
 1 

Algebraic grid generation on trimmed parametric surface using 

non-self-overlapping planar Coons patch 

 

Charlie C. L. Wang             

Department of Automation and Computer-Aided Engineering, The Chinese University of Hong Kong, 

Shatin, N.T., Hong Kong 

E-mail: cwang@acae.cuhk.edu.hk  

Kai Tang
*
 

Department of Mechanical Engineering, The Hong Kong University of Science and Technology, 

Clear Water Bay, Kowloon, Hong Kong 

E-mail: mektang@ust.hk  

 

 

Abstract 
 

Using a Coons patch mapping to generate the structured grid in the parametric region of a trimmed surface can 

avoid the singularity of elliptic PDE methods when only 1C  continuous boundary is given; the error of 

converting generic parametric 1C  boundary curves into a specified representation form is also avoided. 

However, overlap may happen on some portions of the algebraically generated grid when a linear or naïve cubic 

blending function is used in the mapping; this severely limits its usage in most of engineering and scientific 

applications where a grid system of non-self-overlapping is strictly required. To solve the problem, non-trivial 

blending functions in a Coons patch mapping should be determined adaptively by the given boundary so that 

self-overlapping can be averted. We address the adaptive determination problem by a functional optimization 

method. The governing equation of the optimization is derived by adding a virtual dimension in the parametric 

space of the given trimmed surface. Both one-parameter and two-parameter blending functions are studied. To 

resolve the difficulty of guessing good initial blending functions for the conjugate gradient method used, a 

progressive optimization algorithm is then proposed which has been shown to be very effective in a variety of 

practical examples. Also, an extension is on the objective function to control the element shape. Finally, 

experiment results are shown to illustrate the usefulness and effectiveness of the presented method. 
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1. Introduction 
 

This paper presents a method for generating algebraic grids on a trimmed surface by fitting a non-self-

overlapping planar Coons patch into the parametric region of the given surface. In computer-aided engineering, 

geometric modeling, computer graphics, and many other applications, a parametric surface patch usually 

intersects with other surfaces, and thus only a portion of the surface patch is used in defining a meaningful shape 

[1]. The remaining portion of parametric surface patch S  after trimming by other surfaces is called a trimmed 

(parametric) surface TS . TS  is constrained by the same mathematical surface equation as ),( vuS , but its 

parametric domain is only a portion of that of S . The parametric area of TS – 
TSΡ  lies inside 

]1,0[]1,0[),( ×∈vu (assuming the vu −  domain of S  is normalized) and is bounded by a number of curves 

(see Fig. 1-1). Each boundary curve of 
TSΡ  is expressed as a parametric equation of the form [ ])()( tvtub iii = , 

where ]1,0[∈t .  

 
 

(a) a trimmed surface (b) the parametric area in vu −  domain 

Fig. 1-1    A trimmed surface and its related parametric area 

An essential task in many engineering disciplines is to approximate a trimmed surface by an aggregate of 

simple planar elements, e.g., triangles and quadrilateral elements; this is referred to as the surface meshing 

operation. Surface mesh generation methods have been studied for many years. Both structured and unstructured 

grids can be constructed on three-dimensional surfaces [2]. The two most powerful analysis tools in engineering 

are the finite element method and the finite difference method. The finite element method usually conducts 

either triangular grids or quadrilateral grids, and the grids can be structured or unstructured. Quadrilateral grids 

in general have better quality than the triangular grids. Unstructured 2D quadrilateral grids can be constructed 

directly by geometry decomposition [3-6], boundary advancing [7-10], and skeleton construction [11, 12]; or 

indirectly by the background triangular grids [13-17]. However, the finite difference method generally uses 

structured quadrilateral grids (or simply called structured grids). The structured grids can be generated 
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algebraically or as the solution of Partial Deferential Equations (PDEs). Algebraic grid generation is some form 

of interpolation from boundary points – different approaches use different kinds of interpolation [18-20]. 

Overlap may, however, happen on some portions of algebraically generated grids. Also, error may be generated 

when converting generic boundary curves into curves with a specified representation. Grid generation is actually 

a boundary-value problem, so grids can be generated from point distribution on boundaries by solving elliptic 

PDEs in the field [21-25]. The smoothness properties and extremum principles of some such PDE systems can 

serve to produce smooth grids without boundary overlap. However, since the elliptic PDE methods require 

second derivative, singularity appears when any boundary curve of 
TSΡ  is only 1C  continuity.  

