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Abstract

Purpose: Given an intersection-free mesh surfaceS , we
introduce a method to thickenS into a solidH located at
one side ofS . By such a surface-to-solid conversion
operation, industrial users are able to fabricate a designed
(or reconstructed) surface by rapid prototyping.

Design/methodology/approach: In this paper, we first
investigate an implicit representation of the thickened solid
H according to an extension of signed distance function.
After that, a partial surface reconstruction algorithm is
proposed to generate the boundary surface∂H of H, which
remains the given surfaceS on the resultant surface.

Finding: Experimental tests show that the thickening results
generated by our method give nearly uniform thickness and
meanwhile do not present shape approximation error at the
region of input surfaceS . These two good properties are
important to the industrial applications of solid fabrication.

Research limitation/implications: The input polygonal
model is assumed to be intersection-free, where models
containing self-intersection will lead to invalid thickening
results.

Originality /value: A novel robust operation to convert a
freeform open surface into a solid by introducing no shape
approximation error. A new implicit function that gives a
compact mathematical representation, which can easily
handle the topological change on the thickened solids. A
new polygonization algorithm that generates faces for the
boundary of thickened solid meanwhile retaining faces on
the input open mesh.

Keywords: Thickening, mesh surface patch, signed distance,
surface to solid, rapid prototyping.

1 Introduction

Rapid prototyping (RP) is a very important fabrication tool
to help designers to realize the prototype of their product –
especially for those products with freeform shape. Common
rapid prototyping techniques (ref. [1]) includeselective laser
sintering (SLS), stereolithography (SLA), fused deposition
modeling (FDM), laminated object manufacturing (LOM),
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Figure 1: The difference between surface offsetting (left) and
thickening (right), where the bolded curve denotes the given
freeform surface to be remained on the resultant solid.

3D printing (3DP), etc. In order to fabricate a designed
model (or shape) into a real object by these rapid prototyping
methods, the model is usually represented as the boundary
representation (B-rep) of a solid inℜ3 (ref. [2]).

In the applications of design and manufacturing, there is a
demand for a geometric modeling tool to convert a freeform
mesh surface (usually in the form of open surface) into a
thin-shell solid that can be fabricated by rapid prototyping
machines. The freeform mesh surfaces to be processed could
be a surface region trimmed from a designed model. In or-
der to physically check the fitness of the designed model
to other objects, a prototype surface of the model needs to
be fabricated. Moreover, the surface to be thickened (and
then fabricated) could also be a patch reconstructed from
the scanned point clouds. Many RP fabrication procedures
require the solid model having nearly uniform thickness so
that large residual strains will not be generated by the non-
uniform shrinkage of materials. The freeform surfaces to be
fabricated are usually represented in the form of piecewise-
linear mesh surfaces, which are not limited to rectangular
or triangular parametric surfaces and could have high genus
topology. Therefore, the offsetting techniques for paramet-
ric surfaces in the literature (e.g., [3–5]) cannot be directly
used here. Moreover, although the offsetting operation (e.g.,
[6–8]) in solid modeling can compute offsetting shells for
general 3D freeform models, the computed shell are located
on both sides of a surface patchS that does not satisfy the
requirement described below (see the left of Fig.1 for an il-
lustration).

Offsetting the input mesh surface one-side by explicitly
moving vertices may lead to self-intersections. For exam-
ple, as shown in the right of Fig.1, the intersection-free one-

1



side offsetting result in a surface that has different topology
to the input surface. It is also not clear how to define the
boundary of this “one-side offsetting”. Although it is possi-
ble to “project” the boundary of input surface onto the off-
set surface and cut off undesired regions, the projection and
cutting off steps involve many numerical predicates and will
suffer the robustness problems [9]. In this paper, we define
a compact representation for thickened solids, which help on
the robust and efficient computation of resultant models in
boundary representation.

