collected in different time inganc

A full human body can be reconstructed after the registnatio
Weiss et al.[[4] estimated body shape by fitting image silhou-
ettes and depth data to SCAPE modéls| [10]. The resultant
model is a best match among all candidates instead of being
generated from the data itself. The optimization step irrthe

framework takes more than one hour. Wang et [al. [6] used

a single fixed 3D camera to scan a full body. They propose
the RGB-D images captured by front and back sensors carpart-based cylindrical representation for the human mode
be integrated together to represent the 3D point cloud ofaad estimate 3D shape of a human body from four key views
subject. The 3D model of a subject will be reconstructed froextracted from a depth video sequence (captured by RGB-
this point cloud. Specifically, a volumetric template fitfin D camera). However, the data collection time for all above
based algorithm is developed for reconstructing human tsodgethods is too long for practical usage.
from incomplete data. The template models are represested awhen the collected data is incomplete or with clothes, we
volumetric meshes, which provide volumetric informatian tneed to estimate the underlying body shape. Hasler etlal. [9]
preserve the shape of human body robustly during the fittiegnployed ICP method and proposed a human body estimation
procedure. Features of human body (e.g., the feature curggproach for dressed subjects by inputting the point clouds
used in clothing industry) can be automatically extracted fobtained from 3D laser scanners. Guan et[all [11] estimated
the subject when the template fitting is completed. pose and shape of human models from single image by giving

For template fitting algorithms, a good template (as anahitia number of manually specified correspondences between

guess) can always help to improve the quality of fitting. Mgki the image and the subject to be reconstructed. Hasler et al.
advantage of statistical analysis in shape space, we peopfi] proposed a multilinear model of human pose and body
an iterative selection algorithm in this paper to find a goaghape estimation from a set of images. Balan and Black [13]
template. A “good” template is defined as the one that airoduced a solution to reconstruct loosely dressed stije
highly similar to the target shape. Overview of the proposdgach subject is photographed several times with a setup
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of multiple cameras, and the subject is wearing differente An iterative method is investigated to select a “good”
clothes and in different poses at each time. By combining the template to reduce deflects in template fitting.

gathered constraints, their method is able to generate a 3D _ _ .
shape of the underlying subject. The optimization is imptbv The paper is organized as follows. In Secfidn II, we will first

by performing skin color detection in the images. A majoiptroduce the template fitting methods based on surfaceesesh

limitation is that multiple (more than two) calibrated came and volumetric meshes, and then compare the performance of
are required. these techniques. After that, our volumetric templatenfitti

algorithm is described in Sectionlll. In Sectidn]IV, we
Statistical Model study the statistical analysis of human body’s shape-spade

Statistical models have been used in prior researches (e2§°POSe an iterative selection algorithm to find a good teepl

[14], [15]) to reconstruct or estimate human body modelffom the datab_ase of hu_man models. Experimental_tests a_md
A large database of 3D human bodies makes it possible §§aMPples obtained by this framework are presented in Sectio
build a statistical model that guides the shape deformatin Finally, our paper ends with the conclusion section.

of human bodies based on silhouettes, 3D point clouds,

or depth images. Given a database of scanned 3D human [l. SURFACE V.S. VOLUMETRIC FITTING

bodies, the major issue for formulating a statistical madel This section studies the techniques of surface and volignetr

to estimate the parameters (normally in a lower dimensio t)[ . :
: o ﬁ ing, and evaluates their performance on the incomplete
of a model that explains the variation among all scans. Sint sets

a famous prior work, SCAPE_[10] encoded shape variatiohs
by applying thePrincipal Component Analysi@CA) on the

3D positions of vertices of human models in the training. Fitting by SDM
set. Hasler et al.[T15] expressed pose and shape variation

by a different encoding method that is invariant to rotatlonOsed for curve and surface fiting (ref. 18], T19]). When

and translation. Once the statistical model is well-define lttifqg a surfaceS to a target shapd represented by a

new 3D .Sh"’?pes that are not in the (_jatgbase can be Cre(%?ygonal mesh or a point cloud, the problem is defined as
by substituting new parameters. This is known as mo &

synthesis. However, the main problem in model synthe3|sInImIZIngl the following functional.
is that we can hardly determine the range of parameters so E(X) = Fs.r(X) + AR(X) (1)
that the newly generated model is in a reasonable shapge (i.e.

not being a “monster”). Another common application usinghereX = [x;]_; are the variables to control the shape of
statistical model is individual recognition. An input datan S. In this formulation,Fs.,r(X) is a fitting error term as

be projected to the space spanned by the statistical model, 5

and a set of parameters is obtained. The parameters are used Fsor(X) = Z i — T1(xs) | @)

to determine a match in the database by the ranged search. ‘

Related techniques can be found in face recognition [1&jth TI(x;) denoting the projection ok; on T'. R(X) is a
and image processing [17]. In this paper, we also emploggularization term with the regularization factocontrolling
the ranged search in the reduced dimensions of statistittaé trade-off between smoothness and fitting criteria. One o
models for template selection. The aforementioned “mahstehe most commonly used form of the regularization term is
problems in model synthesis can be avoided and a “goodaplacian [20].

template can be chosen for the final fitting.