Similar to other algebraic grid generation approaches, our grid construction method also consists of three 

steps: 1) forward mapping; 2) grid generation; and 3) back mapping. The forward mapping is the mapping of the 

three-dimensional physical surface TS  to its underlying parametric area 
TSΡ . Once the forward mapping is 

finished, the grids are produced in 
TSΡ  by fitting a planar Coons patch ),( ηξX . After establishing the uniform 

NM ×  grid in the parametric domain of ),( ηξCS  by 
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the NM ×  grid on the physical trimmed space can be expressed by the back mapping in the form 

))),(()),,(((
, jijiT XvXuSS
ji

ηξηξ= ,                                                   (1-2) 

where the functions )(Lu  and )(Lv  represent the u  and v  coordinates of a point on the Coons patch. 

However, as mentioned above, overlap may happen on the boundary of 
TSΡ  or even in the middle of 

TSΡ , 

which of course influences the final surface grid (see Fig. 1-2). Aimed at resolving this perplexing issue, a 

method based on finding proper blending functions in ),( ηξX  is explored in this paper, which assures the non-

self-overlapping property. Since using a Coons patch does not need to convert the representation of boundary 

curves, no converting error is generated in this method. For the 
TSΡ  with complex boundaries, the whole 

TSΡ  

can be subdivided into several sub-regions, where each region has only four boundary curves and its corner 

points satisfy the non-self-overlapping condition. 

We organize the paper as follows. In section 2, some necessary definitions and preliminaries are first given. 

Next, the governing equation is derived in section 3 by the normal of the Coons patch in a virtual direction – w . 
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Based on the governing equation, the formulas to compute the functional optimum of one-parameter blending 

functions in the Coons patch is presented in section 4; and in section 5, the blending functions are extended to 

two-parameter functions to achieve more flexibility. In section 6, to overcome the difficulty of “guessing” a 

good initial blending function, an algorithm for computing the optimum progressively is given. Finally, section 

7 shows the possible extension of our method to control the shape of elements. 

  
(a) example I – overlap occurs near the boundary (b) example II – overlap occurs in the middle 

  
(c) surface grid of example I (d) surface grid of example II 

Fig. 1-2    Overlap occurs near the boundary or in the middle of 
TSΡ  

 

 

2. Preliminary 
 

We first give necessary definitions and preliminaries. 

Definition 2.1 Given four 1C  curves )(0 ξQ , )(1 ξQ , )(0 ηP  and )(1 ηP  )1,0( ≤≤ ηξ in three-dimensional 

space that form a closed curve, the Coons patch defined on them is 
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where )(ξα  is a 1C  function of ξ  in ]1,0[  satisfying 1)0( =α  and 0)1( =α , )(ηβ  is a 1C  function of η  in 

]1,0[  satisfying 1)0( =β  and 0)1( =β , and the parametric space of the Coons patch is ]1,0[]1,0[),( ×∈ηξ . 
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),( ηξX

)(0 ξQ

)(1 ξQ

)(0 ηP )(1 ηP

ξ
η

)0()0( 00 PQ =

)1()0( 01 PQ =

)0()1( 10 PQ =

)1()1( 11 PQ =

 
Fig. 2-1    Illustration of the boundary curves on a Coons patch  

 The two functions )(ξα  and )(ηβ  are referred to as the blending functions of a Coons patch. As the four 

curves are all 1C  continuous, ),( ηξX  has partial derivatives in the entire parameter domain. By its definition, it 

can be easily verified that the mapping ),( ηξX  is boundary conforming; that is, we have )()0,( 0 ξξ QX = , 

)()1,( 1 ξξ QX = , )(),0( 0 ηη PX = , and )(),1( 1 ηη PX = . Therefore, )(0 ξQ , )(1 ξQ , )(0 ηP  and )(1 ηP  are the 

boundary curves of the corresponding Coons patch. 

In ),( ηξX , the four curves are connected in the way that )0()1( 10 PQ = , )1()1( 11 QP = , )1()0( 01 PQ = , and 

)0()0( 00 QP =  (illustrated in Fig. 2-1); points )0(0Q , )1(0Q , )0(1Q , and )1(1Q  are the corner points of 

),( ηξX . Since the four curves are given conditions, they cannot be changed in our computation. The blending 

function )(ξα  gives an interpolation between )(0 ηP  and )(1 ηP , and )(ηβ  gives the interpolation between 

)(0 ξQ  and )(1 ξQ . They are not restricted to be one-parameter functions though; two-parameter functions can 

also be used. 

