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Plant Phenotyping by Deep-Learning Based Planner
for Multi-Robots

Chenming Wu, Rui Zeng, Jia Pan, Charlie C.L. Wang and Yong-Jin Liu

Abstract—Manual plant phenotyping is slow, error-prone and
labor-intensive. In this paper, we present an automated robotic
system for fast, precise and noninvasive measurements using
a new deep-learning based next-best view planning pipeline.
Specifically, we first use a deep neural network to estimate
a set of candidate voxels for next scanning. Next, we cast
rays from these voxels to determine the optimal viewpoints.
We empirically evaluate our method in simulation and real-
world robotic experiments with up to three robotic arms to
demonstrate its efficiency and effectiveness. One advantage of
our new pipeline is that it can be easily extended to a multi-robot
system where multiple robots move simultaneously according
to the planned motions. Our system significantly outperforms
the single-robot systems in flexibility and planning time. High-
throughput phenotyping can be made practically.

Index Terms—Agricultural Automation, Multi-Robot Systems,
Computer Vision for Automation

I. INTRODUCTION

PLANT phenotyping is an active research area that bridges
genotypes and phenotypes. Nowadays, genomics research

can yield a lot of information. Unfortunately, the data gener-
ated by sequencing technology far exceeds the current capacity
of plant phenotyping [1]. Traditional plant phenotyping heavily
relies on laborious and expensive manual operations [2]. It
is essential to facilitate phenotyping in efficiency and effec-
tiveness so that researchers working on plant genomes can
easily realize the agricultural promise of plant genomics. As
an example, breeders usually use phenomic data to study
the problem of improving crop yields [3]. Plant phenotyping
assesses a variety of plant traits such as growth, development,
tolerance, resistance, architecture, physiology, ecology, height,
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Fig. 1. An overview of our multi-robot system for efficiently completing the
plant phenotyping tasks. The picture on the left shows the system setup, which
consists of three UR-5 robot arms with a fixed base. The figure on the right
shows the results obtained by positioning the sensors to different viewpoints
by our deep network based NBV planner.

leaf shape, etc. [4], most of which must be measured on a
complete 3D model [5].

However, the clutter and occlusion problems caused by
naturally growing of plants make phenotyping challenging. It
is also difficult to develop a general prototype for a variety of
plants. A few works (e.g., [6], [7]) specify fixed viewpoints
for the robots to solve the phenotyping problem, apparently
requiring repeated fine-tuning of almost every plant. With the
development of intelligent robots and computer vision, devel-
oping automated systems to improve traditional phenotyping
becomes possible, and some automated phenotyping systems
have been proposed in the past years. These results have
greatly accelerated the breeding process and genetic analysis
of precision agriculture.

Next-best view (NBV) planning is a general method in
robotics that tries to collect information of an unknown object
based on information entropy model. The goal of NBV plan-
ning is very similar to the one of plant phenotyping. Typically,
NBV is achieved by searching for the best viewpoint of the
sensors mounted on robots over a set of candidate viewpoints,
to maximize the expected gain of information (i.e., minimize
expected entropy). However, conventional NBV algorithms are
designed for general 3D exploration tasks which only consider
the enclosed volume as a solid. Conversely, plant phenotyping
tasks have stronger prior knowledge – the structure of plant.
In this paper, we make the effort to improve the effectiveness
of the NBV algorithms in plant phenotyping by incorporating
the prior knowledge of plant structure.

In this paper, we propose to use deep learning technique to
learn the underlying structure of plants. After having the priors
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of learned structure, we design a new method to compute next-
best viewpoints accordingly. A promising advantage of this
method is that it can be easily extended to multi-robot systems.
Specifically, we develop such a system equipped with multiple
robotic arms that can be manipulated simultaneously (see Fig.
1). To demonstrate the functionality of a multi-robot system
in plant phenotyping, we apply the proposed NBV planner
to achieve better performance compared to conventional NBV
methods. Our system solves phenotyping problem generally
without making any assumption about the type of phenotypic
data. In summary, we make the following contributions:
• An efficient NBV planning method based on deep learn-

ing, which takes advantage of the structural prior of plants
and provides a method for computing the information
gain of candidate viewpoints.