§quared Distance MinimizatiofsDM) was originally pro-

B. Regularization by Surface ARAP energy

B. Main Results Using a Laplacian-based regularization in SDM can produce

In this paper, we develop algorithms for reconstructing énooth and regular result. However, it cannot preservéapat
full human body from incomplete data captured by two RGBe|ationship between vertices on the input model (sed]Fig.4
D sensors. As a result, an instant scanning system for humgp an example). In order to maintain the model shape, the
bodies is developed. Our technical contributions are davisl As-Rigid-As-PossibleARAP) energy of the boundary surface

« A template fitting method using volumetric meshes igkin to [21], [22]) can be employed for regularization. Sipe
proposed for reconstructing 3D human body. It is founigally, for each trianglet € S with three points %}, x5, x%)
that employing volumetric mesh in template fitting isand their original positions on the template (x5, %), an
more robust than using surface mesh, especially when iecessory point is placed along the unit normals of triasgle
input data are incomplete. A new algorithm is investigatdaefore and after deformation & and x respectively. The
for fitting volumetric mesh onto a sparse point cloud witlransformation matrixr'; for the deformation i<, = PP !
the presence of noises and missing regions. with P = [x! — x! x, — x| xi —xi] andP = [x} —

« We study the statistical model of shape-space by usigg %) — x| x; — %x’]. As mentioned by Liu et al.[]23],
Principal Component Analysi®®CA), and propose someT,; can be decomposed by the “signed version’sofgular
practical ways to improve the quality of body shape&alue decompositioSVD) into T, = UXV”, and the rigid
evaluation. transformation can be enforced by lettinh, — L; with
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Fig. 4. Fitting tests on a template with cubic shape. Target point cloud sampled from a part of the cube (with middle paissing) and rotated 30
degrees around y-axis - therefore, it is mis-aligned with tmplate. Progressive results of fitting using differeegutarization terms are shown. The one
using volume ARAP energy is the most robust.

L, = UVT. By this formulation, the regularization term usingvolumetric ARAP energy is then defined as
surface ARAP energy is expressed as follows.

Ry(X) = Aver|| Trer — Liet | - 4
Rs(X) =Y AT, — Lif3, 3 tet
t It is applied to every tetrahedrotet (having four vertices)

instead of surface triangles, amd,.,; is the volume of the

where ||- || is the Frobenius norm, andl; is the area
tetrahedrortet.

of triangle. Minimizing Rs(X) is to release triangles from
shearing and scaling (i.e., only rotation and translatiom a )
allowed). The energy is defined for all triangles on the sigfaP- Comparisons
S, so it is called surface ARAP. Template fitting using 1) Laplacian, 2) surface ARAP en-
ergy, and 3) volume ARAP energy as the regularization terms
are evaluated in this section. As shown in Big.4, the first tes
tries to fit the mesh surface of a cube (as the template) onto a
Surface ARAP can help in preserving the rigidity of theoint cloud sampled from the cube. To evaluate the robustnes
triangles in.S; however, the solution of this minimization isof fitting, the target point cloud is rotated 30 degrees adoun
not unique. For example, if a piece of paper is pushed from tweaxis and removed the middle region. The test is to simulate
ends, the paper can be bended to form either a convex or a abe-input of our scanner that the subject could be mis-atigne
cave shape even the rigidity of each local small region, the. with the template model. For surface fitting with Laplacian a
triangles when the paper is represented by a triangular )mesife regularization term, a result with low fitting error cae b
is maintained. The lack of uniqueness can lead to an abnorrbtained. However, the fitting result does not respect théap
fitting result. For the example shown in .5, even aftengsi relationship of vertices in the original cube, and the shaipe
the surface ARAP energy as regularization term, the fittirgmplate has been significantly distorted. For a fitting gisin
error is still high. Allen et al.[[14] introduce a smoothnessurface ARAP energy, although it can preserve the rigidity
term by minimizing the differences of transformation maegs of triangles, surface of the template cube is highly disibrt
between triangles. However, the smoothness error termotanmihese fitting results have large distortion, this is becabse
solve the aforementioned problem of uniqueness. Here, vegularizations are not robust enough to drive the temptate
solve the problem by introducing volumetric informationan rotate during the iterative fitting procedure. For a fittirging
the regularization term. volumetric ARAP energy, the stiffness of interior tetrareed
Specifically, surface ARAP energy is extended to a volstrongly contributes to the regularization term. Therefahe
metric ARAP energy defined on a tetrahedral megh,that distortions on interior tetrahedra must be absorbed bytingta
is compatible toS on its boundary (i.e.0M = S). The the template model, so that the fitting procedure can achieve