If the four boundary curves of a Coons patch ),( ηξX  all lie in a common plane, obviously ),( ηξX  also 

lies in that plane, i.e., it is a planar Coons patch. Unless specially noted in the context, hereafter a planar Coons 

patch is assumed. As it is planar, the set of all the points of ),( ηξX  for ]1,0[]1,0[),( ×∈ηξ , denoted as XΩ , 

form a compact region in the vu −  plane. On the other hand, since the four defining curves of ),( ηξX  – 

)(0 ξQ , )(1 ξQ , )(0 ηP  and )(1 ηP  – also all lie in this same plane, they enclose a simple region Ω . We next 

define an important criterion on the relationship between the two regions. 

Definition 2.2 A Coons patch ),( ηξX  is said to be a graph-mapping if it is a one-to-one mapping between 

the square ]1,0[]1,0[ ×  in the ηξ −  plane and the region XΩ . 
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Since an ),( ηξX  is always boundary conforming, one can prove that the two regions XΩ  and Ω  are 

identical to each other if ),( ηξX  is a graph-mapping. Moreover, because a graph-mapping ),( ηξX  is one-to-

one, one can mesh the region XΩ , and hence Ω , by simply first uniformly meshing the square ]1,0[]1,0[ ×  in 

the ηξ −  plane and then map this mesh to XΩ  (and Ω ) by the mapping ),( ηξX , which is guaranteed to be 

free of self-overlapping. As Ω can be taken as the parametric area in the vu −  plane of a trimmed surface TS , a 

meshing of  Ω  thus introduces a valid meshing of TS . 

 But, exactly how should this graph-mapping be rigorously and mathematically characterized? This calls for 

the introduction of the governing function as described in the next section. 

 

 

3. Governing Equation 

In this section, the governing equation to eliminate the self-overlap is derived. Let’s add a virtual axis 

w perpendicular to the vu −  plane, i.e., vuw ×= . A Coons patch ),( ηξX  now is a planar region embedded in 

the wvu ×× space, denoted as ),( ηξX = 
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, where ),( ηξU , ),( ηξV , and ),( ηξW are the components 

of ),( ηξX on the ,,vu and w axis respectively (note that ),( ηξW is a constant zero). We define the unit 

“normal vector” at any point ),( 00 ηξ  on the patch ),( ηξX  as ),( 00 ηξN  = 

),( 00 ηξ
ηξ

ηξ

XX
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×

×
. A point ),( 00 ηξ  

is said to be singular if its corresponding  ηξ XX ×  is a zero vector. The lemma below is important as it 

stipulates the condition for guaranteeing the graph-mapping property. 

Lemma 3.1 The Coons patch ),( ηξX =
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is a graph-mapping if and only if there is no any singular 

point in the square ]1,0[]1,0[ × .  

 

(The proof is given in Appendix A)) 
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 Based on the above lemma, the following useful proposition is in order. 

Proposition 3.1 If the normal at every point to the Coons patch ),( ηξX  has the same sign in w , then ),( ηξX  

is a graph-mapping. 

Without loss of generality, we can assume that the sign in w of the normal vectors of a graph-mapping 

),( ηξX  is always positive. To facilitate the formulation, we use the following two definitions. 

Definition 3.1 A point ),( dd ηξ is called a shadow point of ),( ηξX  if the normal at ),( ddX ηξ  is along the 

negative w-axis. 

Definition 3.2 The set dR  of all the shadow points of ),( ηξX  is defined as the shadow region of ),( ηξX . 

Shadow points must be prevented at the corners. It is because the normal direction at a corner point is 

determined and only determined by the two tangents on its related two boundary curves. No matter how you 

change the blending functions of the Coons patch, the tangents on the boundary curves are not changed. Thus, 

the following assumption is imposed on the four defining curves. 

Assumption 3.1 The normals of ,,, 010 PQQ  and 1P  at the four corners respectively are along the positive w-

axis. 

From the above analysis, we find that the governing equation should be a function indicating the area of the 

shadow region of ),( ηξX . Since the projection of ηξ XX ×  along the w-axis is 
vuvu

XXXX ξηηξ −  (where 

ξξ UX
u

= , ηη UX
u

= , ξξ VX
v

= , and ηη VX
v

= ), the final governing equation to construct a non-self-

overlapping planar Coons patch on four given boundaries is 

0)]([ =−−Η∫∫Ψ ηξξηηξ ddXXXX
vuvu

,                                                 (3-1) 

where )(LΗ  is the Heaviside function, and Ψ  is the overall domain of ]1,0[]1,0[),( ×∈ηξ . Actually, the left 

part of equation (3-1) is exactly the area of the shadow region in the vu −  space. 