• A practical solution that can easily extend the proposed
learning-based NBV planning method from a single robot
to a multi-robot system that does not sacrifice too much
speed of planning.

Experimental tests have demonstrated that results with better
completion can be obtained by our approach. The rest of this
paper is organized as follows. Section II reviews literature.
Section III presents an overview of our robotic phenotyping
system. Section IV explains the deep NBV planner. Section V
describes all experiments conducted on our system, including
both the simulation and the real environment results. Future
works and conclusion are given in Section VI.

II. RELATED WORK

In this section, we briefly review the relevant research
of plant phenotyping from three perspectives – i.e., robot-
assisted phenotyping, deep-learning-based phenotyping, and
NBV planning.

A. Robot-assisted phenotyping

Compared to laborious phenotyping, the rapid development
of robotics has significantly facilitated plant phenotyping in
many ways. In the early stage of robot-assisted phenotyping,
plants are grown on top of the conveyor system and are
automatically transferred to an X-Y scanning cabinet on a reg-
ular basis [8]. Lemnatec [9] has built automated phenotyping
platforms for laboratory, greenhouse, and outdoor scenes. The
platforms comprise various sensors for phenotyping. Ruck-
elshausen et al. [10] propose an autonomous on-site robot
platform, namely BoniRob, which can be used in single-
plant phenotyping. Alenyà et al. [11] develop a single-robot
system for probing plant leaves from different viewpoints,
followed with an NBV-based planning method for actively
exploration [12]. Muller-Sim et al. [13] invent a field-based
mobile system called as Robotanist that navigates under the
canopy of row crops for outdoor high-throughput phenotyping.
Sa et al. [14] design an autonomous crop harvesting system
consisting of a robotic arm and equipped cutting tools, har-
vesting the pepper.

One major problem in single robot systems is the limited
flexibility (i.e., the reachability of a robotic arm). To solve this
problem, a new idea is emerged to manipulate multiple robots

simultaneously or asynchronously. As a result, effectiveness
or efficiency or both can be improved. To the best of our
knowledge, only Gao et al. [15] attempt to incorporate multi-
robot systems into phenotyping. They design a team of AGV
robots to collect a number of soybean canopy images in out-
door fields. In contrast, we target at phenotyping in laboratory
environments.

B. Deep-learning based phenotyping

Autonomous robots greatly reduce human intervention when
collecting phenotypic data. Post-processing is crucial to trans-
lating it into an interpretable knowledge for agricultural ex-
perts. Many efforts have been devoted to the interpretations.
We refer the interested readers to a comprehensive review [16]
because of space constraint. However, the use of deep-learning
techniques to guide robot manipulations in-situ has yet to
receive widespread acceptance for robot-assisted phenotyping
tasks. McCool et al. [17] design a lightweight deep network
for real-time weed segmentation for robotic weeding-decision
making. The system proposed in [14] uses a deep neural
network to detect peduncles of sweet peppers for harvesting.
Milioto et al. [18] propose a Convolutional Neural Network
(CNN) network for a similar weeding purpose by leveraging
background knowledge. Parhar et al. [19] use a variant of
Generative Adversarial Network (GAN) for in-situ sorghum
stalk detection and grasping.

C. Planning for Next-Best View

An intelligent and complete phenotyping system requires
an algorithm to drive. However, most existing phenotyping
robots lack this. The underlying problem of plant phenotyping
is conceptually similar to a particle application of NBV. In the
line of NBV planning (note that we only discuss non-model
based NBVs in this paper), existing methods mainly rely
on frontier-based exploration, where the sensor is iteratively
moved to a viewpoint that maximizes information gain [20].
The measurement of the information gain is calculated in the
domain of either volumetric-space (ref. [12], [21]–[24]) or
surfel-space (ref. [25]). The idea behind volumetric-NBV is
simple yet effective: the target 3D object is enclosed with an
occupancy grid and act space carving progressively. Our work
is established on top of it but additionally uses well-defined
plant structural information.

