
 1

Algebraic grid generation on trimmed parametric surface using

non-self-overlapping planar Coons patch

Charlie C. L. Wang

Department of Automation and Computer-Aided Engineering, The Chinese University of Hong Kong,

Shatin, N.T., Hong Kong

E-mail: cwang@acae.cuhk.edu.hk

Kai Tang
*

Department of Mechanical Engineering, The Hong Kong University of Science and Technology,

Clear Water Bay, Kowloon, Hong Kong

E-mail: mektang@ust.hk

Abstract

Using a Coons patch mapping to generate the structured grid in the parametric region of a trimmed surface can

avoid the singularity of elliptic PDE methods when only 1C continuous boundary is given; the error of

converting generic parametric 1C boundary curves into a specified representation form is also avoided.

However, overlap may happen on some portions of the algebraically generated grid when a linear or naïve cubic

blending function is used in the mapping; this severely limits its usage in most of engineering and scientific

applications where a grid system of non-self-overlapping is strictly required. To solve the problem, non-trivial

blending functions in a Coons patch mapping should be determined adaptively by the given boundary so that

self-overlapping can be averted. We address the adaptive determination problem by a functional optimization

method. The governing equation of the optimization is derived by adding a virtual dimension in the parametric

space of the given trimmed surface. Both one-parameter and two-parameter blending functions are studied. To

resolve the difficulty of guessing good initial blending functions for the conjugate gradient method used, a

progressive optimization algorithm is then proposed which has been shown to be very effective in a variety of

practical examples. Also, an extension is on the objective function to control the element shape. Finally,

experiment results are shown to illustrate the usefulness and effectiveness of the presented method.

Keywords: algebraic grid generation, trimmed surface, parametric space, self-overlap, and Coons patch

*
 Corresponding author: mektang@ust.hk

 2

1. Introduction

This paper presents a method for generating algebraic grids on a trimmed surface by fitting a non-self-

overlapping planar Coons patch into the parametric region of the given surface. In computer-aided engineering,

geometric modeling, computer graphics, and many other applications, a parametric surface patch usually

intersects with other surfaces, and thus only a portion of the surface patch is used in defining a meaningful shape

[1]. The remaining portion of parametric surface patch S after trimming by other surfaces is called a trimmed

(parametric) surface TS . TS is constrained by the same mathematical surface equation as),(vuS , but its

parametric domain is only a portion of that of S . The parametric area of TS –
TSΡ lies inside

]1,0[]1,0[),(×∈vu (assuming the vu − domain of S is normalized) and is bounded by a number of curves

(see Fig. 1-1). Each boundary curve of
TSΡ is expressed as a parametric equation of the form [])()(tvtub iii = ,

where]1,0[∈t .

(a) a trimmed surface (b) the parametric area in vu − domain

Fig. 1-1 A trimmed surface and its related parametric area

An essential task in many engineering disciplines is to approximate a trimmed surface by an aggregate of

simple planar elements, e.g., triangles and quadrilateral elements; this is referred to as the surface meshing

operation. Surface mesh generation methods have been studied for many years. Both structured and unstructured

grids can be constructed on three-dimensional surfaces [2]. The two most powerful analysis tools in engineering

are the finite element method and the finite difference method. The finite element method usually conducts

either triangular grids or quadrilateral grids, and the grids can be structured or unstructured. Quadrilateral grids

in general have better quality than the triangular grids. Unstructured 2D quadrilateral grids can be constructed

directly by geometry decomposition [3-6], boundary advancing [7-10], and skeleton construction [11, 12]; or

indirectly by the background triangular grids [13-17]. However, the finite difference method generally uses

structured quadrilateral grids (or simply called structured grids). The structured grids can be generated

 3

algebraically or as the solution of Partial Deferential Equations (PDEs). Algebraic grid generation is some form

of interpolation from boundary points – different approaches use different kinds of interpolation [18-20].

Overlap may, however, happen on some portions of algebraically generated grids. Also, error may be generated

when converting generic boundary curves into curves with a specified representation. Grid generation is actually

a boundary-value problem, so grids can be generated from point distribution on boundaries by solving elliptic

PDEs in the field [21-25]. The smoothness properties and extremum principles of some such PDE systems can

serve to produce smooth grids without boundary overlap. However, since the elliptic PDE methods require

second derivative, singularity appears when any boundary curve of
TSΡ is only 1C continuity.

Similar to other algebraic grid generation approaches, our grid construction method also consists of three

steps: 1) forward mapping; 2) grid generation; and 3) back mapping. The forward mapping is the mapping of the

three-dimensional physical surface TS to its underlying parametric area
TSΡ . Once the forward mapping is

finished, the grids are produced in
TSΡ by fitting a planar Coons patch),(ηξX . After establishing the uniform

NM × grid in the parametric domain of),(ηξCS by









==

==

),,0(

),,0(

Nj
N

j

Mi
M

i

j

i

L

L

η

ξ
, (1-1)

the NM × grid on the physical trimmed space can be expressed by the back mapping in the form

))),(()),,(((
, jijiT XvXuSS
ji

ηξηξ= , (1-2)

where the functions)(Lu and)(Lv represent the u and v coordinates of a point on the Coons patch.

However, as mentioned above, overlap may happen on the boundary of
TSΡ or even in the middle of

TSΡ ,

which of course influences the final surface grid (see Fig. 1-2). Aimed at resolving this perplexing issue, a

method based on finding proper blending functions in),(ηξX is explored in this paper, which assures the non-

self-overlapping property. Since using a Coons patch does not need to convert the representation of boundary

curves, no converting error is generated in this method. For the
TSΡ with complex boundaries, the whole

TSΡ

can be subdivided into several sub-regions, where each region has only four boundary curves and its corner

points satisfy the non-self-overlapping condition.

We organize the paper as follows. In section 2, some necessary definitions and preliminaries are first given.

Next, the governing equation is derived in section 3 by the normal of the Coons patch in a virtual direction – w .

 4

Based on the governing equation, the formulas to compute the functional optimum of one-parameter blending

functions in the Coons patch is presented in section 4; and in section 5, the blending functions are extended to

two-parameter functions to achieve more flexibility. In section 6, to overcome the difficulty of “guessing” a

good initial blending function, an algorithm for computing the optimum progressively is given. Finally, section

7 shows the possible extension of our method to control the shape of elements.

(a) example I – overlap occurs near the boundary (b) example II – overlap occurs in the middle

(c) surface grid of example I (d) surface grid of example II

Fig. 1-2 Overlap occurs near the boundary or in the middle of
TSΡ

2. Preliminary

We first give necessary definitions and preliminaries.

Definition 2.1 Given four 1C curves)(0 ξQ ,)(1 ξQ ,)(0 ηP and)(1 ηP)1,0(≤≤ ηξ in three-dimensional

space that form a closed curve, the Coons patch defined on them is

[] [] [] 








−








−−









−
+








−=

)(1

)(

)1()1(

)0()0(
)(1)(

)(1

)(
)()(

)(

)(
)(1)(),(

10

10
10

1

0

ηβ

ηβ
ξαξα

ηβ

ηβ
ξξ

η

η
ξαξαηξ

QQ

QQ
QQ

P

P
X

where)(ξα is a 1C function of ξ in]1,0[satisfying 1)0(=α and 0)1(=α ,)(ηβ is a 1C function of η in

]1,0[satisfying 1)0(=β and 0)1(=β , and the parametric space of the Coons patch is]1,0[]1,0[),(×∈ηξ .