 

 

4. One-parameter Blending Function 
 

To achieve (3-1), we use the functional optimization method to determine the algebraic function of a non-

self-overlapping planar Coons patch within the Jordan curve formed by )(0 ξQ , )(1 ξQ , )(0 ηP , and )(1 ηP . In 
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the definition of a Coons patch, only the two blending functions, i.e., )(ξα  and )(ηβ , are flexible to be 

changed during the optimization. As polynomials are most widely used in computer-aided geometric design due 

to its many merits, we also use polynomials for the blending functions. They are one-parameter functions. Thus, 

the following proposition comes. 

Proposition 4.1 If a blending function )(ξα  of degree n  in ξ  direction and a blending function )(ηα  of 

degree m  in η  direction are used, we have totally 2−+ mn  degree of freedom to control the distribution of 

grid points inside ),( ηξX  in the vu −  parametric space. 

When )(ξα  is a polynomial of degree n , it can be represented by ∑
=

=
n

i

i
ia

0

)( ξξα . Since )(ξα  should 

satisfy 1)0( =α  and 0)1( =α , we can determine that 10 =a  and ∑
=

−−=
n

i

iaa

2

1 1 . Therefore, )(ξα  is 

expressed as 

∑∑
==

++−=
n

i

i
i

n

i

i aa

22

)1(1)( ξξξα                                                       (4-1) 

where niai ,...,2, = , are variables to be determined. Similarly, we can represent )(ηβ  by 
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where ,,...,2, mjb j =  are variables to be determined. Therefore, totally 2−+ mn  variables can be adjusted to 

determine the optimized algebraic function of ),( ηξX ; they form the solution vector of the functional 

optimization as ][ 22 mn bbaa LL=χ . 

From the governing equation (3-1), the objective function in the functional optimization is given as 

∫∫Ψ −−Η= ηξξηηξ ddXXXXA
vuvu
)]([ .                                                 (4-3) 

From the definition of Coons patch (Definition 2.1), the partial derivatives of ),( ηξX  are 
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From (4-1) and (4-2), we obtain ∑∑
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substituting them into ),( ηξξX  and ),( ηξηX , the following formulas are determined. 
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By the above formulas, the objective function to determine a non-self-overlapping planar Coons patch can be 

computed numerically. When optimizing the planar Coons patch, we conduct the Conjugate Gradient Method 

[27] to search for the final solution vector in the problem space. From (4-3), the gradient direction of χ  is 
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where )()( t
dt

d
t Η=δ . To calculate the equations (4-6) and (4-7), we need the formulas of 
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The final optimized algebraic functions of ),( ηξX  are computed iteratively; when µ<AA / , the iteration 

stops (where A  is the value of objective function, and A  is the area of the Coons patch ),( ηξX ). µ  is an 

empirical threshold number and in our system is set to 0.125%. To have the tendency to compute a global 

minimization, the following approximation for )(tΗ  and )(tδ  are usually adopted [28]: 
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1
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ε

t
t +=Η ,                                                         (4-12) 
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22 t
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As 0→ε , the approximation converges to give theoretical )(tΗ  and )(tδ . In our testing examples, we usually 

use 
π

ε
1

= , which makes 1)0( =εδ . The figures of )(tεΗ  and )(tεδ  with 
π

ε
1

=  are given as below. 
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(a) )(tεΗ  (b) )(tεδ  

Fig. 4-1    Approximation of )(tΗ  and )(tδ  
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(a) before optimization (b) )(ξα  and )(ηβ  in (a) 
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(c) after optimization (d) )(ξα  and )(ηβ  in (c) 

Fig. 4-2    Example III – algebraic grid generation after the functional optimization 

Fig. 4-2 shows an example of the grid (in vu −  plane) generated before and after the functional 

optimization when choosing 4== mn . At the beginning of the functional optimization, we initially choose 

ξξα −= 1)(  and ηηβ −= 1)( , which are straight lines (see Fig. 4-2b). After the functional optimization, they 

become polynomial curves of degree four (Fig. 4-2c). As demonstrated in the figure, the new non-linear 

blending functions successfully eliminate the self-overlapping. 
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5. Two-parameter Blending Function 
 

In our above solution, the blending function between )(0 ηP  and )(1 ηP , )(ξα , is independent of η  and the 

blending function between )(0 ξQ  and )(1 ξQ , )(ηβ , is independent of ξ , which makes the Coons patch not 

flexible enough to the given boundary curves. In this section, we explore the feasibility of dedicating the two 

blending functions as functions of both parameters, i.e., they become ),( ηξα  and ),( ηξβ . Accordingly, the 

equation of the planar Coons patch ),( ηξX  changes to 
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,                         (5-1) 

where ),( ηξα  and ),( ηξβ  should also satisfy the constraints of Coons patch: 

1),0( =ηα , 0),1( =ηα , 1)0,( =ξβ , and 0)1,( =ξβ  ( ]1,0[]1,0[),( ×∈ηξ ). 