C. Regularization by volumetric ARAP energy
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Fig. 5. Fitting tests on a template with freeform shape - hurbady. Target is a point cloud sampled from the mesh modelirhylating the incomplete
data to be obtained by our RGB-D camera based scanner. Aaipoint cloud is rotated 30 degrees around y-axis to niggabith the template. The color
maps show the shape-approximation-errors on the fittinglteegsing different regularization terms. The ‘Avg’ and @l show the average and the maximal
point-to-point distances. Fitting with volume ARAP eneray regularization term presents the best result.

a better optimum. Meanwhile, cubic shape of the templatevidhere A¢;; and by;; are derived from the fitting energy
fully preserved on the fitting result. Fs.r(X), and A,., and b,., are derived from the regu-
To evaluate the performance on freeform models, anotharization termRy (X). In other words, the function is in a
fitting experiment is conducted on a human model (séeast-square form. As a result, the positions of verticgs,
Fig[H). Similarly, a point cloud is sampled from the modebn a templatel/ are updated by solving the following over-
with artificially removed regions to simulate incompletdaja determined linear system
and the point cloud is rotated 30 degrees along y-axis. As A b it
the ground truth is the shape of the template model itself, { VAA ]X = { b }
we are able to measure the distance errors at every vertex red e
by comparing to those in the ground truth. This error iduring the optimization. After each update &, II(x;) in
named ashape-approximation-errdn this paper. The shape-Ed.(2) andL, in Eq.(4) must also be updated.
approximation-error is computed on the fitting results gsin
different regularization terms. As shown in [Flg.5, averagEarget Position
errors on the fitting result with volumetric ARAP energy aréenerally, for a vertexx; € ®° on the templateS, the

(6)

less thanl /10 of the errors on the other two methods. target positiondI(x;) in Eq.(2) can be itmearest neighbor
(NN) in the point cloudI’. If T" is a complete data, some
I1l. TEMPLATE FITTING approaches (e.g.[ [13]) have proposed to use bidirectional

Although our template-fitting framework can be applied t§€arch to determingi(x;) in the fitting process. FoF" with
general inputs with 3D points, we mainly focus on the inpufissing data, Hasler et al.I[9] proposed to use point digtanc
from RGB-D sensors. To build an instant body scanner d normal difference between; and its NN to filter out
using two RGB-D sensors, each sensor will only capture a pmtsmqtched pairs. Hov.vever., this filtering cannot alwaygdavo
of the body like the point cloud shown in the zoom-view offatching several vertices iy’ onto the same target ifr
Fig[l. We assume that the input of our template-fitting framéhat may produce unwanted stretches. This scenario happens
work only covers the main body of a subject. The alignme#hen some regions of the point cloud, are sparser than the
and scaling of template models can be automatically coeducglistribution of vertices on the template. _
by using this prior information. All points are assignedinan ~ AS llustrated in the top row of Figl6, wheh is dense
initial orientation that is pointing to its correspondinaneera. and complete, all vertices (i.ex;, %, . . ., x¢) of the template
The orientation-aware PCA is then applied to estimate ateurM0del can search their corresponding NN around them on
normal vectors, which are important to improve reliability 1 The fitting result is satisfactory. However, wheh is

the fitting process. incomplete (middle row), e.g., the region aroungdandx, is
missing, the NNs found fok3 andx, may lead to stretched
A. Algorithm of fitting result even when th&angent DistancgTD) [19] is used.

The 3D model of a human body can be reconstructed frolFlpote_ that, pomt_dlstance and _normal difference filters cann
an incomplete point cloud by fitting a template model This |m|nf’;\te the mis-matched pairs Qﬁ.(or X4).
' An inverse NN search strategy is developed to solve the

IS in .fact an optimization prolcedure to minimize the enerqydrget-tracking problem on an incomplete data set. Instéad
function defined in Ed.{1). Without loss of generality, BR.( searching NN irl” for x; € S, we search NNs o for all

can be rewritten into the form of LY . : .
the points inl". In this casexs andx, will not be associated
E(X) = |A;uX — bl + A|AregX — by ||?,  (5) to any points by mistake (see the bottom row of Hig.6).
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Target
Point Cloud

By Tangent Distance By Inverse NN search
Fig. 7. When the scanned point cloud is incomplete (seg kbig) NN search
S — I' gives poor fitting result (see middle) near the boundary afsing
region. The inverse NN seardh— S results in a human body reconstruction
with better surface quality.

After fitting the coarse mesh to a target shape, the dense
Fig. 6. lllustration of comparison between the NN seah» I, and the  gyrface mesh associated with the template model is deformed
inverse NN searchl’ — S, in incomplete data. " .

onto the fitting result by using t-FFD_[24].