 5

),(ηξX

)(0 ξQ

)(1 ξQ

)(0 ηP)(1 ηP

ξ
η

)0()0(00 PQ =

)1()0(01 PQ =

)0()1(10 PQ =

)1()1(11 PQ =

Fig. 2-1 Illustration of the boundary curves on a Coons patch

 The two functions)(ξα and)(ηβ are referred to as the blending functions of a Coons patch. As the four

curves are all 1C continuous,),(ηξX has partial derivatives in the entire parameter domain. By its definition, it

can be easily verified that the mapping),(ηξX is boundary conforming; that is, we have)()0,(0 ξξ QX = ,

)()1,(1 ξξ QX = ,)(),0(0 ηη PX = , and)(),1(1 ηη PX = . Therefore,)(0 ξQ ,)(1 ξQ ,)(0 ηP and)(1 ηP are the

boundary curves of the corresponding Coons patch.

In),(ηξX , the four curves are connected in the way that)0()1(10 PQ = ,)1()1(11 QP = ,)1()0(01 PQ = , and

)0()0(00 QP = (illustrated in Fig. 2-1); points)0(0Q ,)1(0Q ,)0(1Q , and)1(1Q are the corner points of

),(ηξX . Since the four curves are given conditions, they cannot be changed in our computation. The blending

function)(ξα gives an interpolation between)(0 ηP and)(1 ηP , and)(ηβ gives the interpolation between

)(0 ξQ and)(1 ξQ . They are not restricted to be one-parameter functions though; two-parameter functions can

also be used.

If the four boundary curves of a Coons patch),(ηξX all lie in a common plane, obviously),(ηξX also

lies in that plane, i.e., it is a planar Coons patch. Unless specially noted in the context, hereafter a planar Coons

patch is assumed. As it is planar, the set of all the points of),(ηξX for]1,0[]1,0[),(×∈ηξ , denoted as XΩ ,

form a compact region in the vu − plane. On the other hand, since the four defining curves of),(ηξX –

)(0 ξQ ,)(1 ξQ ,)(0 ηP and)(1 ηP – also all lie in this same plane, they enclose a simple region Ω . We next

define an important criterion on the relationship between the two regions.

Definition 2.2 A Coons patch),(ηξX is said to be a graph-mapping if it is a one-to-one mapping between

the square]1,0[]1,0[× in the ηξ − plane and the region XΩ .

 6

Since an),(ηξX is always boundary conforming, one can prove that the two regions XΩ and Ω are

identical to each other if),(ηξX is a graph-mapping. Moreover, because a graph-mapping),(ηξX is one-to-

one, one can mesh the region XΩ , and hence Ω , by simply first uniformly meshing the square]1,0[]1,0[× in

the ηξ − plane and then map this mesh to XΩ (and Ω) by the mapping),(ηξX , which is guaranteed to be

free of self-overlapping. As Ω can be taken as the parametric area in the vu − plane of a trimmed surface TS , a

meshing of Ω thus introduces a valid meshing of TS .

 But, exactly how should this graph-mapping be rigorously and mathematically characterized? This calls for

the introduction of the governing function as described in the next section.

3. Governing Equation

In this section, the governing equation to eliminate the self-overlap is derived. Let’s add a virtual axis

w perpendicular to the vu − plane, i.e., vuw ×= . A Coons patch),(ηξX now is a planar region embedded in

the wvu ×× space, denoted as),(ηξX =

















),(

),(

),(

ηξ

ηξ

ηξ

W

V

U

, where),(ηξU ,),(ηξV , and),(ηξW are the components

of),(ηξX on the ,,vu and w axis respectively (note that),(ηξW is a constant zero). We define the unit

“normal vector” at any point),(00 ηξ on the patch),(ηξX as),(00 ηξN =

),(00 ηξ
ηξ

ηξ

XX

XX

×

×
. A point),(00 ηξ

is said to be singular if its corresponding ηξ XX × is a zero vector. The lemma below is important as it

stipulates the condition for guaranteeing the graph-mapping property.

Lemma 3.1 The Coons patch),(ηξX =

















),(

),(

),(

ηξ

ηξ

ηξ

W

V

U

is a graph-mapping if and only if there is no any singular

point in the square]1,0[]1,0[× .

(The proof is given in Appendix A))

 7

 Based on the above lemma, the following useful proposition is in order.

Proposition 3.1 If the normal at every point to the Coons patch),(ηξX has the same sign in w , then),(ηξX

is a graph-mapping.

Without loss of generality, we can assume that the sign in w of the normal vectors of a graph-mapping

),(ηξX is always positive. To facilitate the formulation, we use the following two definitions.

Definition 3.1 A point),(dd ηξ is called a shadow point of),(ηξX if the normal at),(ddX ηξ is along the

negative w-axis.

Definition 3.2 The set dR of all the shadow points of),(ηξX is defined as the shadow region of),(ηξX .

Shadow points must be prevented at the corners. It is because the normal direction at a corner point is

determined and only determined by the two tangents on its related two boundary curves. No matter how you

change the blending functions of the Coons patch, the tangents on the boundary curves are not changed. Thus,

the following assumption is imposed on the four defining curves.

Assumption 3.1 The normals of ,,, 010 PQQ and 1P at the four corners respectively are along the positive w-

axis.

From the above analysis, we find that the governing equation should be a function indicating the area of the

shadow region of),(ηξX . Since the projection of ηξ XX × along the w-axis is
vuvu

XXXX ξηηξ − (where

ξξ UX
u

= , ηη UX
u

= , ξξ VX
v

= , and ηη VX
v

=), the final governing equation to construct a non-self-

overlapping planar Coons patch on four given boundaries is

0)]([=−−Η∫∫Ψ ηξξηηξ ddXXXX
vuvu

, (3-1)

where)(LΗ is the Heaviside function, and Ψ is the overall domain of]1,0[]1,0[),(×∈ηξ . Actually, the left

part of equation (3-1) is exactly the area of the shadow region in the vu − space.

4. One-parameter Blending Function

To achieve (3-1), we use the functional optimization method to determine the algebraic function of a non-

self-overlapping planar Coons patch within the Jordan curve formed by)(0 ξQ ,)(1 ξQ ,)(0 ηP , and)(1 ηP . In

 8

the definition of a Coons patch, only the two blending functions, i.e.,)(ξα and)(ηβ , are flexible to be

changed during the optimization. As polynomials are most widely used in computer-aided geometric design due

to its many merits, we also use polynomials for the blending functions. They are one-parameter functions. Thus,

the following proposition comes.

Proposition 4.1 If a blending function)(ξα of degree n in ξ direction and a blending function)(ηα of

degree m in η direction are used, we have totally 2−+ mn degree of freedom to control the distribution of

grid points inside),(ηξX in the vu − parametric space.

