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Abstract

WireWarping [1] is a fast surface flattening approach, which presents a very important property of
length-preservation on feature curves. The global scheme of WireWarping formulates the warping
problem into an optimization in angle space and solves it by using the Newton’s method. However,
some diverged examples were found in our recent tests. This technical note presents a least-norm
solution in terms of angle-error for the global WireWarping. The experimental tests show that the
least-norm solution is more robust than the Newton’s algorithm.

1. Problem

The Newton’s method solves a constrained optimization problem by converting the objective function
and the constraints into an augmented objective function J(X) with X as the variable vector. Then,
the update vector δ in each iteration step is computed by the linear system, ∇2J(X)δ = −∇J(X),
which is formed by the Hessian matrix ∇2J(X) and the gradient ∇J(X). However, the Newton’s
algorithm has no control over the magnitude of δ. There, vibration is easily generated when the
status variable X is near optimum. In some extreme cases, such vibration may move the system to a
status that can hardly converge. Fig.1 shows such a vibrated example when using Newton’s method
to compute the global WireWarping.

To make the Newton’s method more robust, the soft-line-search strategy [2] is always employed
to determine the actual update step size αδ (0 < α ≤ 1) (e.g., [3]). However, such a line-search
introduces additional sub-routine of iterations so that actually slows down the computation. Stimu-
lated by the recent work of least-norm solution of angle-based parameterization in [4], a least-norm
solution is proposed in this note to increase the robustness of optimization while remaining the same
efficiency as Newton’s method in each iteration step.

The constrained optimization problem to be solved is Eq.(13) in [1].

minθi

∑
i (θi − αi)2

s.t. npπ −
∑np

b=1 θΓp(b) ≡ 2π (∀p = 1, ...,m)∑np

b=1 lb cosφb ≡ 0,
∑np

b=1 lb sinφb ≡ 0 (∀p = 1, ...,m)∑
qk∈v θk ≡ 2π (∀v ∈ Φ)

(1)

Here, we adopt the same nomenclature. Φ represents the collection of interior vertices on accessory
feature curves, θi is the 2D angle associated with the wire-node qi to be computed, αi represents its
optimal angle (i.e., the 3D angle employed in [1]), and lb denotes the length of an edge on wires.
To simplify the expression, a permutation function Γp(b) is used to return the global index of a
wire-node on the wire patch Pp with the local index b, and its inverse function Γ−1

p (j) that gives the
local index of a wire-node qj on the wire-patch Pp.
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Figure 1: Numerical vibration occurs when using the global WireWarping to flatten the front piece
of a shirt – as shown in the zoom-window, unwanted curve distortion is generated. This is because
that the numerical computation vibrates – see the chart of ‖δ‖2. Here, green and red lines represent
the key feature curves and the accessory feature curves following [1].

2. Least-norm Solution

As stated in [4], carefully selecting alternative variables could make the linearization more accurate
so that the computation converges faster than the Newton steps. We reformulate Eq.(1) by changing
the variables from θi to the angle estimation error ei = θi − βi, where βi is the current angle at
wire-node i and θi is the optimal angle to be computed. The optimization problem in Eq.(1) is
reformulated as

minei

∑
i e

2
i

s.t. npπ −
∑np

b=1 (βΓp(b) + eΓp(b)) ≡ 2π (∀p = 1, ...,m)∑np

b=1 lb cosφb ≡ 0,
∑np

b=1 lb sinφb ≡ 0 (∀p = 1, ...,m)∑
qk∈v (βk + ek) ≡ 2π (∀v ∈ Φ)

(2)

For the constraints with φb, as φi = π − (ei + βi) + φi−1 and φ1 = π − (ei + β1) according to Eq.(3)
in [1], φi = can be expressed as

φi = iπ −∑i
h=1 (eh + βh) = 4i + ξi

with 4i = iπ −∑i
h=1 βh and ξi = −∑i

h=1 eh. Using Taylor expansion

cos(4i + ξi) = cos4i + (− sin4i)ξi + (−1
2 cos4i)ξ2

i + · · ·
sin(4i + ξi) = sin4i + (cos4i)ξi + (−1

2 sin4i)ξ2
i + · · ·

we then truncate the series by retaining the linear terms only (i.e., with the approximation error
O(ξ2

i )). Therefore, the non-linear constraints
∑np

b=1 lb cosφb ≡ 0 and
∑np

b=1 lb sinφb ≡ 0 are linearized
into

np∑

b=1

(eΓp(b)

np∑

i=b

li sin4i) = −
np∑

i=1

li cos4i (3)

and
np∑

b=1

(eΓp(b)

np∑

i=b

li cos4i) =
np∑

i=1

li sin4i (4)
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respectively. In summary, Eq.(2) is converted into

min ‖r‖2 s.t. Cr = b (5)

where C is a ncon × nvar matrix. As discussed in [1], if there are l wire-nodes with their 2D
angles locked by the key feature curves, the number of variables for the above problem is nvar =
(
∑m

p=1 np) − l. If there are r interior vertices on the accessory feature curves, the total number of
constraints is ncon = 3m + r.