Here, we express ),( ηξα  and ),( ηξβ  as 

∑∑
==

ΒΒ=
n

j
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i
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)()(),( ηξηξβ ,                                                  (5-3) 

where )(, ξmiΒ  and )(, ηnjΒ  are Bernstein basis functions of degree m  and n  – 
jkj

kj tt
k

j
t

−−







=Β )1()(, . To 

satisfy the constraints of Coons patch for ),( ηξα  and ),( ηξβ , by the properties of Bernstein basis function [1], 

we have 1,0 ≡ja , 0, ≡jma , 10, ≡ib , and 0, ≡nib . Thus, jia ,  ( 1,,1 −= mi L  and nj ,,0 L= ) and jib ,  

( mi ,,0 L=  and 1,,1 −= nj L ) are variables to be determined.  

Recall the objective function 

∫∫Ψ −−Η= ηξξηηξ ddXXXXA
vuvu
)]([ , 

during the optimization, the following formulas of partial derivatives of ),( ηξX  are needed. 
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where  
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can be obtained from (5-2) and (5-3), and ))()(()()( 1,1,1,, ttnt
dt

d
t njnjnjnj −−− Β−Β=Β=Β′ . By the objective 

function, the gradient direction of the solution vector is determined by 

∫∫Ψ ∂

∂
−

∂

∂
−

∂

∂
+

∂

∂
−−=

∂

∂
ηξδ ξ

η
η

ξ
η

ξ
ξ

η
ξηηξ ddX

a

X
X

a

X
X

a

X
X

a

X
XXXX

a

A
u

v

v

u

u

v

v

u

vuvu

jijijijiji

))](([
,,,,,

,        (5-7) 

∫∫Ψ ∂

∂
−

∂

∂
−

∂

∂
+

∂

∂
−−=

∂

∂
ηξδ ξ

η
η

ξ
η

ξ
ξ

η
ξηηξ ddX

b

X
X

b

X
X

b

X
X

b

X
XXXX

b

A
u

v

v

u

u

v

v

u

vuvu

jijijijiji

))](([
,,,,,

.        (5-8) 

Similar to the single parameter case, to compute the equations (5-7) and (5-8), we need to know 
jia
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where  
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Now we can compute the functional optimum of the two-parameter blending functions by the Conjugate 

Gradient Method using the same terminal condition as that of the optimization of the one-parameter blending 

functions – µ<AA / .  

Fig. 5-1 depicts the grid generation result of Example III by optimizing the planar Coons patch of two-

parameter blending functions ( 3== mn ).  We initially set  
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their related ),( ηξα  and ),( ηξβ  are displayed in Fig. 5-1b. When the functional optimization is completed, 

they become 
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with which the final ),( ηξα  and ),( ηξβ  are shown in Fig. 5-1d. 
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Fig. 5-1    Example III – functional optimization using two-parameter blending functions 
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6. Progressive Optimization 
 

Because our objective function in the functional optimization is concave (allowing many local minima – it 

is not the form of our objective function that leads these local minima; they are tightly related to the given 

boundary curves), the success of the numerical optimization algorithm depends critically on the initial position 

of the solution vector. We usually take the bilinear interpolation as an initial position of the solution vector; it 

however may be a very unsatisfying one to some strongly concaved boundaries (e.g., the one shown in Fig. 6-

1a). “Guessing” a good initial vector is hard. The basic idea we take to overcome this difficulty is to 

progressively achieve the functional optimum by gradually deforming a rectangle boundary region into the 

region Ω  bounded by the given curves, which we discuss in detail in this section.  

The initial shape, a rectangle, does not generate overlapping with a bilinear Coons patch ),(0 ηξX . When 

deforming the rectangle into the final shape Ω  by a linear interpolation, we check if overlap occurs and, once it 

is detected, the numerical optimization method presented is applied to ),(0 ηξX  to determine a new Coons 

patch mapping ),(1 ηξX  without self-overlap; the deformation will then continue. The deformation and 

functional optimization are applied alternatively on ),( ηξiX  (where i  represents the Coons patch mapping 

determined after i  times of the numerical optimization) until the final non-self-overlapping planar Coons patch 

),( ηξfX  of Ω  is obtained. We use the box { 00R , 01R , 11R , 10R } of Ω  as the initial rectangle region, where 