When)(ξα is a polynomial of degree n , it can be represented by ∑
=

=
n

i

i
ia

0

)(ξξα . Since)(ξα should

satisfy 1)0(=α and 0)1(=α , we can determine that 10 =a and ∑
=

−−=
n

i

iaa

2

1 1 . Therefore,)(ξα is

expressed as

∑∑
==

++−=
n

i

i
i

n

i

i aa

22

)1(1)(ξξξα (4-1)

where niai ,...,2, = , are variables to be determined. Similarly, we can represent)(ηβ by

∑∑
==

++−=
m

j

j
j

m

j

j bb

22

)1(1)(ηηηβ (4-2)

where ,,...,2, mjb j = are variables to be determined. Therefore, totally 2−+ mn variables can be adjusted to

determine the optimized algebraic function of),(ηξX ; they form the solution vector of the functional

optimization as][22 mn bbaa LL=χ .

From the governing equation (3-1), the objective function in the functional optimization is given as

∫∫Ψ −−Η= ηξξηηξ ddXXXXA
vuvu
)]([. (4-3)

From the definition of Coons patch (Definition 2.1), the partial derivatives of),(ηξX are

[] [] [] 








−








′−′−









−
′′+








′−′=








=

∂

∂
=

)(1

)(

)1()1(

)0()0(
)()(

)(1

)(
)()(

)(

)(
)()(

),(

10

10
10

1

0

ηβ

ηβ
ξαξα

ηβ

ηβ
ξξ

η

η
ξαξα

ξ

ηξ

ξ

ξ
ξ

QQ

QQ
QQ

P

P

V

UX
X

 and

 9

[] [] [] 








′−

′








−−









′−

′
+








′

′
−=








=

∂

∂
=

)(

)(

)1()1(

)0()0(
)(1)(

)(

)(
)()(

)(

)(
)(1)(

),(

10

10
10

1

0

ηβ

ηβ
ξαξα

ηβ

ηβ
ξξ

η

η
ξαξα

η

ηξ

η

η
η

QQ

QQ
QQ

P

P

V

UX
X .

From (4-1) and (4-2), we obtain ∑∑
=

−

=

+−−=′
n

i

i
i

n

i

i iaa

2

1

2

1)(ξξα and ∑∑
=

−

=

+−−=′
m

j

j
j

m

j

j jbb

2

1

2

1)(ηηβ , after

substituting them into),(ηξξX and),(ηξηX , the following formulas are determined.





















−+

++−










−

−














+−−−














++−′−′+′+














+−−−=

∑∑

∑∑
∑∑

∑∑∑∑

==

==

=

−

=

===

−

=

m

j

j
j

m

j

j

m

j

j
j

m

j

jTn

i

i
i

n

i

i

m

j

j
j

m

j

j

n

i

i
i

n

i

i

bb

bb

QQ

QQ
iaa

bbQQQuiaaPPX

22

22

11

00

2

1

2

22

100

2

1

2

10

)1(

)1(1

)1()0(

)1()0(
1

)1())()(()(1))()((),(

ηη

ηη

ξ

ηηξξξηηηξξ

 (4-4)














+−−









−

−





















−+

++−

−














+−−−+














++−′−′+′=

∑∑
∑∑

∑∑

∑∑∑∑

=

−

=

==

==

=

−

===

m

j

j
j

m

j

j

T

n

i

i
i

n

i

i

n

i

i
i

n

i

i

m

j

j
j

m

j

j

n

i

i
i

n

i

i

jbb
QQ

QQ

aa

aa

jbbQQaaPPPX

2

1

210

10

22

22

2

1

2

10

22

100

1
)1()1(

)0()0(

)1(

)1(1

1))()(()1())()(()(),(

η

ξξ

ξξ

ηξξξξηηηηξη

 (4-5)

By the above formulas, the objective function to determine a non-self-overlapping planar Coons patch can be

computed numerically. When optimizing the planar Coons patch, we conduct the Conjugate Gradient Method

[27] to search for the final solution vector in the problem space. From (4-3), the gradient direction of χ is

∫∫Ψ ∂

∂
−

∂

∂
−

∂

∂
+

∂

∂
−−=

∂

∂
ηξδ ξ

η
η

ξ
η

ξ
ξ

η
ξηηξ ddX

a

X
X

a

X
X

a

X
X

a

X
XXXX

a

A
u

v

v

u

u

v

v

u

vuvu

iiiii

))](([, (4-6)

∫∫Ψ ∂

∂
−

∂

∂
−

∂

∂
+

∂

∂
−−=

∂

∂
ηξδ ξ

η
η

ξ
η

ξ
ξ

η
ξηηξ ddX

b

X
X

b

X
X

b

X
X

b

X
XXXX

b

A
u

v

v

u

u

v

v

u

vuvu

jjjjj

))](([. (4-7)

where)()(t
dt

d
t Η=δ . To calculate the equations (4-6) and (4-7), we need the formulas of

ia

X

∂

∂ ξ
,

ia

X

∂

∂ η
,

ib

X

∂

∂ ξ
,

and
ib

X

∂

∂ η
. They are determined from (4-4) and (4-5) as

)1(

)1(

)1(1

)1()0(

)1()0(
)()(

),(
1

22

22

11

00
10

−

==

== +−











































−+

++−










−

−
−−=

∂

∂

∑∑

∑∑
i

m

j

j
j

m

j

j

m

j

j
j

m

j

jT

i

i

bb

bb

QQ

QQ
PP

a

X
ξ

ηη

ηη

ηη
ηξξ

, (4-8)

 10

)(1))1()1()0()0(()()(
),(

2

1

2

101010
i

m

j

j
j

m

j

j

i

jbbQQQQPP
a

X
ξξηηη

ηξη
+−




























+−−+−−−′−′=

∂

∂
∑∑

=

−

=

, (4-9)

)(1))1()0()1()0(()()(
),(

2

1

2

110010
j

n

i

i
i

n

i

i
j

iaaQQQQQQ
b

X
ηηξξξ

ηξξ
+−




























+−−+−−−′−′=

∂

∂
∑∑

=

−

=

, (4-10)

)1(
)1()1(

)0()0(

)1(

)1(1

)()(
),(

1

10

10

22

22
10

−

==

== +−
































−

−





















−+

++−

−−=
∂

∂

∑∑

∑∑
j

T

n

i

i
i

n

i

i

n

i

i
i

n

i

i

j

j
QQ

QQ

aa

aa

QQ
b

X
η

ξξ

ξξ

ξξ
ηξη

. (4-11)

The final optimized algebraic functions of),(ηξX are computed iteratively; when µ<AA / , the iteration

stops (where A is the value of objective function, and A is the area of the Coons patch),(ηξX). µ is an

empirical threshold number and in our system is set to 0.125%. To have the tendency to compute a global

minimization, the following approximation for)(tΗ and)(tδ are usually adopted [28]:

))arctan(
2

1(
2

1
)(

επ
ε

t
t +=Η , (4-12)

)(
)(

22 t
t

+
=

επ

ε
δ ε . (4-13)

As 0→ε , the approximation converges to give theoretical)(tΗ and)(tδ . In our testing examples, we usually

use
π

ε
1

= , which makes 1)0(=εδ . The figures of)(tεΗ and)(tεδ with
π

ε
1

= are given as below.