It is worth noting that the deployment of multi-robot sys-
tems for phenotypic analysis, including mechanical design and
algorithms, is still in its infancy. We address this challenging
problem and propose a scalable NBV planner for single-robot
or multi-robot phenotyping system.

III. MULTI-ROBOT SYSTEM

For completing the task of plant phenotyping, we develop
a multi-robot system having three robotic arms where each
is equipped with an RGB-D sensor [26]. RGB-D sensors not
only provide images with fairly-high resolution, but we can
reconstruct the global information of plants to which images
can be registered. The collection of global and local data
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is useful for us to further extract phenotypic characteristics.
The robots can move simultaneously by following the planned
collision-free trajectories. Our system is governed by the deep-
learning based NBV planner, which supervise the operation
of the motion planning module and the trajectory execution
module.

A. Hardware

The hardware setup of our system consists of three UR-5
robotic arms with six degrees-of-freedom (DOF), where each
arm is equipped with an Intel RealSense SR-300 depth camera
in eye-in-hand configuration. The control box of UR5 is
connected to an adaptive switchboard with 100Mbps Ethernet
interface to ensure low latency and high-quality communica-
tions. The SR-300 depth cameras are connected to a USB
3.0 hub with an external power source. The switchboard and
USB hub are connected to the computer. All robots are moved
simultaneously in each round of data acquisition to improve
efficiency.

B. Software

The core part of software in our system is a deep-learning
based NBV planner, which is responsible for evaluating and
selecting the most promising viewpoint for each round of
data acquisition. Viewpoints in Cartesian space are planned
as trajectories that can be executed simultaneously by the
system. The low-level software components used to control
the operation of our system are based on the Robot Operating
System (ROS). Integrated information of plant leaves can be
progressively updated after a post-processing step including
noise filtering and registration. As the major technical con-
tribution of this paper, the deep-learning based NBV planner
consists of two parts. First, a deep network that can predict
the ‘full’ shape of a scanned model (in the form of a point
cloud Yo) from the partially scanned point cloud X . The
predicted shape Yo provides additional clues to the second part
of our planner to update the probability map for supervising
the planning algorithm to score the candidate viewing points.

IV. DEEP NBV PLANNER

The next-best viewpoint is defined as the one that can
provide the maximum amount of information for the plant
phenotyping. An NBV planner selects the next-best viewpoint
v∗ from a set of candidate viewpoints V by maximizing
information gain. Previous NBV approaches usually cast a
set of rays {r} from each viewpoint v within V , where the
quantity and silhouette of {r} depend on sensors. Each ray
is intersecting with the surrounding environment to determine
the information gain required for making NBV decision. The
surrounding environment is often described as an enclosed
bounding volume (e.g., box, sphere) around a point-of-interest
(POI) in a workspace W , which encodes the prior knowledge
about the plant phenotyping task, called the workspace prior
in our paper. The enclosed bounding volume M is usually
represented by octomap [27], which is a widely-used grid
structure in which each voxel x ∈ M has a probability to

encode its status as occupied, free or unknown. Each ray r
traverses all voxels and finally ends up by either reaching
an occupied voxel or exceeding the maximal distance itself.
After casting all rays from v and traversing M, each ray r
will give a set of intersected voxels as Xr ⊂M. An entropy-
based evaluation process is applied to {v} through an objective
function Ev . In particular, we use the Occlusion Aware VI
model [28] and the definition of the information gain of a
single ray Er is:

Er =
∑
x∈X

Pv(x) ·
(
−P (x) lnP (x)− P̄ (x) ln P̄ (x)