In general, ncon < nvar, there are multiple solutions for Cr = b. Among then, we need to seek
one that leads to a minimal norm ‖r‖2 on the variable vector r. This is a least-norm problem. For
a full rank coefficient matrix C, the least-norm problem has a unique solution (c.f. [5])

r = CT (CCT )−1b (6)

The value of r can be solved by finding a solution to the normal equation (CCT )x = b following by a
substitution that r = CTx. The matrix C has full rank as the constraints in Eq.(1) are independent.

Starting from letting βi = β0
i , we iteratively update the value of βi by solving ei in Eq.(5) and

update its value with βi = βi + ei in each step. The iteration is stopped when 1
nvar

‖r‖2 < 10−8 is
satisfied. The resultant optimal angle for each wire-node is then determined. Why such a least-norm
solution in each iteration step is more robust? The major reason is that among all possible solutions,
the one with minimal estimation error is adopted. While the Newton’s update just move the system
variables along the optimal direction but not determine an optimal step size when not conducting
the soft-line-search strategy, the least-norm solution actually mimics the soft-line-search. Another
minor benefit of the least-norm solution is that we do not need to compute the second derivative of
J(X).

Although the case of ncon ≥ nvar is never found in our tests, the linearization of global warping
problem as Eq.(2-4) gives a possible solution to compute the update vector r by

CTCr = CTb (7)

which is in fact a least-square solution.

3. Initial Value

Same other optimization techniques, the least-norm solution still relies on good initial angle values
on wire-nodes. In the original publication [1], 3D angles are employed to be the initial angle values
on wire-nodes. However, this does not give satisfactory results when flattening some highly curved
surfaces (e.g., the pants of wet-suit in Fig.2 which are also shown in [1]).

For those surfaces without key feature curves determined (e.g., Fig.2), the warping of feature
curves are flexible. Thus, the Least-Square Conformal Map presented in [6] is used to pre-flatten
the surface into plane, and the 2D angle at each wire-node is than adopted as the initial value of
iteration. For those surfaces with the shape of key feature curves specified (e.g., the perpendicular
key feature curves are specified in Fig.1), the initial value β0

i at a wire-node qi is determined as

β0
i =

{
αi(2π −

∑
qj∈v αL

j )/
∑

qk∈v αk qi ∈ v, v ∈ Φ
αi otherwise

(8)

where qk and qj are the wire-node associated with the same vertex as qi. qj is the node on key
feature curves with its 2D angle specified as αL

j , qk is on an accessory feature curve, and Φ is the set
of interior vertices on accessory feature curves.

The initial value of angles determined by the above methods ensure that the angle compatible con-
straint –

∑
qk∈v θk ≡ 2π (∀v ∈ Φ) has been satisfied at the beginning, which makes the computation

easier to converge.
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Figure 2: Different initial values will lead to different results: (a) with 3D angles as initial values –
unwanted overlapping is generated at the darts, and (b) using the result of least-square conformal
map [6] as initial values – the result has been improved. Both results are generated by the least-norm
solution of global warping.

Figure 3: The flattening result by the least-norm solution of global WireWarping – the initial value
is computed by Eq.(8).

4. Experimental Results

The least-norm solution of the global WireWarping introduced in this technical note has been
tested on several examples. The first test is given to the shirt model shown in Fig.1. The result by
using the least-norm solution is given in Fig.3, and it is easy to find that the computation converges
very fast (i.e., 1

nvar
‖r‖2 → 0 after two steps of iteration). A more fair comparison is given on the

norm of residual vector σ of the constrain equations in Eq.(1). More specifically, the residual vector
is

σ =




(np − 2)π −∑np

b=1 θΓp(b)∑np

b=1 lb cosφb∑np

b=1 lb sinφb

2π −∑
qk∈v θk


 . (9)

Figure 4 and 5 show the comparison, which is consistent with the norm of update vector – i.e., the
least-norm solution converges faster and is also with less vibration.

The least-norm solution solves a linear equation system with dimension ncon × ncon (i.e., CCT )
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Figure 4: Chart for comparing the convergency on the norm of residual vector by the Newton’s
method vs. the least-norm solution.

in each iteration plus one step of substitution. For the numerical computation proposed in [1], in
Eq.(23)-(24), the update vector in each step is also determined by computing a (3m + r)× (3m + r)
linear system followed by substitution. As ncon = 3m + r, the computations in each step by the
method of [1] and the least-norm solution are the same. Therefore, the computation speed of least-
norm solution is faster as it usually needs less steps than Newton’s method does to converge.
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Figure 5: Another example for comparing the convergency on the norm of residual vector by the
Newton’s method vs. the least-norm solution.
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