-2 -1 1 2
t

0.2

0.4

0.6

0.8

1
HεHtL

 -2 -1 1 2
t

0.2

0.4

0.6

0.8

1
δεHtL

(a))(tεΗ (b))(tεδ

Fig. 4-1 Approximation of)(tΗ and)(tδ

 11

0.2 0.4 0.6 0.8 1
ξ

0.2

0.4

0.6

0.8

1

αHξL

0.2 0.4 0.6 0.8 1
η

0.2

0.4

0.6

0.8

1

βHηL

(a) before optimization (b))(ξα and)(ηβ in (a)

0.2 0.4 0.6 0.8 1
ξ

0.2

0.4

0.6

0.8

1

αHξL

0.2 0.4 0.6 0.8 1
η

0.2

0.4

0.6

0.8

1

βHηL

(c) after optimization (d))(ξα and)(ηβ in (c)

Fig. 4-2 Example III – algebraic grid generation after the functional optimization

Fig. 4-2 shows an example of the grid (in vu − plane) generated before and after the functional

optimization when choosing 4== mn . At the beginning of the functional optimization, we initially choose

ξξα −= 1)(and ηηβ −= 1)(, which are straight lines (see Fig. 4-2b). After the functional optimization, they

become polynomial curves of degree four (Fig. 4-2c). As demonstrated in the figure, the new non-linear

blending functions successfully eliminate the self-overlapping.

 12

5. Two-parameter Blending Function

In our above solution, the blending function between)(0 ηP and)(1 ηP ,)(ξα , is independent of η and the

blending function between)(0 ξQ and)(1 ξQ ,)(ηβ , is independent of ξ , which makes the Coons patch not

flexible enough to the given boundary curves. In this section, we explore the feasibility of dedicating the two

blending functions as functions of both parameters, i.e., they become),(ηξα and),(ηξβ . Accordingly, the

equation of the planar Coons patch),(ηξX changes to

[] []

[] 








−








−−










−
+








−=

),(1

),(

)1()1(

)0()0(
),(1),(

),(1

),(
)()(

)(

)(
),(1),(),(

10

10

10
1

0

ηξβ

ηξβ
ηξαηξα

ηξβ

ηξβ
ξξ

η

η
ηξαηξαηξ

QQ

QQ

QQ
P

P
X

, (5-1)

where),(ηξα and),(ηξβ should also satisfy the constraints of Coons patch:

1),0(=ηα , 0),1(=ηα , 1)0,(=ξβ , and 0)1,(=ξβ (]1,0[]1,0[),(×∈ηξ).

Here, we express),(ηξα and),(ηξβ as

∑∑
==

ΒΒ=
n

j

njmiji

m

i

a

0

,,,

0

)()(),(ηξηξα , (5-2)

∑∑
==

ΒΒ=
n

j

njmiji

m

i

b

0

,,,

0

)()(),(ηξηξβ , (5-3)

where)(, ξmiΒ and)(, ηnjΒ are Bernstein basis functions of degree m and n –
jkj

kj tt
k

j
t

−−







=Β)1()(, . To

satisfy the constraints of Coons patch for),(ηξα and),(ηξβ , by the properties of Bernstein basis function [1],

we have 1,0 ≡ja , 0, ≡jma , 10, ≡ib , and 0, ≡nib . Thus, jia , (1,,1 −= mi L and nj ,,0 L=) and jib ,

(mi ,,0 L= and 1,,1 −= nj L) are variables to be determined.

Recall the objective function

∫∫Ψ −−Η= ηξξηηξ ddXXXXA
vuvu
)]([,

during the optimization, the following formulas of partial derivatives of),(ηξX are needed.

[] [] []

[] [] 








−







−−









−








−−










−
+









−
′′+








−=

),(

),(

)1()1(

)0()0(
),(1),(

),(1

),(

)1()1(

)0()0(
),(),(

),(

),(
)()(

),(1

),(
)()(

)(

)(
),(),(),(

10

10

10

10

1010
1

0

ηξβ

ηξβ
ηξαηξα

ηξβ

ηξβ
ηξαηξα

ηξβ

ηξβ
ξξ

ηξβ

ηξβ
ξξ

η

η
ηξαηξαηξ

ξ

ξ
ξξ

ξ

ξ
ξξξ

QQ

QQ

QQ

QQ

QQQQ
P

P
X

 (5-4)

 13

[] [] []

[] [] 








−







−−









−








−−










−
+








−+









′

′
−=

),(

),(

)1()1(

)0()0(
),(1),(

),(1

),(

)1()1(

)0()0(
),(),(

),(

),(
)()(

)(

)(
),(),(

)(

)(
),(1),(),(

10

10

10

10

10
1

0

1

0

ηξβ

ηξβ
ηξαηξα

ηξβ

ηξβ
ηξαηξα

ηξβ

ηξβ
ξξ

η

η
ηξαηξα

η

η
ηξαηξαηξ

η

η
ηη

η

η
ηηη

QQ

QQ

QQ

QQ

QQ
P

P

P

P
X

 (5-5)

where

∑∑

∑∑

∑∑

∑∑

==

==

==

==

Β′Β=

ΒΒ′=

Β′Β=

ΒΒ′=

n

j

njmiji

m

i

n

j

njmiji

m

i

n

j

njmiji

m

i

n

j

njmiji

m

i

b

b

a

a

0

,,,

0

0

,,,

0

0

,,,

0

0

,,,

0

)()(),(

)()(),(

)()(),(

)()(),(

ηξηξβ

ηξηξβ

ηξηξα

ηξηξα

η

ξ

η

ξ

 (5-6)

can be obtained from (5-2) and (5-3), and))()(()()(1,1,1,, ttnt
dt

d
t njnjnjnj −−− Β−Β=Β=Β′ . By the objective

function, the gradient direction of the solution vector is determined by

∫∫Ψ ∂

∂
−

∂

∂
−

∂

∂
+

∂

∂
−−=

∂

∂
ηξδ ξ

η
η

ξ
η

ξ
ξ

η
ξηηξ ddX

a

X
X

a

X
X

a

X
X

a

X
XXXX

a

A
u

v

v

u

u

v

v

u

vuvu

jijijijiji

))](([
,,,,,

, (5-7)

∫∫Ψ ∂

∂
−

∂

∂
−

∂

∂
+

∂

∂
−−=

∂

∂
ηξδ ξ

η
η

ξ
η

ξ
ξ

η
ξηηξ ddX

b

X
X

b

X
X

b

X
X

b

X
XXXX

b

A
u

v

v

u

u

v

v

u

vuvu

jijijijiji

))](([
,,,,,

. (5-8)

Similar to the single parameter case, to compute the equations (5-7) and (5-8), we need to know
jia

X

,∂

∂ ξ
,

jia

X

,∂

∂ η
,

jib

X

,∂

∂ ξ
, and

jib

X

,∂

∂ η
. They are derived from (5-4) and (5-5) as

ji

ji

jiji

a
QQQQ

a
QQQQQQ

a
PP

a

X

,
0110

,
011011

,
10

,

),(
),())1()0()1()0((

),(
)],())1()0()1()0(())1()0([(

),(
))()((

∂

∂
−−+−

∂

∂
−−++−−

∂

∂
−=

∂

∂

ηξα
ηξβ

ηξα
ηξβ

ηξα
ηη

ξ

ξ

ξξ

 (5-9)

ji

ji

jijiji

a
QQQQQQ

a
QQQQ

a
PP

a
PP

a

X

,
011011

,
0110

,
10

,
10

,

),(
)],())1()0()1()0(())1()0([(

),(
),())1()0()1()0((

),(
))()((

),(
))()((

∂

∂
−−++−−

∂

∂
−−+−

∂

∂
−+

∂

∂
′−′=

∂

∂

ηξα
ηξβ

ηξα
ηξβ

ηξα
ηη

ηξα
ηη

η

η

ηη

 (5-10)