)
(1)

where P (x) is the estimated probability of a voxel to be occu-
pied given all measurements and Pv(x) is the pi-productions
of P̄ (·) of all intersected voxels traversed before x and
P̄ (x) = 1 − P (x). By summing up the information gains
of all relevant rays, we obtain the following entropy model:

Ev =
∑
r

Er (2)

Among all the sampled viewpoints, the next-best-view v∗

can be selected:

v∗ = arg maxEv. (3)

After obtaining the best viewpoint v∗, the robot positions the
sensor at v∗ and updates the occupancy map M using the
captured information. Specifically, the probability value P (x)
of a voxel x ∈ M is updated by the log-odds rule [27]. The
above steps are repeated until the termination criterion is met.

Traditional NBV planning methods generalize well in real-
world scenarios, but they lack the task-specific information.
For example, although plants grow naturally, high-level spatial
structures, such as leaf size and distribution, should follow cer-
tain probabilistic rules. Such plant-specific knowledge should
be combined withM in voxel-space to improve the efficiency
of NBV planning. Our solution is to train a deep neural
network to predict plant-specific information to help with NBV
planning. The predicted result is also in the form of a set
of voxels. Unlike the ray-casting strategy in traditional NBV
planning, our approach casts rays from voxels to viewpoints
to achieve efficient planning.

A. Deep Network for NBV

As mentioned, we design a deep network N (·) to sup-
plement task-specific information for NBV planning. In this
section, we describe the architecture of our proposed network
model and the way to incorporate the output of the model with
the NBV planner’s probabilistic map M.

1) Network architecture: Our network is based on the
recently proposed Point Completion Network (PCN) [29] but
with the capability of predicting the confidences of completed
points. However, point cloud completion and confidence in-
ference cannot be trained as a unified task because the value
measuring how close a predicted point to its ground-truth is
variable. We separate this task into two different branches
and design a new network inspired by multi-task learning
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Fig. 2. The network we use for generating point clouds with confidences. An encoder-decoder network – PCN first takes a partial point cloud X obtained by
the sensors as input. The encoder module is responsible for generating a global feature v for the decoder and our proposed probability branch. The decoded
result is also concatenated with the global feature to learn the confidence of the output predicted point. Yo is the point cloud produced by the part of original
PCN, Yp is Yo combined with confidences produced by the probability branch and Ygt is the ground truth point cloud.

(MTL) [30]. The first branch of our network is similar to
the original PCN, which uses an encoder-decoder structure
to complete a partial point cloud X , with no requirement
for any structural assumptions or annotations. The predicted
result of this branch is Yo ∈ Rm×3, where m is the number
of points. The predicted point cloud Yo is able to capture
low-level geometric details and thus is able to encode the
plant-specific knowledge in the voxels. The second branch
of our network is the probability branch that outputs the
confidence or probability values of each predicted point in Yo.
In particular, we first concatenate the global features v ∈ Rk
(k = 1024) (i.e. the output of the encoder) in the first branch
and the decoded point cloud Yo. The stacked vectors are
then sent through a multi-layer perceptron (MLP) that has
three linear layers with the sigmoid activations. The MLP will
generate a probability vector vp as the output of the second
branch to describe the confidence of the prediction Yo. The
final output Yp of the entire architecture is the concatenation
of Yo and vp: Yp = [Yo, vp] ∈ Rm×4. The entire pipeline for
the network described above in shown in Fig. 2.

2) Loss function: For the first branch, we use the same loss
function Lo as proposed in the original PCN, which measures
the distance between the predicted point cloud Yo and the
underlying ground truth Ygt. For the second branch, the loss
function Lp measures the difference between the confidence of
the predicted point cloud provided by the second branch and a
desired confidence about the point cloud, which is computed
according to the nearest point-to-point distance between the
predicted point cloud Yo and the ground truth point cloud Ygt.
In particular, given a point x ∈ Yo, the desired confidence is
computed as v∗p(x) = miny∈Ygt

e−λ‖x−y‖2 . This formulation
gives us a real value in the range of [0, 1], which can be
regarded as probability value as well. The confidence loss
function Lp is then defined as:

Lp =
1

|Yo|
∑
x∈Yo

|v∗p(x)− vp(x)|2, (4)

where λ is a scaling parameter for fitting different scales of

plants, and it is set as the diagonal length of the occupancy
map M.