The mesh surface trimmed from an existing model is ex-
pected to be not changed during the thickening. Specifi-
cally, the input mesh surface is required to be remained as
part of the boundary surface of the resultant solid (i.e., the
output of thickening operation), where most of the RP ma-
chines use triangular mesh surfaces as the standard represen-
tation of input models. The given surfaceS is remained on
the boundary of the resultant solid so thatS can be fabri-
cated. Figure 2 shows such an example on fabricating a sur-
face for helmet design. On a head model reconstructed from
a scanned point cloud, designers can draw freeform curves
(see Fig.2(a) and (b)) and the mesh surface is then trimmed
off by these curves into a new freeform surface patch to be
fabricated (see Fig.2(c)). After applying our mesh thicken-
ing operation, the surface patch is converted into a thin-shell
solid (see Fig.2(d)) and fabricated into a real object as shown
in Fig.2(e). The physical fitness check can be taken by this
prototype and the head of mannequin.

Problem Definition Given a two-manifold mesh surface
patchS , a thickening operation generates a triangular mesh
that represents the boundary surface∂H of a solidH, which
is located at one side ofS and has a user specified thickness
r. Meanwhile,∀p ∈ S (p ∈ ℜ3), the distance betweenp and
∂H,

dist(p, ∂H) = inf∀q∈∂H ‖p − q‖,
must be zero.

To solve this surface thickening problem, we develop a
new method in this paper to produce the triangular mesh
surface of∂H in two steps. First, an implicit representa-
tion of the thickened solidH according to an extension of
signed distance field is defined on an uniform grids with
(2l+1)× (2l+1)× (2l+1) nodes, where each node stores a bi-
nary value to indicate whether the node is insideH (by value
‘1’). In this step, a hierarchical assigning algorithm is devel-
oped to assign the values of grid nodes efficiently. After that,
a new partial surface reconstruction algorithm is investigated
to generate the surface of∂H. To satisfy the requirement of
dist(p, ∂H) = 0, the given surface patchS is only modified
to a new surface patcĥS by splitting the triangles located
on the boundary ofS if necessary. Other triangles onS are
remained, and the reconstructed mesh surfaces for∂H are
stitched to the boundaries ofŜ .

1.1 Literature review

The related work in literature can be classified into surface
offsetting, solid offsetting, and other solid modeling opera-

tions with the help of volumetric representations, which are
reviewed below.

The thickening operation proposed in this paper closely
relates to the offsetting operation, which can be applied to
curves, surfaces and solids. In the earlier work of Rossignac
and Requicha [6], the mathematical basis for offsetting solids
was described. The offset techniques for curves and surfaces
have been extensively studied by Pham [11] and Maekawa
[12]. For offsetting a 3D surface, the most difficult is-
sue is how to effectively and efficiently remove those self-
intersected regions that do not belong to the resultant off-
set surface. Most of recent surface offsetting approaches
(e.g., [3, 4]) focus on solving this issue. However, the input
of these approaches are parametric surfaces with rectangular
parametric domains (or triangular parametric surface suchas
[5]), which cannot be directly applied here to the piecewise-
linear surface patches. For the applications in CAD/CAM,
more and more models are represented by piecewise-linear
freeform surface (especially those objects reconstructedfrom
scanned 3D point clouds or scanned volumetric images).

The offsetting operation for 3D surfaces can be extended
to compute the offsets of 3D models by first offsetting all
surfaces of a model and then trimming (or extending) these
offset surfaces to reconstruct a closed 3D model [6, 13, 14].
These earlier approaches first compute a superset of the off-
set surface by offsetting 1) vertices into spheres, 2) edges into
cylinders, and 3) faces into parallel faces. Then, they trim
that superset by subdividing its elements at their common in-
tersections and deleting the pieces that are too close to the
original solid. This is a very expensive computing process
and the trimming at tangential contacted regions is numer-
ically unstable. Although the recent work in solid model-
ing can remove the self-intersections more robustly and effi-
ciently with the help of other representation (e.g., [7, 8, 15]),
simply applying the solid offsetting operator to a mesh sur-
face patchS will generate a solid on both side ofS , which
does not satisfy the requirement defined in our objective of
surface thickening to remainS on the boundary surface of a
resultant solid (see Fig.1).