 14

ji

u

ji

u

ji

u

jiji

b
QQQQQQ

b
QQQQ

b
QQ

b
QQ

b

X

,
011010

,
0110

,
10

,
10

,

),(
)],())1()0()1()0(())1()1([(

),(
),())1()0()1()0((

),(
))()((

),(
))()((

∂

∂
−−++−−

∂

∂
−−+−

∂

∂
−+

∂

∂
′−′=

∂

∂

ηξβ
ηξα

ηξβ
ηξα

ηξβ
ξξ

ηξβ
ξξ

ξ

 (5-11)

ji

ji

jiji

b
vQQQQQQ

b
QQQQ

b
QQ

b

X

,
011010

,
0110

,
10

,

),(
)],())1()0()1()0(())1()1([(

),(
),())1()0()1()0((

),(
))()((

∂

∂
−−++−−

∂

∂
−−+−

∂

∂
−=

∂

∂

ηξβ
ξα

ηξβ
ηξα

ηξβ
ξξ

η

η

ηη

 (5-12)

where

)()(
),(

,,
,

ηξ
ηξα

njmi

jia
ΒΒ=

∂

∂
,)()(

),(
,,

,

ηξ
ηξβ

njmi

jib
ΒΒ=

∂

∂
,

)()(
),(

,,
,

ηξ
ηξαξ

njmi

jia
ΒΒ′=

∂

∂
,)()(

),(
,,

,

ηξ
ηξαη

njmi

jia
Β′Β=

∂

∂
,

)()(
),(

,,
,

ηξ
ηξβξ

njmi

jib
ΒΒ′=

∂

∂
,)()(

),(
,,

,

ηξ
ηξβη

njmi

jib
Β′Β=

∂

∂
.

Now we can compute the functional optimum of the two-parameter blending functions by the Conjugate

Gradient Method using the same terminal condition as that of the optimization of the one-parameter blending

functions – µ<AA / .

Fig. 5-1 depicts the grid generation result of Example III by optimizing the planar Coons patch of two-

parameter blending functions (3== mn). We initially set



















=×

0000

3/13/13/13/1

3/23/23/23/2

1111

)(44, jia and



















=×

03/13/21

03/13/21

03/13/21

03/13/21

)(44, jib ,

their related),(ηξα and),(ηξβ are displayed in Fig. 5-1b. When the functional optimization is completed,

they become



















−−−
=×

0000

5712.05643.01294.00899.0

3666.00963.01328.04149.0

1111

)(44, jia and



















−

−
=×

01754.03446.01

00418.04619.01

02382.06146.01

03255.06612.01

)(44, jib ,

with which the final),(ηξα and),(ηξβ are shown in Fig. 5-1d.

 15

0
0.2

0.4

0.6

0.8

1

x

0

0.2

0.4

0.6

0.8

1

h

0

0.25

0.5

0.75

1

0
0.2

0.4

0.6

0.8

1

x

),(ηξα

0
0.2

0.4

0.6

0.8

1

x

0

0.2

0.4

0.6

0.8

1

h

0

0.25

0.5

0.75

1

0
0.2

0.4

0.6

0.8

1

x

),(ηξβ

(a) before optimization (b)),(ηξα and),(ηξβ in (a)

0
0.2

0.4

0.6

0.8

1

x

0

0.2

0.4

0.6

0.8

1

h

0
0.25
0.5

0.75
1

0
0.2

0.4

0.6

0.8

1

x

),(ηξα

0
0.2

0.4

0.6

0.8

1

x

0

0.2

0.4

0.6

0.8

1

h

0
0.25

0.5

0.75

1

0
0.2

0.4

0.6

0.8

1

x

),(ηξβ

(c) after optimization (d)),(ηξα and),(ηξβ in (c)

Fig. 5-1 Example III – functional optimization using two-parameter blending functions

 16

6. Progressive Optimization

Because our objective function in the functional optimization is concave (allowing many local minima – it

is not the form of our objective function that leads these local minima; they are tightly related to the given

boundary curves), the success of the numerical optimization algorithm depends critically on the initial position

of the solution vector. We usually take the bilinear interpolation as an initial position of the solution vector; it

however may be a very unsatisfying one to some strongly concaved boundaries (e.g., the one shown in Fig. 6-

1a). “Guessing” a good initial vector is hard. The basic idea we take to overcome this difficulty is to

progressively achieve the functional optimum by gradually deforming a rectangle boundary region into the

region Ω bounded by the given curves, which we discuss in detail in this section.

The initial shape, a rectangle, does not generate overlapping with a bilinear Coons patch),(0 ηξX . When

deforming the rectangle into the final shape Ω by a linear interpolation, we check if overlap occurs and, once it

is detected, the numerical optimization method presented is applied to),(0 ηξX to determine a new Coons

patch mapping),(1 ηξX without self-overlap; the deformation will then continue. The deformation and

functional optimization are applied alternatively on),(ηξiX (where i represents the Coons patch mapping

determined after i times of the numerical optimization) until the final non-self-overlapping planar Coons patch

),(ηξfX of Ω is obtained. We use the box { 00R , 01R , 11R , 10R } of Ω as the initial rectangle region, where

00R , 01R , 11R , 10R are its four corner points in anti-clockwise sense. Thus, its four boundary curves are

01111

00100

10111

00010

)1()(

)1()(

)1()(

)1()(

RRP

RRP

RRQ

RRQ

R

R

R

R

ηηη

ηηη

ξξξ

ξξξ

−+=

−+=

−+=

−+=

 (6-1)

where)(0 ξRQ -)(0 ξQ ,)(1 ξRQ -)(1 ξQ ,)(0 ηRP -)(0 ηP , and)(1 ηRP -)(1 ηP are related. Therefore, the four

boundary curves of),(ηξiX are

))1()(1()()(

))1()(1()()(

))1()(1()()(

))1()(1()()(

011111

001000

101111

000100

RRPP

RRPP

RRQQ

RRQQ

ii
i

ii
i

ii
i

ii
i

ηηληλη

ηηληλη

ξξλξλξ

ξξλξλξ

−+−+=

−+−+=

−+−+=

−+−+=

 (6-2)

where iλ is the deformation factor, or the time, when the functional optimization is applied to),(ηξiX

(]1,0[∈iλ). At the beginning of the deformation, 0=iλ ; after the deformation is completed, 1=iλ . Also, we

can get

 17

))(1()()(

))(1()()(

))(1()()(

))(1()()(

011111

001000

101111

000100

RRPP

RRPP

RRQQ

RRQQ

ii
i

ii
i

ii
i

ii
i

−−+′=
∂

∂

−−+′=
∂

∂

−−+′=
∂

∂

−−+′=
∂

∂

ληλη
η

ληλη
η

λξλξ
ξ

λξλξ
ξ

. (6-3)

Using)(0 ξiQ ,)(1 ξiQ ,)(0 ηiP ,)(1 ηiP ,)(0 ξ
ξ

iQ
∂

∂
,)(1 ξ

ξ
i

Q
∂

∂
,)(0 η

η
i

P
∂

∂
, and)(1 η

η
i

P
∂

∂
 in (6-2) and (6-3)

to take place of)(0 ξQ ,)(1 ξQ ,)(0 ηP ,)(1 ηP ,)(0 ξQ′ ,)(1 ξQ′ ,)(0 ηP′ , and)(1 ηP′ in the equations of section 5,

the functional optimum of),(ηξiX can be determined by the same method.