When the point cloud is incomplete, this inverse NN seardh Dressed subjects

is more reasonable since the template is always completeg emplate fitting framework can also reconstruct human
Moreover, point distance and normal difference can filtef" Oy, els for dressed subjects by taking minor modifications. T
outliers in the point cloud wh(_en conducting this inverse NN hieve this goal, the basic change of above fitting algorith
search. Those vertices Insharing the same NN are grouped the fitting result should entirely lie in the region bded
together and form a cluster. If a cluster (corresponding 40, the scanned point cloud - callézhsible regionMeanwhile,
on [ consists of more than one point, we fitoving Least e reconstruction must be in the shape of a human body (i.e.,
Square(MLS) surface andl(x;) is the projection ofx; 0N 4oas not have the “monster” problem).
the MLS surface; otherwise, TD at; is used forll(xi). 1o prevent the fitting result running out of the feasible
Flgurel_] shows an exam_ple to demonstrate the funcuonal;g/gion, we penalize the matching pairs ffy,..r(X) with a
of the inverse NN searching. higher weighting &«10) when the vertices of go outside.
o Whether a vertexx; € S is outside the feasible region can
Factor of Regularlzatlop . , be detected by computing the dot produ@ffI(x;) — x;)
The or.IIy _param_eter in this framework is the factor OB(H(xi))); here,TI(x;) is the projection ofx; on the input
regularization,, in Eq.[1). We allow this factor to changeyqint cioudr andn(-- -) gives the oriented normal vector. If

in the whole process. Generally, it is known that if & large[ hegative value is returned by this chegkjis considered as
value is chosen fon, a smoother result is obtained. On th%eing outside of the feasible region.

other aspect, using a small&will obtain a fitting result with
lower shape-approximation-error. We adjust the value @f
different phases of the fitting process as follows:

Another problem to be solved is how to ensure the fitting
result being a shape of human body. For a similar purpose,
Hasler et al. [[9] applied a so-calledumanizationstep by
« In Alignment Phase a large factor £1/200) is used for projecting the result onto the solution manifold (repreésdn

the orientation and posture alignment. by a statistical model). Balan and Bladk [13] controlle@ th
« In Fitting Phase: a smaller factor{1/500) is applied to shape coefficients within three standard deviations froen th
generate a smooth result in the final fitting. mean. Chu et al[[25] constructed a convex hull for the human

body database and projected the infeasible parameterstento

Moreover, a different regularization factor~{/5000) is )
g L ) Hrface of convex hull. However, the projection based natho

adopted for the template selection (details can be found §

Sectior(IVA). have several drawbacks.
« Itis computational expensive for constructing convex hull
Dense Mesh for Visualization in high dimensional space.

For the sake of efﬁciency, a temp|ate mesh cannot be too® It is over-constrained to restrict the solution being withi
dense. Therefore, we use volumetric meshes that have only the convex hull or falling in three standard deviations.
around 3.4k vertices on the boundary surface in the template Counterexamples can be easily found.

fitting. In order to give a better illustration for the deaidf ¢ Such projection can induce large fitting error.

human bodies, each coarse mesh in the database is paire@upvolumetric ARAP fitting framework shows a good prop-
with a dense surface mesh, which has around 33k verticegty that can well preserve the shape of models. Therefae, w
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{

In this section, we first brief how to build a statistical mbde Model A Model 8 Model € Model D
by Principle Component Analysi@CA). After that, we will BLEAAGS  BAAANE FL-RAAA RALSAS

discuss the limitations of PCA-based selection and ingatsi
methods for improvement. Finally, a template selectioroalg
rithm will be presented.
A. Template searching

Principle Component Analysi$PCA) has been used to
establish statistical models for analyzing high-dimenalo
datasets including 3D human models (e.@.,] [14].] [10], [9],
[26]). The major advantage of PCA is that the relationship

do not need to project the fitting result by a post-processing
step. However, on the down side, the volumetric ARAP energy
based regularization term can be too strong that the fitting
result may be quite different from the shape of target point
cloud. To overcome this difficulty, we develop a template
selection method in next section to automate the procedure
of selecting a similar template.

IV. TEMPLATE SELECTION

e

between exemplars with low variance can be discarded after =~ Model£ Model F Madel .G Model H
. (0.2,0.2,-0.4) (-0.6,-1.0,-0.2) (-0.2,-0.2,-0.1) (0.2,0.9,0.1)
analysis. The full dataset can be greatly reduced to reptese > Model A > Model B 3 Model ¢ >Model D

the original exemplars in an approximation form. As a result
both the computational time and the size of storage can be
reduced.

Given a point cloudl’ as the target shape to be recon-
structed, we are going to search for a model that is the most
similar to the target. This model will be used as the template
for fitting. Suppose that the surface representatin, of '
has been reconstructed, and then the corresponding ceetf§ici
of this model in terms of theprinciple componentgPCs)
can be obtained by the bijective mapping betwégnand all
exemplars in the database. In other words, the represemtati
of St (the query model) by the statistical model is obtained.