00R , 01R , 11R , 10R  are its four corner points in anti-clockwise sense. Thus, its four boundary curves are 
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                                                           (6-1) 

where )(0 ξRQ - )(0 ξQ , )(1 ξRQ - )(1 ξQ , )(0 ηRP - )(0 ηP , and )(1 ηRP - )(1 ηP  are related. Therefore, the four 

boundary curves of ),( ηξiX  are 
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                                            (6-2) 

where iλ  is the deformation factor, or the time, when the functional optimization is applied to ),( ηξiX  

( ]1,0[∈iλ ). At the beginning of the deformation, 0=iλ ; after the deformation is completed, 1=iλ . Also, we 

can get 
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Using )(0 ξiQ , )(1 ξiQ , )(0 ηiP , )(1 ηiP , )(0 ξ
ξ

iQ
∂

∂
, )(1 ξ

ξ
i

Q
∂

∂
, )(0 η

η
i

P
∂

∂
, and )(1 η

η
i

P
∂

∂
 in (6-2) and (6-3) 

to take place of )(0 ξQ , )(1 ξQ , )(0 ηP , )(1 ηP , )(0 ξQ′ , )(1 ξQ′ , )(0 ηP′ , and )(1 ηP′  in the equations of section 5, 

the functional optimum of ),( ηξiX  can be determined by the same method. 

During the deformation, the deformation factor increases from zero to one adaptively to the value increase 

of the objective function. The overall procedure of progressive optimization is given in pseudo-code in 

Algorithm ProgressiveOptimization() below. In Example IV (shown in Fig. 6-1), the non-self-overlapping 

planar Coons patch cannot be obtained by the pure numerical optimization even after iterating 10000 times; 

using Algorithm ProgressiveOptimization(), we obtain a final result without self-overlapping by only 30 

applications of the numerical optimization routine – in each time, less than 10 iterations are needed. The 

progressive results are shown in Fig. 6-2. 

Algorithm ProgressiveOptimization ( Ω ) 

Input: A region Ω  in the vu −  parametric space. 

Output: The non-self-overlap planar Coons patch ),( ηξfX  on Ω . 

1. Compute the bounding box of Ω , and use it to generate )(0 ξRQ , )(1 ξRQ , )(0 ηRP , and )(1 ηRP ; 

2. Build ),(0 ηξX  on )(0 ξRQ , )(1 ξRQ , )(0 ηRP , and )(1 ηRP  as a bilinear planar Coons patch; 

3. 1←i  and 00 ←λ ; 

4. do{ 

5. )1(2 1−−←∆ iλλ ; 

6. do{ 

7. 2/λλ ∆←∆ , and λλλ ∆+← −1ii ; 

8. Change the shape of ),( ηξiX  by iλ , and compute the objective function A  of ),( ηξiX ; 

9. Compute the area A  of ),( ηξiX ; 

10. }while( τ>)/( AA ); 

11. Compute the numerical optimum of blending functions in ),( ηξiX ; 

12. 1+← ii ; 

13. }while( 11 <−iλ ); 

14. ),(),( 1 ηξηξ −← if XX ; 

15. return ),( ηξfX ; 

(* in our testing, we choose %5.0=τ ) 
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Fig. 6-1    Example IV – result of progressive optimization ( 3== mn ) 
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(a) 1=i  525.01 =λ  (b) 5=i  9077.05 =λ  

  
(c) 16=i  9853.016 =λ  (d) 30=i  0.130 =λ  

Fig. 6-2    Example IV – progressive results 

 

7. Extension of Shape Control 
 

In the previous parts of this paper, the objective function of optimization (4-3) does not consider the shape 

control of each element. Actually, it is possible to add a shape control term in the objective function. The basic 

idea that if 0→⋅ ηξ XX  was maintained all over the patch, the shape of every element in the grid could be 

guaranteed in the ηξ −  plane. Thus, we add a new term  

∫∫Ψ += ηξηξηξ ddXXXXB
vvuu

2)( ,                                                     (7-1) 

to the objective function. The modified objective function is  

BwAwJ BA +=                                                                        (7-2) 

where A  is as given in (4-3), and Aw , Bw  are the factors to balance the weight between the term A and the 

term B. When the term B  is minimized to zero, the 0→⋅ ηξ XX  is guaranteed all over the patch.  
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In order to minimize the objective function, we need to have its gradients with respect to the solution 

vector. By equation (7-1), we have 
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Thus, together with equations (5-7) and (5-8), the gradients of J  with respect to jia ,  and jib ,  are computed by   
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The comparison of the non-self-overlapping Coons patch generation with and without shape control is given in 

the following figures. Fig. 7-1 shows the bilinear Coons patch before optimization. Obviously, the patch is self-

overlapped. Fig. 7-2a gives the optimized patch with weights 0.1=Aw  and 0=Bw  – the shape control is not 

cared (the result blending functions without shape control are shown in Fig. 7-2b). The mesh is stretched in the 

middle. Fig. 7-2c and 7-2d illustrate the result with shape control by changing Bw  from 0 to 1310− , which leads 

to less stretch inside the Coons patch. 
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 Fig. 7-1    Example V – before optimization 
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(c) after optimization without shape control 