During the deformation, the deformation factor increases from zero to one adaptively to the value increase

of the objective function. The overall procedure of progressive optimization is given in pseudo-code in

Algorithm ProgressiveOptimization() below. In Example IV (shown in Fig. 6-1), the non-self-overlapping

planar Coons patch cannot be obtained by the pure numerical optimization even after iterating 10000 times;

using Algorithm ProgressiveOptimization(), we obtain a final result without self-overlapping by only 30

applications of the numerical optimization routine – in each time, less than 10 iterations are needed. The

progressive results are shown in Fig. 6-2.

Algorithm ProgressiveOptimization (Ω)

Input: A region Ω in the vu − parametric space.

Output: The non-self-overlap planar Coons patch),(ηξfX on Ω .

1. Compute the bounding box of Ω , and use it to generate)(0 ξRQ ,)(1 ξRQ ,)(0 ηRP , and)(1 ηRP ;

2. Build),(0 ηξX on)(0 ξRQ ,)(1 ξRQ ,)(0 ηRP , and)(1 ηRP as a bilinear planar Coons patch;

3. 1←i and 00 ←λ ;

4. do{

5.)1(2 1−−←∆ iλλ ;

6. do{

7. 2/λλ ∆←∆ , and λλλ ∆+← −1ii ;

8. Change the shape of),(ηξiX by iλ , and compute the objective function A of),(ηξiX ;

9. Compute the area A of),(ηξiX ;

10. }while(τ>)/(AA);

11. Compute the numerical optimum of blending functions in),(ηξiX ;

12. 1+← ii ;

13. }while(11 <−iλ);

14.),(),(1 ηξηξ −← if XX ;

15. return),(ηξfX ;

(* in our testing, we choose %5.0=τ)

 18

0
0.2

0.4

0.6

0.8

1

x

0

0.2

0.4

0.6

0.8

1

h

0

0.25

0.5

0.75

1

0
0.2

0.4

0.6

0.8

1

x

),(ηξα

0
0.2

0.4

0.6

0.8

1

x

0

0.2

0.4

0.6

0.8

1

h

0

0.25

0.5

0.75

1

0
0.2

0.4

0.6

0.8

1

x

),(ηξβ

(a) before optimization (b)),(ηξα and),(ηξβ in (a)

0
0.2

0.4

0.6

0.8

1

x

0

0.2

0.4

0.6

0.8

1

h

0
0.25

0.5
0.75

1

0
0.2

0.4

0.6

0.8

1

x

),(ηξα

0
0.2

0.4

0.6

0.8

1

x

0

0.2

0.4

0.6

0.8

1

h

0
0.25

0.5

0.75

1

0
0.2

0.4

0.6

0.8

1

x

),(ηξβ

(c) final result (d)),(ηξα and),(ηξβ in (c)

Fig. 6-1 Example IV – result of progressive optimization (3== mn)

 19

(a) 1=i 525.01 =λ (b) 5=i 9077.05 =λ

(c) 16=i 9853.016 =λ (d) 30=i 0.130 =λ

Fig. 6-2 Example IV – progressive results

7. Extension of Shape Control

In the previous parts of this paper, the objective function of optimization (4-3) does not consider the shape

control of each element. Actually, it is possible to add a shape control term in the objective function. The basic

idea that if 0→⋅ ηξ XX was maintained all over the patch, the shape of every element in the grid could be

guaranteed in the ηξ − plane. Thus, we add a new term

∫∫Ψ += ηξηξηξ ddXXXXB
vvuu

2)(, (7-1)

to the objective function. The modified objective function is

BwAwJ BA += (7-2)

where A is as given in (4-3), and Aw , Bw are the factors to balance the weight between the term A and the

term B. When the term B is minimized to zero, the 0→⋅ ηξ XX is guaranteed all over the patch.

 20

In order to minimize the objective function, we need to have its gradients with respect to the solution

vector. By equation (7-1), we have

∫∫Ψ ∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
+=

∂

∂
ηξξ

η
η

ξ
ξ

η
η

ξ
ηξηξ ddX

a

X
X

a

X
X

a

X
X

a

X
XXXX

a

B
v

v

v

v

u

u

u

u

vvuu

jijijijiji

))((2
,,,,,

, (7-3)

∫∫Ψ ∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
+=

∂

∂
ηξξ

η
η

ξ
ξ

η
η

ξ
ηξηξ ddX

b

X
X

b

X
X

b

X
X

b

X
XXXX

b

B
v

v

v

v

u

u

u

u

vvuu

jijijijiji

))((2
,,,,,

. (7-4)

Thus, together with equations (5-7) and (5-8), the gradients of J with respect to jia , and jib , are computed by

ji

B

ji

A

ji a

B
w

a

A
w

a

J

,,, ∂

∂
+

∂

∂
=

∂

∂
 and

ji

B

ji

A

ji b

B
w

b

A
w

b

J

,,, ∂

∂
+

∂

∂
=

∂

∂
. (7-5)

The comparison of the non-self-overlapping Coons patch generation with and without shape control is given in

the following figures. Fig. 7-1 shows the bilinear Coons patch before optimization. Obviously, the patch is self-

overlapped. Fig. 7-2a gives the optimized patch with weights 0.1=Aw and 0=Bw – the shape control is not

cared (the result blending functions without shape control are shown in Fig. 7-2b). The mesh is stretched in the

middle. Fig. 7-2c and 7-2d illustrate the result with shape control by changing Bw from 0 to 1310− , which leads

to less stretch inside the Coons patch.

0
0.2

0.4

0.6

0.8

1

x

0

0.2

0.4

0.6

0.8

1

h

0

0.25

0.5

0.75

1

0
0.2

0.4

0.6

0.8

1

x

),(ηξα

0
0.2

0.4

0.6

0.8

1

x

0

0.2

0.4

0.6

0.8

1

h

0

0.25

0.5

0.75

1

0
0.2

0.4

0.6

0.8

1

x

),(ηξβ

(a) mesh before optimization (b)),(ηξα and),(ηξβ in (a)

 Fig. 7-1 Example V – before optimization

 21

0
0.2

0.4
0.6

0.8

1

ξ

0

0.2

0.4

0.6

0.8

1

η

0
0.25

0.5

0.75

1

0
0.2

0.4
0.6

0.8
ξ

),(ηξα

0
0.2

0.4
0.6

0.8

1

ξ

0

0.2

0.4

0.6

0.8

1

η

0

0.25
0.5

0.75

1

0
0.2

0.4
0.6

0.8
ξ

),(ηξβ

(c) after optimization without shape control

(0.1=Aw and 0=Bw)

(d)),(ηξα and),(ηξβ in (c)

0
0.2

0.4
0.6

0.8

1

ξ

0

0.2

0.4

0.6

0.8

1

η

0
0.25
0.5

0.75
1

0
0.2

0.4
0.6

0.8
ξ

),(ηξα

0
0.2

0.4

0.6

0.8

1

ξ

0

0.2

0.4

0.6

0.8

1

η

0

0.25

0.5

0.75

1

0
0.2

0.4

0.6

0.8
ξ

),(ηξβ

(e) after optimization with shape control

(0.1=Aw and 1310−=Bw)

(f)),(ηξα and),(ηξβ in (e)

Fig. 7-2 Example V – optimization with vs. without shape control

 22

This shape control idea can be further extended to control the shape of elements on the given parametric

surface. If 0→⋅ ηξ SS was maintained all over the patch, the shape of every element in the grid could be

guaranteed on the parametric surface S . The term B of the objective function could be modified to

∫∫Ψ ++= ηξηξηξηξ ddSSSSSSB
zzyyxx

2)(*

to achieve this condition. Therefore, the new objective function might be SwAwJ SA +=* .