Many offsetting approaches for 3D solids seek the help
of volumetric representation of solids to remove the self-
intersections on the result of offsetting. Widely used rep-
resentations in these approaches include voxel-based repre-
sentation [16, 17], ray-based representation [8, 18, 19], the
fast marching method [20, 21], distance-field based repre-
sentation [22–25], or Binary Space Partition (BSP) tree [26].
Some of them can be applied to solid modeling operations
that are more general than offsetting (e.g., Minkowski-sum,
general sweeping, etc.). However, to the best of our knowl-
edge, none of these approaches can generate a mesh sur-
face that satisfies the requirement of being coincident with
the input surface patch. The proposed mesh thickening ap-
proach generates the indication field on uniformly sampled
grids with the help of distance-field. Nevertheless, the nov-
elty here is more than using the distance-field to remove self-
intersections. Details are discussed in the following subsec-
tion.

Lastly, the partial surface reconstruction algorithm is akin
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Figure 2: Application of using the thickening operation in the helmet design and prototype fabrication. Given a head model in
(a), designers can draw freeform curves on the surface of thehead model (see (b)) and cut out the triangular mesh surface patch
for modeling the helmet from the head model (see (c)) by usingthe method in [10]. The thickening operation is then utilized
to fabricate a solid model with relatively uniform thickness (see (d)), which is passed to a mask projective SLA machine to
produce a prototype of the helmet by resin (see (e) for the result). In (d), the newly reconstructed triangles are displayed in
blue color and the triangles coincident with the given surface patch in (c) are displayed in gray color. It is easy to find that only
triangles on the boundary of the input surface patch are split while other given triangles are remained on the resultant surface.

to the dual contouring (DC) algorithm [27] to convert the
implicit representation of a solid into B-rep according to its
zero-level isosurface. In the basic DC algorithm, the implicit
function for a solid is first sampled on uniform cubic grids.
A grid cell with its eight grid nodes having inconsistentin-
side (or outside) configurations is named as a boundary grid
cell. In each boundary cell, a vertex on the resultant mesh
surface is created and located at the position minimizing the
quadratic error function (QEF) defined by the Hermite data
samples on the grid edges of the cell. For each edge that has
one endinside but the otheroutside, two triangles are con-
structed to link four vertices in the cells around the edge. The
resultant B-rep is formed by these triangles. The basic DC
algorithm is recently modified to generate intersection-free
mesh surfaces [7, 28] and manifold-preserved surfaces [29].
Differently, in our approach, the triangles reconstructed from
the uniformly sampled grids is required to stitch onto the ex-
isting triangles inS . We develop an extension of the DC
algorithm to achieve this goal by 1) positioning the vertices
onto the boundary curve∂S of S when a cell intersects∂S
and 2) neglecting the construction of triangles at the region
occupied by the given surfaceS . Details will be discussed in
Section 4.

1.2 Contributions

Major technical contributions of our work fall in three as-
pects.

• A novel mesh thickening operation for solid fabrication
is proposed in this paper. In literature, there is no such
thickening operation available for inputs with general
piecewise-linear surfaces.

• The new thickening operation will generate a new solid
H lying at one side of the given surfaceS , where an im-
plicit representation of this solid is defined by extending
signed distance functions. Efficient filters are developed
to evaluate the results of point-membership classifica-
tion on the solid.

• To obtain the boundary surface,∂H, of H, a partial sur-
face extraction algorithm is investigated for generating
the B-rep by remainingS on the resultant surface. It
is very important for solid fabrication that no shape ap-
proximation error is generated on the surface to be fab-
ricated.
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Figure 3: The signed distance-field of a given oriented
surfaceS (left) classifies theℜ3 space into three regions
(see right): 1)sDist(p, S ) > 0 (the region in blue color),
2) sDist(p, S ) < 0 (the region in green color), and 3)
sDist(p, S ) = 0 (the black solid curve and the red dashed
curves).

Rest of the paper are organized as follows. After giving
the mathematical definition of solids produced by our thick-
ening operation in Section 2, a hierarchical filtering method
is presented in Section 3 to efficiently evaluate the solid on
uniformly sampled grid nodes. Section 4 concentrates on the
partial surface reconstruction algorithm that generates the B-
rep of∂H. Several experimental tests are given in Section 5
to demonstrate the function of our approach, and our paper
finally ends with the conclusion section.

2 Shape Representation

This section discusses the mathematical representation of
solids generated by our mesh thickening operation.