( 0.1=Aw  and 0=Bw ) 

(d) ),( ηξα  and ),( ηξβ  in (c) 
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(e) after optimization with shape control   

( 0.1=Aw  and 1310−=Bw ) 

(f) ),( ηξα  and ),( ηξβ  in (e) 

Fig. 7-2    Example V – optimization with vs. without shape control 
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This shape control idea can be further extended to control the shape of elements on the given parametric 

surface. If 0→⋅ ηξ SS  was maintained all over the patch, the shape of every element in the grid could be 

guaranteed on the parametric surface S . The term B of the objective function could be modified to 

∫∫Ψ ++= ηξηξηξηξ ddSSSSSSB
zzyyxx

2)(*  

to achieve this condition. Therefore, the new objective function might be SwAwJ SA +=* . 

 

8. Experimental Results and Discussion 
 

Fig. 8-1 gives the algebraic grid generation results of trimmed surfaces in Example I and II (initially given 

in Fig. 1-2), and their final blending functions ( 3== mn ) of the non-self-overlapping planar Coons patch are 

also shown. When the shape of the trimmed surface in the parametric space is very convoluted (e.g., an n-sided 

or with a hole – such as Example V shown in Fig. 8-2a), the given region is subdivided into several 4-sided sub-

patches (Fig. 8-2b), where all patches satisfy Assumption 3.1; then the approach presented in this paper can be 

applied to generate the final algebraic grids (Fig. 8-2c and 8-2d show the result of example V). 

When applying the functional optimization to obtain the algebraic equation of the Coons patch, we should 

choose the order of blending functions carefully. If the order of blending functions is lower than the order of the 

given four boundary curves, the functional optimization may not be convergent; however, higher order 

polynomials tend to make the final shape of the blending functions vibrate violently. Thus, we usually let the 

order of blending functions to be the same as that of the boundary curves or just one order higher.  
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(a) result of Example I  (b) result of Example II 
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Fig. 8-1    Algebraic grid generation results of Example I and II 
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(a) given region in vu −  space (b) given region is subdivided into five patches 

  
(c) final grids in vu −  space (d) final grids on the trimmed surface 

Fig. 8-2    Example VI – complex region with multiple patches 

 

9. Conclusion 
 

The ability to generate a grid system in a 4-sided region bounded by parametric boundary curves of any 

form with only 1C  continuity is a significant advantage of the Coons patch method over other algebraic 

methods for building a structured grid. This not only averts the singularity of elliptic PDE methods when only 

1C  continuous boundary available, but also avoids the error generated when converting generic parametric 1C  

boundary curves into curves with a specified representation form. However, the self-overlapping phenomenon 

frequently encountered in Coons patch mapping has been perplexing both theoreticians and practitioners for a 

long time and limiting its usage in many scientific and engineering practices. In this paper, we present an 

algorithm that uses the functional optimization method to determine the blending functions in a Coons patch so 

that the self-overlap can be prevented. Our initial test results are encouraging: in a variety of cases where self-
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overlapping occurs if linear or naïve blending functions were used, the found blending functions after the 

functional optimization successfully avert the self-overlapping. A possible extension is also given to 

demonstrate how to control the shape of elements by adding a new term on the objective function. Coupled with 

any mesh smoothing methods [2], our algorithm provides a promising meshing tool in engineering. 

The main disadvantage of our Coons patch method is the computing time. The time cost of examples in this 

paper is shown in Table 9-1. Usually, several minutes are needed. All tests are performed on a PIII 500 PC with 

a program written in Java. In the current implementation, we use a very primitive numerical method to compute 

the functional optimization. It is believed that with more efficient optimization algorithms and with the 

increasing processing power available on every desktop, the running time can be shortened significantly. 

Moreover, the following topics or improvements are worth future research:  

• In our extension of element shape control, the shapes of elements are controlled in the ηξ −  plane; 

however, as described at the end of section 7, our experiment has already shown the possibility of 

controlling the shape of elements on the given trimmed parametric surface. 