8. Experimental Results and Discussion

Fig. 8-1 gives the algebraic grid generation results of trimmed surfaces in Example I and II (initially given

in Fig. 1-2), and their final blending functions (3== mn) of the non-self-overlapping planar Coons patch are

also shown. When the shape of the trimmed surface in the parametric space is very convoluted (e.g., an n-sided

or with a hole – such as Example V shown in Fig. 8-2a), the given region is subdivided into several 4-sided sub-

patches (Fig. 8-2b), where all patches satisfy Assumption 3.1; then the approach presented in this paper can be

applied to generate the final algebraic grids (Fig. 8-2c and 8-2d show the result of example V).

When applying the functional optimization to obtain the algebraic equation of the Coons patch, we should

choose the order of blending functions carefully. If the order of blending functions is lower than the order of the

given four boundary curves, the functional optimization may not be convergent; however, higher order

polynomials tend to make the final shape of the blending functions vibrate violently. Thus, we usually let the

order of blending functions to be the same as that of the boundary curves or just one order higher.

 23

(a) result of Example I (b) result of Example II

0
0.2

0.4
0.6

0.8

1

x

0

0.2

0.4

0.6

0.8

1

h

0
0.25
0.5

0.75

1

0
0.2

0.4
0.6

0.8

1

x

),(ηξα

0
0.2

0.4

0.6

0.8

1

x

0

0.2

0.4

0.6

0.8

1

h

0

0.25
0.5

0.75

1

0
0.2

0.4

0.6

0.8

1

x

),(ηξα

0
0.2

0.4
0.6

0.8

1

x

0

0.2

0.4

0.6

0.8

1

h

0

0.5

1

0
0.2

0.4
0.6

0.8

1

x

),(ηξβ

0
0.2

0.4

0.6

0.8

1

x

0

0.2

0.4

0.6

0.8

1

h

0

0.25
0.5

0.75

1

0
0.2

0.4

0.6

0.8

1

x

),(ηξβ

(c)),(ηξα and),(ηξβ of Example I (d)),(ηξα and),(ηξβ of Example II

Fig. 8-1 Algebraic grid generation results of Example I and II

 24

(a) given region in vu − space (b) given region is subdivided into five patches

(c) final grids in vu − space (d) final grids on the trimmed surface

Fig. 8-2 Example VI – complex region with multiple patches

9. Conclusion

The ability to generate a grid system in a 4-sided region bounded by parametric boundary curves of any

form with only 1C continuity is a significant advantage of the Coons patch method over other algebraic

methods for building a structured grid. This not only averts the singularity of elliptic PDE methods when only

1C continuous boundary available, but also avoids the error generated when converting generic parametric 1C

boundary curves into curves with a specified representation form. However, the self-overlapping phenomenon

frequently encountered in Coons patch mapping has been perplexing both theoreticians and practitioners for a

long time and limiting its usage in many scientific and engineering practices. In this paper, we present an

algorithm that uses the functional optimization method to determine the blending functions in a Coons patch so

that the self-overlap can be prevented. Our initial test results are encouraging: in a variety of cases where self-

 25

overlapping occurs if linear or naïve blending functions were used, the found blending functions after the

functional optimization successfully avert the self-overlapping. A possible extension is also given to

demonstrate how to control the shape of elements by adding a new term on the objective function. Coupled with

any mesh smoothing methods [2], our algorithm provides a promising meshing tool in engineering.

The main disadvantage of our Coons patch method is the computing time. The time cost of examples in this

paper is shown in Table 9-1. Usually, several minutes are needed. All tests are performed on a PIII 500 PC with

a program written in Java. In the current implementation, we use a very primitive numerical method to compute

the functional optimization. It is believed that with more efficient optimization algorithms and with the

increasing processing power available on every desktop, the running time can be shortened significantly.

Moreover, the following topics or improvements are worth future research:

• In our extension of element shape control, the shapes of elements are controlled in the ηξ − plane;

however, as described at the end of section 7, our experiment has already shown the possibility of

controlling the shape of elements on the given trimmed parametric surface.

• Also, it will be interesting to see if the ideas of this paper can be extended into three-dimensional space

to solve the algebraic grid generation problem in a given closed space using a Coons solid. Then, the

governing equation may come from the same idea as Equation (3-1) by detecting some properties of the

Coons solid in a virtual newly added axis direction.

Table 9-1 Time cost of examples

Example Result Figures Optimization Type Blending Function Type Time cost

I 8-1a 8-2c Progressive Two-parameter (3== mn) 3.4 min.

II 8-1b 8-1d Progressive Two-parameter (3== mn) 5.7 min.

4-2 Pure numerical One-parameter (4== mn) 1.7 min.
III

5-1 Pure numerical Two-parameter (3== mn) 2.3 min.

IV 6-1 Progressive Two-parameter (3== mn) 12.1 min.

7-1c 7-1d Pure numerical Two-parameter (3== mn) 3.7 min.
V

7-1e 7-1f Pure numerical Two-parameter (3== mn) 4.1 min.

VI 8-2 Progressive Two-parameter (3== mn) 4.5 min.

 *The grid size of our numerical integration is 2020 × .

10. Reference

[1] Mortenson ME. Geometric Modeling (2
nd

 Edition). Wiley: New York, 1997.

[2] Thompson JF, Soni BK, Weatherill NP. Handbook of Grid Generation. CRC Press: Florida, 1999.

 26

[3] Baehmann PL, Wittchen SL, Shephard MS, Grice KR, Yerry MA. Robust, geometrically based,

automatic two-dimensional mesh generation. International Journal for Numerical Methods in

Engineering 1987;24:1043-1078.

[4] Talbert JA, Parkinson AR. Development of an automatic, two-dimensional finite element mesh

generation using quadrilateral elements and bezier curve boundary definition. International Journal for

Numerical Methods in Engineering 1990; 29:1551-1567.

[5] Joe B. Quadrilateral mesh generation in polygonal regions. Computer-Aided Design 1995; 7:209-222.

[6] Josep S., Antonio H. Efficient unstructured quadrilateral mesh generation. International Journal for

Numerical Methods in Engineering 2000; 49:1327-1350.

[7] Lo SH. A new mesh generation scheme for arbitrary planar domains. International Journal for Numerical

Methods in Engineering 1985; 21:1403-1426.