3) Training strategy: As we mentioned before, the ground-
truth of a predicted point is variable during the training of
the PCN branch. In the design of our MTL-based network,
we adopt hard parameter sharing strategy [31] to train the
probability branch. In hard parameter sharing, a portion of
the parameters is shared among different tasks while the
other parameters are task-specific. In our case, the trained
hidden layers of the PCN branch are sharing to the probability
branch, whose layers are completely task-specific. Therefore,
the two different tasks must be trained in a fixed order. More
specifically, we have to train the PCN branch prior to the
probability branch.

4) Oracle generation: The output Yp of the deep network
is a point cloud with confidence values. It can be used to
derive a distribution about the possible occupancy status of
the voxels, which should be accessed by the sensor’s rays. In
this paper, we name this useful information for NBV planning
as oracle. Voxels encoded with free status inM should have a
low probability of being accumulated by a set of measurements
of sensors. These voxels may be mispredicted by our deep
network. Considering the map M that has been built, the
conservative strategy of oracle generation should remove these
voxels. As a result, it should provide instructions to the NBV
planner where the possible voxels that need to be accessed
are. Given the combination of scanned point cloud X , we
first use the proposed network to generate a full point cloud
with confidences as Yp. To accommodate the input size of the
network, we resize X to X ′ through adaptive downsampling
to feed the network. We use Yp to update M and get a
new probabilistic map Gp using the log-odds rule [27]. Since
there is no explicit correspondence between the input and
output of the trained model, the overlap may exist so we must
draw a clear line to make oracle more especially effective.
To this end, we compute the difference between all occupied
voxels in Gp and all occupied voxels in M, and finally the
oracle M̄ is built, which is defined as a 0-1 binary grid, a
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Fig. 3. An illustration of computing the next-best viewpoint using our
proposed method. (a) the occupied voxels of M are shown in green, and the
occupied voxels of M̄ is shown in yellow. (b) our method casts rays from
every voxel in M̄ to the candidate viewpoints, accumulating the information
gain of all traversed unknown voxels using Eq. 1. The red rays either fall
outside of FOV or be blocked by occupied voxels (shown in green) in M.

(a) (c)(b)

Fig. 4. A comparison of M̄ generated with/without the probability branch.
Some predicted points are not as precise as expected so there are incorrect
points in black rectangles. (a) the predicted point cloud with probability (from
low to high: blue - red) (b) M̄ generated by point cloud only (c) M̄ generated
by using probability – incorrect predictions are shown in gray.

voxel in M̄ is either occupied or free. Adding this probability
branch is to combine long-term measurements and network
predictions – i.e., a voxel has been measured as empty for
many times should not be regarded as occupied even if the
network predicts it is. This branch not only provides the
confidence distribution of a predicted point cloud, but also
seamlessly bridges the deep-network to NBV planners which
use a log-odds rule as the updating strategy. Our probability
branch provides the capability of weighting the predicted point
cloud that we use to generate M̄ – see the comparison in Fig.4.

B. Oracle-informative Planning

The oracle generated by above steps is used to guide NBV
planning. Ideally, the optimal next-best viewpoint v∗ can
fully observe all voxels in M̄ because M̄ gives a sufficient
estimation of the locations for next scanning. In other words, a
‘good’ viewpoint should cast more rays to cover voxels in M̄.
However, we refer to this situation as ‘optimal’ because it is
practically impossible due to realistic limitations, such as self-
occlusions and the limited field-of-view (FOV) of the sensors.
Instead of looking for an ‘optimal’ solution, our planning
scheme chooses to find a practical solution that is close to
the ‘optimal’ case.