Definition 1 For a given two-manifold surface patchS , the
signed distance from a pointp ∈ ℜ3 to S is defined as

sDist(p, S ) =

{ (p−c)·nc

|(p−c)·nc| ‖p − c‖ ((p − c) · nc , 0)
0 ((p − c) · nc = 0)

(1)

wherec is the closest point ofp on S as

c = arg inf
∀q∈S
‖p − q‖ (2)

andnc is the surface normal1 of S atc.

Different from the signed distance field for solids with closed
boundary surfaces, the signs for distances to an open surface
are defined according to which side ofS the query pointp
is located. Specifically, the sign of inner product between
the vector (p − c) and the normal vector,nc, of surfaceS at
c. This is an extension of signed distance fields. The sign of
distance to the surfaceS partitions theℜ3 space into three re-
gions (see Fig.3 for an illustration). Note that, the red dashed
curves (in the right of Fig.3) represent the region of pointsp
with sDist(p, S ) = 0 butp not onS .

1The input two-manifold surfaceS is oriented, thus its normal vectors
point to one side ofS .

By the signed distance function in Definition 1, we can
define the point set of the thickened solidH(S ) for S as fol-
lows.

Definition 2 The point set of the thickened solidH(S ) hav-
ing the thicknessr for a given two-manifold surface patchS
is defined as

H(S ) = {p | sDist(p, S ) ∈ [−r,0], ∀p ∈ ℜ3}\B(S )∪∂S , (3)

whereB(S ) is

B(S ) = {p | arg inf
∀q∈S
‖p−q‖ ∈ ∂S , inf

∀q∈S
‖p−q‖ ≤ r, ∀p ∈ ℜ3},

(4)
and ‘\’ and ‘∪’ denote the subtraction and the union of point
sets respectively.

In our definition of the thickened solid, the point set of a
thickened solid excludes the points whose closest points are
on the boundary ofS (i.e., all points inB(S )). As shown in
Fig.4, if these points are included in the point sets for thick-
ened solids, the given surface patch,S , will be smoothly ex-
trapolated by the boundary surface of the thickened solid.
This results in a solidH that the given surfaceS cannot be
easily identified on the resultant∂H. Industrial applications
prefer to generate a solid on which the given surface patch,
S , can be easily identified (as shown in Fig.4(d)). The points
in B(S ) must be excluded fromH(S ); however, the boundary
of S , ∂S , must be included inH(S ) to result in aregularized
solid (ref. [2]).

Note that, the solid defined in Eq.(3) is located at the ‘in-
terior’ side of the given surface patch (i.e., the non-positive
region inℜ3 defined bysDist(p, S ) – the green region in
Fig.3). Similarly, a thickened solid in the non-negative re-
gion can be defined bysDist(p, S ) as

{p | sDist(p, S ) ∈ [0, r], ∀p ∈ ℜ3} \ B(S ) ∪ ∂S .

Or to obtain such a solid by flipping the orientation of all
triangles on the given surface patchS . Therefore, in the rest
of our paper, we only discuss about the boundary surface
generation method for the solid defined in Eq.(3).

3 Fast Evaluation of Grid Nodes

The definition of thickened solidH(S ) in Eq.(3) is an implicit
representation, which is going to be converted into the mesh
surface of∂H. We sample the solidH on uniform grids,
where each grid node stores its signed distance toS . The
sampling distance (i.e., the width,w, of cubic grid cell) is a
parameter that can be selected by users. However, selectinga
value ofw greater than half ofr (i.e., the specified thickness
of H) may let the newly created boundary surface (∂H \ S )
fall in the same grid cell which holds the original surfaceS .
Such a case will result in a poor mesh surface according to
the limitation of DC algorithm that each cell will generate
only one vertex on the resultant mesh.

Remark 1 The width of uniformly sampled grids,w,
should be less thanr/2.
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Figure 4: The illustration for the definition of a thickened
solid H: (a) the given surfaceS and its offsetting result, (b)
the solid including the points with the closest points on the
surface boundary∂S , (c) the open point setB(S ) as defined
in Eq.(4) must be excluded, and (d) the thickened solidH(S )
as defined in Eq.(3). It is easy to find that the boundary of
given surface is not clearly presented on the resultant solid if
the points with closest points on the surface boundary∂S are
included (e.g., as the solid shown in (b)).