[8] Blacker TD, Stephenson MB. Paving: A new approach to automated quadrilateral mesh generation.

International Journal for Numerical Methods in Engineering 1991; 32:811-847.

[9] Cass RJ, Benzley SE, Mayers RJ, BlackerTD. Generalized 3-D Paving: An automated quadrilateral

surface mesh generation algorithm. International Journal for Numerical Methods in Engineering 1996;

39:1475-1489.

[10] White DR, Kinney P. Redesign of the Paving algorithm: Robustness enhancements through element by

element meshing. Proceedings of the Sixth International Mesh Roundtable, Park City, Utha; Oct. 1997,

pp.323-335.

[11] Tam TKH, Armstrong CG. 2D Finite element mesh generation by medial axis subdivision. Advances in

Engineering Software & Workstations 1991; 13:313-324.

[12] Yamakawa S., Shimada K. Quad-layer: Layered quadrilateral meshing of narrow two-dimensional

domains by bubble packing and chordal axis transformation. Journal of Mechanical Design, Transactions

of the ASME 2002; 124:564-573.

[13] Lau TS, Lo SH, Lee CK. Generation of quadrilateral mesh over analytical curved surfaces. Finite

Elements in Analysis & Design 1997; 27:251-272.

[14] Borouchaki H., Frey PJ. Adaptive triangular-quadrilateral mesh generation. International Journal for

Numerical Methods in Engineering 1998; 41:915-934.

[15] Owen SJ, Staten ML, Canann SA, Saigal S. Q-Morph: An indirect approach to advancing front quad

meshing. International Journal for Numerical Methods in Engineering 1999; 44:1317-1340.

 27

[16] Lee YK, Lee CK. Automatic generation of anisotropic quadrilateral meshes on three-dimensional

surfaces using metric specifications. International Journal for Numerical Methods in Engineering 2002;

53: 2673-2700.

[17] Itoh T, Shimada K. Automatic conversion of triangular meshes into quadrilateral meshes with

directionality. International Journal of CAD/CAM 2001; 1:20-38.

[18] Brakhage KH, Muller S. Algebraic-hyperbolic grid generation with precise control of intersection of

angles. International Journal for Numerical Methods in Fluids 2000; 33:89-123.

[19] Shih TIP, Bailey RT, Nguyen HL, Roelke RJ. Algebraic grid generation for complex geometries.

International Journal for Numerical Methods in Fluids 1991; 13:1-31.

[20] Smith RE, Eriksson LE. Algebraic grid generation. Computer Methods in Applied Mechanics &

Engineering 1987; 64:285-300.

[21] Kim S. Control functions and grid qualities measurements in the elliptic grid generation around arbitrary

surfaces. International Journal for Numerical Methods in Fluids 2000; 33:81-88.

[22] Knupp PM. Jacobian-weighted elliptic grid generation. SIAM Journal on Scientific Computing 1996; 17:

1475-1490.

[23] Khamayseh A, Hamann B. Elliptic grid generation using NURBS surfaces. Computer Aided Geometric

Design 1996; 13:369-386.

[24] Soni BK. Elliptic grid generation system: control functions revisited. I. Applied Mathematics &

Computation 1993; 59:151-163.

[25] Thompson JF. A survey of dynamically-adaptive grids in the numerical solution of partial differential

equations. Applied Numerical Mathematics 1985; 1:3-27.

[26] Fomenko AT, Kunii TL. Topological modeling for visualization. Springer: Hong Kong, 1997.

[27] Press WH, Teukolsky SA, Vetterling WT, and Flannery BP. Numerical recipes in C: the art of scientific

computing. Cambridge University Press, 1992.

[28] Chan TF, Vese LA. Active contours without edges. IEEE Transactions of Image Processing 2001; 10:

266-277.

 28

Appendix A

Lemma The Coons patch),(ηξX =

















),(

),(

),(

ηξ

ηξ

ηξ

W

V

U

is a graph-mapping if and only if there is no any singular

point in the square]1,0[]1,0[× .

Proof. Let us argument the),(ηξX by

















=

=

=

),(

),(),(

),(),(

),(
*

*

*

*

ηξ

ηξηξ

ηξηξ

ηξ

W

VV

UU

X with ηξηξ baW +=),(* for some

real number a and b. By properly choosing a and b, one can enforce),(* ηξX to have normal vector

everywhere, thus it is a smooth regular surface in the wvu ×× space. Suppose first that),(ηξX is not a graph-

mapping. This means that there exist two distinct pairs]1,0[]1,0[),(00 ×∈ηξ and]1,0[]1,0[),(11 ×∈ηξ , such

that)),(),,(()),(),,((11
*

11
*

00
*

00
* ηξηξηξηξ VUVU = . By properly selecting a and b, one can also ensure that

),(),(11
*

00
* ηξηξ WW ≠ . Let us intersect),(* ηξX with a plane Π that is parallel to the wu − plane and

contains the two points

)),(),,(),,((00
*

00
*

00
*

0 ηξηξηξ WVUp = and)),(),,(),,((11
*

11
*

11
*

1 ηξηξηξ WVUp = ,

resulting in a regular curve σ . Consider the portion *σ of σ between the two points. Since *σ is regular and

bounded, it must have a u-extreme point)),(),,(),,((********* ηξηξηξ WVUp = where the normal vector n

to the curve is parallel to the u-axis, as shown in Fig. A-1a. Since the projection of the normal N to the surface

),(* ηξX at point p in plane Π can be easily seen to identify with n , we have 0=⋅ wN . This translates to

),(),(),(),(************ ηξηξηξηξ ξηηξ VUVU = ,

i.e.,),(),(),(),(******** ηξηξηξηξ ξηηξ VUVU = . This means),(** ηξ is a singular point of),(ηξX .

Conversely, let),(** ηξ be a singular point of),(ηξX ; hence,),(),(),(),(******** ηξηξηξηξ ξηηξ VUVU = .

Consequently, the normal N to the surface),(* ηξX at),(** ηξ is perpendicular to the w-axis. Without loss of

generality, we can assume N is parallel to the u-axis. Intersecting),(* ηξX with the plane),(*** ηξVv = , we

obtain a regular curve σ . As)),(),,(),,((* ********* ηξηξηξ WVUp = is a local u-extreme point on this curve,

 29

one can find a real number 0>δ such that the vertical line δηξ −=),(***Uu intersects σ at least twice

(assuming *p is a u-maximum point). Let

)),(),,(),,((00
*

00
*

00
*

0 ηξηξηξ WVUp = and p1=)),(),,(),,((11
*

11
*

11
* ηξηξηξ WVU

be two such intersection points for some),(),(1100 ηξηξ ≠ , as shown in Fig. A-1b. Obviously, we have

)),(),,(()),(),,((11
*

11
*

00
*

00
* ηξηξηξηξ VUVU = . Since),(),,()),(),,((** ηξηξηξηξ VUVU = , we conclude

that),(ηξX maps two distinct points in the ηξ − domain to a same point in the region XΩ . This completes

the proof.

Q.E.D.

u

v

w),(ηξX

0p

Π

p
n σ

1p

u

v

w),(* ηξX 1p

0p

),(*** ηξVv =

p
N

σ

δηξ −=),(***Uu

(a) (b)

Fig. A-1 Proof of Lemma