1) Planning algorithm: Our proposed planning algorithm
tends to choose the viewpoint v which can be seen by more
voxels in M̄ with ‘1’ attribute. Traditional NBV approaches
usually cast rays from all candidate viewpoints to M. By
contrast, our search algorithm traces the casting rays from
voxels with ‘1’ attribute in M̄. We connect each voxel in
M̄ with each candidate viewpoint to constitute a set of back-
tracing rays {r′}. Specifically, for a voxel x and a viewpoint v,

Algorithm 1: Oracle-informative NBV planning
Input: A set of point clouds captured by the sensor

{Xi}(i = 1, ...,M); a set of candidate viewpoints
{vj}(j = 1, ...,K).

Output: An entropy-minimized viewpoint v∗.
1 Update the global occupancy map M by newly captured

point cloud XM ;
2 Combine input point clouds as X ← X1 ∪ · · · ∪XN ;
3 Downsample X to X ′ with the input size of N (·);
4 Predict the completion with probability Yp ← N (X);
5 Build an oracle M̄;
6 forall x ∈ M̄ do
7 forall vj do
8 r′ := (x→ vj)
9 if r′ ⊂ FOV (vj) then

10 Evj := Evj + Er (ref. Eq. 1 and Eq. 2)
11 end
12 end
13 end
14 return the viewpoint v∗ that gives maximized Ev∗ ;

a ray r′ := (x→ v) is feasible if it falls into the FOV region
FOV (v) of v, which is described by standard pinhole models.
The information gain of Ev contributed by x is computed in
the domain ofM∩M̄ using Eq. 2. We also provide a pseudo
code in Alg. 1.

2) Planning space: The state-of-art NBV methods such
as [22], [23] predefine a bounding geometry and assume
that it is able to completely cover the target object. We
also follow this assumption to define the search space and
choose to sample candidate viewpoints on a sphere around
POI with a fixed radius R. The feasibility of a viewpoint can
be determined by the kinematic model of the robot, together
with W . The analysis of feasibility can eliminate unnecessary
viewpoints in advance.

C. Termination Criterion

It is important to define a termination criterion in NBV
planning because there is no explicit expression that can be
used to terminate the search. Similar to [23], [24], we define
a simple termination criterion to complete the NBV planning
as shown below.

Ev∗ < qthres (5)

where qthres is a user-defined threshold of the lowest infor-
mation gain that can be accepted.

D. Extend to Multi-robot Systems

Mobile robots with eye-in-hand sensors, such as the on used
in [22], can use uncertainties to reconstruct complex objects
flexibly. However, robotic arms with fixed bases are limited by
the flexibility (i.e., reachability). If people want to use robotic
arms in plant phenotyping, a better solution would be adopting
more robotic arms in different setups of bases. For instance,
we use three robotic arms at the same around the target plant as
described in Sec. III. The problem of extending single robots to
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multi-robot systems contains an set cover problem [32], which
is NP-hard [33]. Due to the difficulty, we decided to propose
a practical solution to this problem. It is worth noting that
the most difficult part of this problem is to design an efficient
algorithm to avoid overlapped viewpoints as the exact overlaps
can only be identified by updating the occupancy map. To this
end, we propose a heuristic algorithm as follows.

We design the algorithm based on the preference for paying
less attention to a voxel of M̄ if it has been used to select other
viewpoints. Let N be the number of robotic arms. We first
generate a search space by sampling the candidate viewpoints
for all N sub-robots (see Fig. 6 for an N = 3 example).
Then we apply the proposed NBV planning algorithm on all
candidate viewpoints to obtain a matrix A ∈ Rp×q (see above).
The rows of A are oracle voxels {xi}, the columns of A are
candidate viewpoints {vi}, and A(i, j) is the information gain
contributed from voxel i to viewpoint j. It is obvious that
the sum of each column of A can be used to select next-best
viewpoints. We repeat the following steps until N next-best
viewpoints are generated.
• Take the tth viewpoint with the largest col-wise sum

value;
• Set all columns whose corresponding viewpoints are

belonging to the same robot of tth viewpoint to zero;
• Multiply an adaptive decay γ = ln 2 − A(s, t) to every

row s whose A(s, t) 6= 0 to decrease the risk of overlap-
ping.