An efficient method is needed to take search by the PCs ofig 8 Four example modelsi( 5, C' and D) are used to form a database;
del. Diff di . db df their corresponding coefficients for the first three PCs &@va in the top
query model. Diiferent distance metrics cou € used fer tIﬂow. Four query modelsK, F', G and H) and their corresponding coefficients

search (e.g.L'-norm or Mahalanobis distance metrics werer the first three PCs are shown in the middle row. These comifis are
studied by Draper et a||:[27] to provide the best result imfaé‘seq to se_arch the most similar models from the database?hyorm - see
. - . . the illustration shown in the bottom row where the three P@suaed as three
recognition). For an efficient implementation, we employ-kD,,
tree in theApproximate Nearest Neighb¢ANN) library [28]
for searching, which is based di¥-norm. o _
An example is shown in Figl8. Without loss of generalit®- Limitations and adjustments
the statistical model of all human bodies in a database isPCA is a powerful tool that can identify the most meaning-
represented by three PCs. Only four examples (Modgls ful bases to approximate a large dataset with fewer coeffisie
B, C and D) are stored in the database here and theMpproximating the given dataset by the new PCs (in lower
corresponding coefficients of the first three PCs are showimensions) can reveal the hidden structure and filter cat th
in Fig[8. For a query model (e.gf, F', G or H), once its noises. However, when positions of vertices on 3D human
triangular mesh, which is compatible to the models in theodies are used for PCA, the analysis is highly sensitive to
database, is obtained (e.g., by fitting), its projectioroathie the distribution of vertices. Specifically, after scalingans-
PCs can be obtained. As a result, the most similar model in tla¢ing, rotating a human body, or changing its posture, the
database can be found by thé-norm based search using theanalysis could result in very different coefficients for P@s
coefficients of PCs (see the illustration shown at the bottodemonstrated in Fig.9, when scaling modekmaller (<0.8)
of Fig[8). By a well-defined statistical model, shape of th® getA’, translating modeBB alongz-axis to a new position
searching results is quite similar to the query model. B’, rotating modelC' aroundy-axis 90 degrees t@’, and

es inyk3.
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=) @ @ 90°
1
AN = B
C G D
) N o . &= = Exclude unimportant parts
M'odel A Model B Mode.l C . Model D Use whole body for PCA befare taking PCA
Scaling (x0.8) Translating Rotating Different Posture
(17,-2.4,-06)  (-23,-1.2,-0.2) (14,09, -4.9) (-1.1,0.7,-0.9) Fig. 10. When using all vertices of human models in PCA, the $¢idrch
2r for the query inputG will return the modelC' as the ‘most similar’ model
D, by mistake. However, the shapes @fand C' are quite different from each
Y51 Different c’ other. After excluding unimportant parts as suggested i& paper, the NN
4L Posture l search forGG will return the modelD. The shape of modéD is more similar
o, 2 to G. The reason why= is not close taD before applying the normalization
05F D Rotating oA is that the poses of their lower bodies are different fromheather.
0 -
g
et ocC Reconstruction result base on Reconstruction result base on

At Translating el Original Model ~ PCA using whole models 45 PCA using normalized bodies

o]
-1.5-3'(\ o |
B lo.00
2k
25 : - ! . : . - . &4 ]
25 2 45 4 05 0 05 1 15 2 25
PC1
)
Fig. 9. Principal component analysis of human bodies usattjoes is very v
sensitive to the change of vertex-positions. (Top) From tlefright, scaling,
translating, rotating and changing poses will make moddfs B’, C’ and
D') to have very different coefficients of PCs comparing to rthaiginal
shape 4, B, C and D). (Bottom) Changes according to the most significan
two PCs are plotted in a 2D chart for better understanding.

Avg: 0.00607 Avg: 0.00300
Max: 0.04720 Max: 0.03053

deforming modelD to a different posturé’, their coefficients
are changed significantly. Fig. 11. The shape-approximation-error (visualized asdbler map) can
To solve these problems in PCA-based statistical modets,reduced when the reconstruction is conducted on the P@meth by the
human models stored in a database are recommended to fé)kraalized human bodies. Five PCs are used in the recotistruc
the following changes:
1) Be scaled to the same height (e.g., the average height); _ _ o
2) Be adjusted to have the same orientation (e.g., facifftf PCA and in the template search. This modification can
front); be easily implemented because that the bijective mappiag ha
3) Be shifted to the same center (e.g., the middle poigen defined among all models in database. Figure 10 shows

between the belly-button and its corresponding point ah €éxample to demonstrate how these steps of normalization
the back); can improve the quality of PC-based template search. Again,

4) Be posed in a similar posture. the search is based di*-norm in the space of PCs.

This is callednormalization The processes 1-3 can be au- To further verify the functionality of the normalization,
tomatically conducted. However, it is tedious to adjust th@e compare the results of PCA-based synthesis before and
posture of every human model in the database. Insteadadter applying the normalization in Higll1. In the syntisesi
adjusting the human models’ posture one by one, Hasler etlahman models, five most significant PCs are kept from 30 PCs.
[Q] encode the triangles’ relative rotation matrices foindo PCA without taking the normalization is biased by the podes o
PCA, but their method creates a very high dimensional spa@eemplar. As a result, the human model synthesized by the set
that is expensive in both storage and processing time. Heoéparameters that is same as the original model preseges lar
a simple and practical solution is used to solve this probleshape-approximate-error. After taking the normalizatitire