The spaceΓ that bounds a thickened solidH can be es-
timated by enlarging the bounding box ofS with r. There-
fore, the signed distance-field toS (according to Definition
1) is sampled inΓ on uniform grids with widthw. To effi-
ciently search the closest pointcq on S according to a query
pointq, the swept sphere volume hierarchy (SSVH) of trian-
gles in [30] is adopted here to determine the information that
needs to be stored on grid nodes. As analyzed in [7], though
the closest point search based on SSVH is fast, using it to de-
termine the signed distance value for all nodes on grids with
moderate density (e.g., 257×257×257) may take more than
several hours. However, such comprehensive search is not
necessary as the surface reconstruction only considers cells
intersecting∂H. To speed up the node value assignment, we
classify the grid nodes intovalid andinvalid ones. The def-
inition ensures that the minimal box in the sampled distance
field has all nodes with valid distance values if the box inter-
sects the boundary of solidH.

Definition 3 For any grid node, if its distance to the bound-
ary of solidH is less than

√
3w with w being the width of grid

cells, this grid node is defined as avalid grid node; otherwise,
it is called aninvalid grid node.

By this definition, the grid cells intersect∂H only have valid
grid nodes. Therefore, a good strategy for generating a mesh
surface of∂H is to compute a narrow signed distance field
only near the valid grid nodes. However, the boundary ofH

consists of several parts, the construction of narrow distance-
field around∂H is more difficult than the narrow distance-
field for solid offsetting in [7]. A looser bound for the set of
valid grid nodes is given by introducing thecandidate region
of valid grid nodes as follows.

Definition 4 Candidate region Ω inℜ3 of valid grid nodes
is defined as a set of points, where any pointq ∈ Ω must
satisfy|Dist(q, S )| ≤ r +

√
3w.

The candidate region of valid nodes defined a superset of
valid grid nodes, which is actually an offset solid ofS with
the offset value (r +

√
3w).

Remark 2 For a sphere centered ato with diameterd,
this sphere has no intersection with the candidate region if
|sDist(o, S )| > d + r +

√
3w.

This remark is used to develop an hierarchial assigning algo-
rithm for grid nodes. Without loss of generality, we assume
that there are (2l + 1) × (2l + 1) × (2l + 1) grid nodes to be
assigned for the thickened solidH(S ) (with l being an in-
teger). Starting from the bounding boxΦ of all these grid
nodes, we recursively subdivide the boundary box into eight
sub-boxes. For a sub-box, if the distance from the center
o of its circumsphere to the given surfaceS is greater than
d + r +

√
3w (according to Remark 2), the subdivision is

stopped and all grid nodes in this sub-box are assigned asnot
belonging to the candidate region. Otherwise, the sub-box is
further subdivided until a sub-box with only eight grid nodes
is obtained, which cannot be further refined. When reaching
the finest level of the hierarchy, the signed distance from a
gird node toS will be determined by [30] and stored; mean-
while, whether this grid node is inside the solidH will be
determined according to Definition 2. Figure 5 illustrates the
hierarchical structure (i.e., an octree) for assigning thevalue
on grid nodes.

4 Partial Surface Reconstruction

In this section, we present the partial surface reconstruction
algorithm that generates a mesh surfaceM for ∂H, which
remains the given surface patchS as part of it. Our recon-
struction algorithm is an extension of thedual contouring
(DC) algorithm [27] conducted on the uniformly sampled
grid nodes. Briefly, in DC algorithm, every grid-box with
some grid nodeinside a solid H while other nodesoutside
will generate a vertex for the resultant mesh surfaceM. The
position of vertex is determined by minimizing thequadratic
error functions (QEF) for obtaining a good shape approxima-
tion (ref. [27]). For each grid edge having one ending node
inside and another outside, a quadrangle is constructed by
linking the vertices in the four grid boxes around this grid
edge. In general, these four vertices are not coplanar; there-
fore, the quadrangle is split into two triangles to have a de-
terministic representation ofM.
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Figure 5: An example hierarchical structure which can effi-
ciently detect the grid nodes not belonging to the candidate
region (in yellow) of a given surface (illustrated by the bold
black curve).