• Also, it will be interesting to see if the ideas of this paper can be extended into three-dimensional space 

to solve the algebraic grid generation problem in a given closed space using a Coons solid. Then, the 

governing equation may come from the same idea as Equation (3-1) by detecting some properties of the 

Coons solid in a virtual newly added axis direction. 

Table 9-1    Time cost of examples  

Example  Result Figures Optimization Type Blending Function Type Time cost 

I 8-1a  8-2c  Progressive Two-parameter ( 3== mn ) 3.4 min. 

II 8-1b  8-1d Progressive Two-parameter ( 3== mn ) 5.7 min. 

4-2 Pure numerical One-parameter ( 4== mn ) 1.7 min. 
III 

5-1 Pure numerical Two-parameter ( 3== mn ) 2.3 min. 

IV 6-1 Progressive Two-parameter ( 3== mn ) 12.1 min. 

7-1c  7-1d Pure numerical Two-parameter ( 3== mn ) 3.7 min. 
V 

7-1e  7-1f Pure numerical Two-parameter ( 3== mn ) 4.1 min. 

VI 8-2 Progressive Two-parameter ( 3== mn ) 4.5 min. 

 *The grid size of our numerical integration is 2020 × . 
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Appendix A 
 

Lemma  The Coons patch ),( ηξX =
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is a graph-mapping if and only if there is no any singular 

point in the square ]1,0[]1,0[ × . 

Proof. Let us argument the ),( ηξX  by 
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X  with ηξηξ baW +=),(*  for some 

real number a and b. By properly choosing a and b, one can enforce ),(* ηξX  to have normal vector 

everywhere, thus it is a smooth regular surface in the wvu ××  space. Suppose first that ),( ηξX  is not a graph-

mapping. This means that there exist two distinct pairs ]1,0[]1,0[),( 00 ×∈ηξ  and ]1,0[]1,0[),( 11 ×∈ηξ , such 

that )),(),,(()),(),,(( 11
*

11
*

00
*

00
* ηξηξηξηξ VUVU = . By properly selecting a and b, one can also ensure that 

),(),( 11
*

00
* ηξηξ WW ≠ .  Let us intersect ),(* ηξX  with a plane Π  that is parallel to the wu −  plane and 

contains the two points  

)),(),,(),,(( 00
*

00
*

00
*

0 ηξηξηξ WVUp =  and )),(),,(),,(( 11
*

11
*

11
*

1 ηξηξηξ WVUp = , 

resulting in a regular curve σ . Consider the portion *σ  of σ  between the two points. Since *σ  is regular and 

bounded, it must have a u-extreme point )),(),,(),,(( ********* ηξηξηξ WVUp =  where the normal vector n  

to the curve is parallel to the u-axis, as shown in Fig. A-1a. Since the projection of the normal N  to the surface 

),(* ηξX  at point p  in plane Π  can be easily seen to identify with n , we have 0=⋅ wN . This translates to  

),(),(),(),( ************ ηξηξηξηξ ξηηξ VUVU = , 

i.e., ),(),(),(),( ******** ηξηξηξηξ ξηηξ VUVU = .  This means ),( ** ηξ  is a singular point of ),( ηξX . 

Conversely, let ),( ** ηξ  be a singular point of ),( ηξX ; hence, ),(),(),(),( ******** ηξηξηξηξ ξηηξ VUVU = . 

Consequently, the normal N  to the surface ),(* ηξX  at ),( ** ηξ  is perpendicular to the w-axis. Without loss of 

generality, we can assume N  is parallel to the u-axis. Intersecting ),(* ηξX  with the plane ),( *** ηξVv = , we 

obtain a regular curve σ . As )),(),,(),,((* ********* ηξηξηξ WVUp =  is a local u-extreme point on this curve, 
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one can find a real number 0>δ  such that the vertical line δηξ −= ),( ***Uu  intersects σ  at least twice 

(assuming *p  is a u-maximum point). Let  

)),(),,(),,(( 00
*

00
*

00
*

0 ηξηξηξ WVUp =  and  p1= )),(),,(),,(( 11
*

11
*

11
* ηξηξηξ WVU  

be two such intersection points for some ),(),( 1100 ηξηξ ≠ , as shown in Fig. A-1b. Obviously, we have 

)),(),,(()),(),,(( 11
*

11
*

00
*

00
* ηξηξηξηξ VUVU = . Since ),(),,()),(),,(( ** ηξηξηξηξ VUVU = , we conclude 

that ),( ηξX  maps two distinct points in the ηξ −  domain to a same point in the region XΩ . This completes 

the proof.   

Q.E.D. 
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Fig. A-1    Proof of Lemma  

 