Our study finds that the shapes of some unimportant parts (ecgmained PCs mainly focus on the variation of body shapes;
forearms, legs, and head) have significant effects on PCA. fherefore, the body shape with small shape-approximation-
avoid biasing the analysis, unimportant parts are exclfiead error can be reconstructed even when five PCs are used only.
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S displacements of all vertices are less than3, the template
Import Universal Template . . .
< Template selaction selection starts and uses a very small regularizationifacte
1/5000 to fit the volumetric mesh ontd in around 10 fitting
- steps. After that, a new template is selected from the databa
oin

/ Cloud Template : by the most significant PCs. In our tests, 35 PCs are used for

male subjects while 30 PCs are used for female. Then, this new
Yes

template is fit ontd” again with A = 1/5000. The interlaced

template selection and fitting steps are repeated untiletdyn
Alsomentyyl iEitnehase _.@Nig Final Fitting | gelected template is same as the previous one. Usually, the

Phase (A=1/5000) Phase

template selection converges in 2-3 iterations. The lags@h
of our framework is the final fitting procedure with the ‘best’
Fig. 12. Flow chart of template selection. template and a regularization factdr= 1/500.

In order to verify the quality of reconstruction, we test

C. lteration procedure our approach in four different scenarios: with point clouds

To search the best template in database by a query mogda ture_d by laser scanner on D ngked and 2) dressed bodies,
with point clouds obtained from Kinect RGB-D cameras on

(as explained in Sectidl [VA), one needs fo find the Surfa%‘?snaked and 4) dressed bodies. The laser scanner used in

bijective mapping between the query model and human mod : oo
stored in the database. However, for a query input obtahyed%IS experiment is Vitus Smart XXL mangfactured by Human
olution [32]. Although we do not carry simultaneous captur

RGB.D camera, this mapping 15 not a"a""?‘b'e' we PTOPOSE §} 1) 5th laser and Kinect scans, they are taken one afterrone i
algorithm to solve this problem by running the fitting step . )

i ) . a very short time, so the shape difference between scans can
and the template selection step iteratively. Flow chat ef th

algorithm is shown in Fig.12. We first use a universal terrq:)latbe neglected. In order to verify the qughty of reconstrorsfi
. . we compare the reconstructed result with the ground trugh. T
which is the average model of all models in the databasoe

to fit the target shap@ (by a small regularization factor Uild a ground truth for the experimental tests, the poiatd|

_ S . captured by laser scanner is reconstructed into a surfate an
A = 1/5000). Then, the fitting re_sult 'S used _to select a N emeshed in the same way as that in preparing the database.
template, and the new template is applied F.O f|t_the targege;ha':irst of all, starting from the universal template, we tefst i
again. Here, the fitting result owns the bijective mapping t(())ur template selection algorithm can pick the ground truth o
models in the database so that it can be used to search a REW " e dataset as the final optimal template. We add the

template by the method presented in Secflon V-A. Durlnr%odel of ground truth into the database in the example of

these iterations, templates that are more and more simnilarFtI [T3, and the result is encouraging, where the ground trut
the inputT” will be selected and the fitting results will be. gLLs, ging, g

progressively improved. lllustration of the whole procéss is successfully selected for all testing scenarios (se@Fay
been shown in Fig3 ‘ the selection process). Note that, we does not have the droun

truth in general cases, but this test verifies the successirof o
iterative template selection method. Another example gisin
_ ~ the database without ground truth is shown in[Eiy.14. In this
We have implemented the proposed framework by Visugkample, even European database is used for our Asian input,
C++ and run the experimental tests on a PC with Intgle can still get reconstruction results in good quality. et
Core(TM) i7-3770 CPU @ 3.40GHz, 8GB RAM and Win7ye check the shape-approximation-error of the reconstduct
64bit OS. Our database of human models has 43 male syiman body w.r.t the ground truth. The color map of shape-
jects and 36 female subjects, which come from a Europegfproximation-error has been shown in Eig.13. Finally, ise a
database [15]. The point clouds of all subjects are contertgsnquct anthropometry measurements on five feature cusves t
into a mesh surface by the Poisson reconstruction [29]. TYgrify the results. The measurements are shown in the table

surfaces are remeshed to have the same connectivity by cregs-igs[T3 andI4. From these tests, we can find that:
parameterizatioh[30],[ [31]. each model is represented as a

tetrahedral mesh with 7k vertices and 31k tetrahedra. Amonge Our iterative template selection routine can well-capture

these 7k vertices, 3.4k are on the boundary surface and about the target body shape, and the best template is selected.
half of them are used in the fitting term (as the input is a « Our framework can accurately reconstruct the body shape
set of incomplete data). Several experimental tests hage be  from the point cloud generated on naked body by laser

taken on this platform. With the point clouds (with about K00 scanner (i.e., the shape-approximation-errors and anthro

points) generated by Kinect sensors, the whole procedure of pometry measurement errors are very small).

human reconstruction can be completed in around 30 seconds. The result obtained from the naked body captured by

A video to illustrate and demonstrate our approach can be RGB-D cameras is not as accurate as the result from

V. RESULTS

accessed alt: http:/lyoutu.be/ZFeul¥ 1l laser scanner, but it is better than the result obtained by
The first example is shown in Hig.3. An incomplete data, dressed body scanned by laser scanner.

is captured by our setup of body scanner. The reconstruction The results obtained from dressed subjects are relatively

starts from the pose alignment (fitting with large regulatian poor. The region with the highest error is around the hip.

factor A = 1/200) by using the universal template. When the It is because that the shirt and pants worn by subjects
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By Laser Scanner By Laser Scanner By Kinect Sensors By Kinect Sensors
on Naked Body on Dressed Body on Naked Body on Dressed Body

.