V. EXPERIMENTAL RESULTS

We now present the experimental results of our system.
Since the ray-castings are embarrassingly parallel, all the pro-
posed algorithms are implemented on GPU architecture with
the help of GPU-Voxels library [34], including the method we
implemented for comparison. All tests are run on a PC with
Intel(R) Xeon(R) Gold 6146 CPU @ 3.20 GHz, 128 GB RAM
and NVIDIA Titan V. We test the deep-learning based NBV
planner on simulations and provide a real-world demo with a
multi-robot setup.

A. Datasets and Training

An obstacle to adopting deep networks in plant phenotyping
is the lack of data. It is an onerous task to collect point
clouds of plants as ground truth manually. In this paper, we
use ngPlant [35] to synthesize data. ngPlant is a parametric
synthesis tool for plants. We randomly assign parameters
such as branching angles and offsets to synthesize different
plants. Instead of using the original 2D texture to represent
leaves, we apply Delaunay triangulation on the texture to
convert them to meshes. The synthesized meshes are then

TABLE I
COMPUTATIONAL STATISTIC OF EACH ROUND

Method Robots # (N ) Inference time NBV time
Traditional NBV 1 4.030 sec.

2 7.154 sec.
3 11.382 sec.

Our method 1 0.333 sec. 3.077 sec.
2 0.360 sec. 5.980 sec.
3 0.401 sec. 10.140 sec.

converted to point clouds by uniformly sampling. We reserve
150 models for validation and 100 models for testing. The
rest 610 models are used for training. The resolution of
occupancy mapM is 0.04m. We render the plants at different
viewpoints using a standard pinhole camera model (Intel(R)
Realsense(TM) SR300 @ 640×480). The partial point clouds
can be obtained by extracting values from the depth-buffer
and applying intrinsic and extrinsic parameters. The network
is trained by using the Adam optimizer. The first training pass
for the PCN branch takes original training settings from [29]
for 53 epochs. Then we train the probability branch using 10−4

learning rate and it is converged after 263 epochs (around 15
hours).

B. Simulation Experiments

In our simulations, we assume robots can completely cover
the search space (i.e., plants) though this is not achievable
because of robots’ reachability in reality. We compare our
method with the traditional NBV planning approach using the
same entropy model (i.e., Occlusion Aware VI). The evalu-
ations are conducted on different choices of the number of
robots N , from 1 to 3, for ten trails. To clarify the experimental
results, we define a metric to calculate the precision (i.e.,
surface coverage rate) between the ground truth point cloud
S1 and the point cloud S2 measured by sensors as follows.

P (S1, S2) =
1

|S1|
∑
x∈S1

U

(
min
y∈S2

||x− y||2 − ε
)

(6)

where U(·) is the Heaviside step function, and ε is the distance
threshold used to determine if a point in S2 has already been
captured. All simulations use ε = 5× 10−5.

Though our method and the traditional method use the same
entropy model, the termination criteria are hard to be same
due to different evaluation processes. To fairly compare our
method with the traditional method, we compute the average
entropy value when both algorithms achieve 85% coverage
rates on same plants and use them as the termination criteria. A
comparison of computational statistics between our proposed
method and the traditional NBV approach (the basic pipeline
in [22] with the Occlusion Aware VI entropy model) is shown
in Table I, and our proposed method shows a promising speed,
although it has an additional inference step taken by deep
neural network. Experimental results show that our method
yields better results than the traditional NBV approach. Even
if the precision of initialization step (randomly initialized in
simulations) is lower than the traditional NBV method, the
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Fig. 5. The progressive views of plant phenotyping by our multi-robot. These pictures are taken when our multi-arm system is running the proposed deep
NBV planner. The last column depicts the resultant point cloud of the plant. One can watch the accompanying video for a complete illustration.