Surface
Reconstruction

® CeO

Grund Truth Avg: 0.00033 Avg: 0.00193 Avg: 0.00102 Avg: 0.00186
Height: 1.72 Max: 0.00708 Max: 0.03473 Max: 0.01550 Max: 0.03195
Ground Truth | Laser on Naked | Laser on Dressed]| Kinect on Naked | Kinect on Dressed
Length Length | Error | Length Error Length | Error | Length Error
O under-bust girth 1.081 1.078 | 0.28% | 1.088 0.65% 1.082 | 0.09% 1.087 0.56%
O waist girth 1.080 1.076 | 0.37% | 1.084 0.37% 1.085 | 0.46% 1.103 2.13%
O lower-waist girth 1.126 1.123 | 0.27% | 1.127 0.09% 1.129 | 0.27% 1.143 1.51%
O hip girth 1.138 1.138 | 0.00% | 1.152 1.23% 1.142 | 0.35% 1.150 1.05%
O vertical trunk 1.685 1.680 | 0.30% | 1.675 0.59% 1.693 | 0.47% 1.698 0.77%

Fig. 13. To evaluate the error of our volumetric fitting basemnan reconstruction, we first construct the ground truth efibject by scanning its human
body using a laser scanner. The surface mesh of this humanidoeconstructed by the Poisson’s reconstruction [29hftbe point cloud. Our algorithm is
applied to the point clouds obtained from four differentupst by laser scanner on 1) naked and 2) dressed bodies, bgtkRGB-D cameras on 3) naked
and 4) dressed bodies. Shape-approximation-errors. (ihe.ground truth) at the main body are displayed as the coégs, and anthropometry measurements
are taken at five feature curves to further verify the qualityour reconstruction.

loosely cover the region of hip. models. Examples are shown in Eid.13 14. Specifically,
. . we, measure (1) the under-bust girth, (2) the waist girth, (3)
Improvements could be made if the database is enhanegd |, er yaist girth at the belly-button, (4) the hip girtnd
and includes more variations of body shapes. Currently, t the vertical trunk, which are the most important feasure
European databasé [15] is used in the tests, but the qu Y bodv shape in CI(;thin industr
inputs for template selection are Asian. More reconstoncti y P 9 Y-

results from dressed subjects scanned by RGB-D Cameras&é%lication Il; Human-centric Design Automation
shown in Fid.Ib. After reconstructing a human model, the correspondences

‘The reconstructed human models own the same connectiiptveen triangles on the template model and the reconsttuct
with models in the database. Therefore, they can be usedyiggel have been established. By this information, we can

a variety of applications. use deformation techniques (e.@.][22]. 1[33].1[34]) to warp
o ] ) an apparel product that is designed for the template model
Application I: Extraction of Semantic Features to a new shape that fit for the new model. Examples are

The problem to extract semantic feature, especially thosgown in FigIp. A suit and a wet-suit are designed for
cannot be obtained by geometric extremities, is illy poseghe male and female template respectively, and they can
Our work provides a robust_ tool to ext.ra}ct semantic featurgg automatically warped to fit the reconstructed human
on 3D human models. Since our fitting framework cagoqels. The techniques developed in the paper enable a lot
generate results having the same connectivity as the t€8plas gownstream applications like virtual try-of |35], reihe

the feature curves defined on the template (see bottonﬂleftdothing synthesis[[36], garment resizing [37] and product
Fig[14) can be easily transferred to the reconstructedtsesy,stomization [[38]. More discussions about this applézati
(see the right-most model for all the four cases in[El.14an be found in Wang’s book [26].

Based on the transferred feature curves, we can autoniatical

take anthropometry measurements on the reconstructed
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Surface
Reconstruction

Ground Truth By Laser Scanner vg: 0.00265 ) By Laser Scanner Avg: 0.00452
Height: 1.76 on Naked Body Max:  0.03351 on Dressed Body Max:  0.04527 70.09

Selected Feture By Kinect Sensors Avg: 0.00497 ) By Kinect Sensors Avg :0.00589
Template Curves on Naked Body Max:  0.06164 on Dressed Body Max:  0.07125
Ground Truth Laser on Naked | Laser on Dressed| Kinect on Naked | Kinect on Dressed
Length Length | Error | Length Error Length Error Length Error
0 under-bust girth 0.837 0.835 | 0.24% | 0.856 2.27% 0.847 1.19% 0.849 1.43%
O waist girth 0.792 0.787 | 0.63% | 0.782 1.26% 0.791 0.13% 0.783 1.14%
O lower-waist girth 0.827 0.826 | 0.12% | 0.825 0.24% 0.826 0.12% 0.830 0.36%
U hip girth 0.945 0.947 | 0.21% | 0.996 5.40% 0.963 1.90% 1.003 6.14%
0 vertical trunk 1.683 1.682 | 0.06% | 1.681 0.12% 1.664 1.13% 1.669 0.83%

Fig. 14. Another example is shown for verifying the qualigsults generated by our algorithm. Similar to [Eig.13, tiststare conducted on four setups: by
laser scanner on naked and dressed bodies, by Kinect RGBrBrazon naked and dressed bodies. In this example, the gtoithds not inserted into the
database. Instead, an existing model in the database ®esklas the template. By our algorithm, the same templatat@ratically selected in all the four
scenarios. Again, shape-approximation-errors and gotimetry measurements are shown on the results obtainease flour scenarios. For the template
model with pre-defined feature curves, these features cautmnatically reconstructed on the fitting results.

Application Ill: Interior Structures Transferring our scanner is much faster than the conventional laser sc&inn

One interesting property of our volumetric fitting framewor for human bodies (taking more than 10 seconds for a scan).

is that the correspondences are not only defined on boundAtthough the data captured by this scanner are incomplete

surface, but also defined in the whole volume. An exampénd have relatively low resolution (e.gi40 x 480 RGB-D

of transferring the interior structures (e.g., muscles)tte images are captured by Kinect sensors), the human bodies

reconstructed models is shown in Eid.17. This can be usestonstructed by our algorithm have high quality and thimdjtt

to create human models used in biomedical analysis apbcedure is reliable. To further improve the result of téate

simulations. A very good feature of such a kind of mappinfitting, statistical model is employed in this paper. It i®ds

is that, as long as we can guarantee there is no degeneratedevelop an iterative template selection routine foriggta

(i.e., zero or negative volume) tetrahedron produced in thest template from the database to generate a fitting reghlt w

fitting, the mapping is bijective. This is different from thesmaller shape-approximation-errors. The whole procedéire

deformation techniques used above; the wrapping functibnman body reconstruction can be finished in around 30

does not guarantee an intersection-free transferring. seconds on a consumer-level PC. Results have been tested and

demonstrated on the RGB-D images captured from both naked

and dressed subjects. It shows that this method can generate

, , o 3D human models with high quality, and it can benefit a variety
In this paper, we present a volumetric template fitting basgg applications.

method for reconstructing 3D human models from incomplete

data, which are point clouds captured by inexpensive RGB-In our current implementation, the selected template model

D cameras. With the help of this new approach, we devel@p automatically scaled according to the remained points on

a 3D body scanner by using two Kinect sensors. The dadte main body of the subjects. If the input point cloud is not

acquisition can be completed by taking a camera shot, so thedpped as what is expected, the scaling could be inaccurate

VI. CONCLUSION AND DISCUSSION
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and lead to a poor fitting result. Fortunately, if our humana4]
body reconstruction framework is used for a well calibrated
setup (e.g., our instant scanner based on RGB-D cameras),[ig]
scaling problem can be solved by specifying a feature point
(e.g., the neck point) on the point cloud (réf.[39]). Moregv

. . - 1161
our algorithm relies pretty much on the exemplars storetién t
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B. Allen, B. Curless, and Z. Popovi¢, “The space of hamaody

shapes: reconstruction and parameterization from rangesscACM

Transactions on Graphics/ol. 22, no. 3, pp. 587-594, Jul. 2003.

N. Hasler, C. Stoll, M. Sunkel, B. Rosenhahn, and H.-Bid&l, “A

statistical model of human pose and body sha@amputer Graphics
Forum vol. 28, no. 2, pp. 337-346, 2009.

M. Turk and A. Pentland, “Face recognition using eigees,” in

IEEE Computer Society Conference on Computer Vision anterat

database of human models. If the shape of the subject cannot Recognition ser. CVPR 91, 1991, pp. 586-591.

be spun by our human model database, the fitting result wiF!
not be satisfactory. In order to solve this limitation, wélatd |14,
more exemplars with a variety of shapes into the database in
our future work. For example, a database with Asian subjeﬂg
can be built.

Another limitation of the current implementation is that
the regularization factor), is selected in a heuristic manner[20]
Although the suggestion about how to choose the values
in different phases of the algorithm (i.e., pose alignmeri]
template selection, and final fitting) has been given, it ddd
different when the numbers of vertices and tetrahedra of t[@g]
template are changed. A better method to select an apptepria
regularization factor will be considered in our near futurF
work. 23]
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Fig. 15. The estimation of 3D human bodies from differentsdesl subjects (captured by RGB-D cameras) obtained by dwmetric template fitting based
framework.
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Fig. 17. Volumetric template fitting can support the funetiof transferring
interior structures (e.g., muscles) onto the reconstdubteman models.

Fig. 16. A suit is designed for the male template, and a wittisdesigned
for the female template (left). The designs can be trarsfero fit the
reconstructed human models automatically.
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