Fig. 6. In multi-robot system with N = 3 subrobots, we sample candidate
viewpoints on a sphere using an analytically inverse-kinematic solver.

final result will be superior to the traditional NBV method,
which proves the effectiveness and efficiency of our proposed
method. An example of comparisons w.r.t. precision P (S1, S2)
is shown in Fig. 7.

The average accuracy of point cloud predicted by network
can be measured by Chamfer Distance (CD) and Earth Mover
Distance (EMD) [29], and they are 0.02617 and 0.28637
respectively. We also provide the results measured by the same
metrics (CD and EMD) as a function of how much the progress
of plant phenotyping in Fig.8.

C. Real-world System Deployment

1) Motion planning: The low-level component of our soft-
ware adopts the RRT-Connect algorithm [36] to plan motions,
which interchangeably builds two trees to connect the start and
goal configurations. Considering the high-dimensional prob-
lem introduced by multi-robot, it is easy to plan viewpoints
but fails to succeed in most cases. In our system, we ease the
problem with the following strategies.

1) It is not necessary to sample all candidate viewpoints
in situ, we presample these viewpoints using an ana-
lytically inverse-kinematic solver. We add the maximal
enclosed volume (the workspace prior used in NBV
planning) to the environment to avoid collisions.

2) The initial configurations of our robots in each round of
phenotyping are fixed. We compute the initial configu-
rations by finding the minimal one whose corresponding
configurations have minimal L2 distances over all others.

3) We use the planner [36] to generate trajectories between
the target and the initial configurations for all robotic
arms simultaneously and remove the viewpoints whose
corresponding configurations cannot be planned within
tmax = 40 seconds.

By using these rules, the successful rate of motion planning
can significantly increase from less than 10% (i.e., randomly

generating initial viewpoints without using any aforemen-
tioned rules) to 94.2%.

We pre-sampled 100 viewpoints for each of the three robots.
It takes around 24 hours to generate motions on four PCs.
The motion planner takes 0.238 second for each trajectory in
average. We build a database to store the planned trajectories
and they can be queried in real-time during phenotyping.

2) Camera calibration: The static transformation between
the mounted sensor and the end-effector should be well
calibrated; otherwise, the point cloud cannot be deployed
to the correct location. Moreover, the relative positions of
robots should also be calibrated for collision avoidance. We
use the classic hand/eye calibration method [37] to randomly
acquire a set of poses for each robot to track an AR marker
for calibration. The calibrated results are fine-tuning multiple
times until a satisfactory result is obtained.

3) Results: The progressive views of our real-robot exper-
iment are shown in Fig. 5, the scanned result is also shown
in right-most column of the same figure. We also provide a
video in the supplementary material to explain the proposed
planner and demonstrate the physical experiments.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present an automated robotic system for
fast, precise and noninvasive plant phenotyping. We propose
a deep-learning based NBV planner to compute next-best
viewpoints. The planner first uses a deep neural network to
estimate a set of candidate voxels for next scanning, and then
cast rays from these voxels to determine the viewpoints to be
positioned with sensors. Our proposed learning-based NBV
planning method can be easily extended from a single-robot
to a multi-robot system without sacrificing too much speed of
planning. The results of our experimental tests are encouraging
and prove that the system can advance the high-throughput
phenotyping research.

Our system has a disadvantage that it heavily relies on the
trained deep networks, if the networks cannot produce effec-
tive predictions, the system may not be able to give next-best
viewpoints. We plan to solve this problem by incorporating the
deep NBV planner with other planners by scheduling them at
different stages [38]. We plan to use this system to build a
complete dataset in terms of plant phenotyping and conduct
quantitative analysis.
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