4.1 Boundary tracking and processing

First of all, in order to let the reconstructed triangles stitch to
the given surface patchS , the grid cells that intersect with the
boundary curves ofS are determined (calledboundary-curve
cells). Different from the original dual contouring algorithm,
the vertices generated in these boundary-curve cells are lo-
cated in a different way. Moreover, the boundary curves∂S
of the given surface patchS are processed to eliminate the
gap between the newly reconstructed surface region andS
by a method similar to the boundary stitching in [31].

Instead of detecting the intersection between the boundary
edges onS and all the grid cells, which is neither efficient nor
robust, we construct the boundary-curve cells and track the
boundary edges in them by a top-down detection algorithm.
Using the bounding boxΦ of all the grid nodes as a root,
an octree based hierarchy is constructed. Each node on the
octree spans a cubical space inℜ3 and stores the boundary
edges that fall in this cubical space. When constructing the
octree, the refinement of a node is stopped if no boundary
edge falls in the space spanned by this node. Leaf nodes
of the octree at the finest level are the boundary-curve cells
which intersect∂S (see the cubes shown in Fig.6).

Unlike other boundary grid cells in the DC algorithm,
vertices in the boundary-curve cells for the mesh reconstruc-
tion are generated and located in a different way. First of
all, if there are more than one boundary vertices ofS in a
boundary-curve cellcbnd, the vertex closest to the center of
cbnd is selected as this cell’s vertex, which will be connected
by triangles to form the resultant mesh,M. If there is no
boundary vertex in a boundary-curve cellcbnd, a new ver-
tex will be created on one of the boundary edges incbnd and
located at the place closest to the center ofcbnd. After con-
structing vertices in all the boundary-curve cells, a boundary

Figure 6: Boundary tracking and processing: (left) the given
surface patchS and (right) the boundary-curve cells (dis-
played in bold black wire-frame) and the subdivided trian-
gles adjacent to the the boundary ofS (in pink color).

edge on the given mesh surfaceS may have several newly
created vertices attached. Each triangleTbnd on S adjacent
to these edges will be replaced by a set of new triangles
connecting the vertices associated withTbnd and its edges.
This can be implemented by sorting all vertices along the
triangular edges and applying a minimal area triangulation
(ref. [32]). See the re-triangulated faces in the right of Fig.6,
which are displayed in different colors. The mesh surfaceŜ
after this re-triangulation is coincident to the input surface
patchS .

4.2 Face generation

This subsection discusses the method to generate polygonal
faces for the surface∂H \ Ŝ .

Definition 4 A grid edge with one end nodeinside the solid
H and another end nodeoutside is an edge that intersects the
boundary surface∂H – calledboundary grid edge.

The original DC algorithm generates a closed mesh surface
by constructing a quadrilateral face for each of the boundary
grid edges. However, as part of the surface∂H has already
existed inŜ and must be exactly remained, the face genera-
tion step must neglect the construction of faces in these re-
gions.

Remark 3 For a boundary grid edge with two end nodes
having signed distances toS asds andde, it hasds ≥ 0 or
de ≥ 0 if this edge intersects the given surface patchS .

Therefore, eitherds ≥ 0 or de ≥ 0 is a necessary condition
for neglecting the face construction on a boundary grid edge.

Definition 5a A cross-section region on the boundary sur-
face∂H of H is defined as

{p | arg inf
∀q∈S
‖p − q‖ ∈ ∂S , ∀p ∈ ∂H}. (5)

Definition 5b A set of points on the boundary surface∂H
of H satisfyingsDist(p, S ) , 0 and with their closest surface
point not on∂S is defined as theinner-shell surface region.

Remark 4 For a boundary grid edge intersecting∂H at p,
if the closest pointcp of p on S satisfiescp ∈ ∂S , the face
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Figure 7: The boundary surface∂H of H consists of three
parts: theinner-shell region, thecross-section region and the
original surface region.

constructed according to this boundary edge is in the cross-
section region.

The boundary surface∂H of H consists of three parts includ-
ing the cross-section region, theinner-shell region and the
original surface region (see Fig.7 for an illustration).

In our modified dual contouring algorithm, faces are only
constructed on the inner-shell regions and the cross-section
regions. Specifically, after constructing the boundary-curve
grid cells and processing the boundary triangles onS (by the
method in Section 4.1), the polygonal faces forM are con-
structed on the grid edges intersecting theinner-shell region
and thecross-section region in three steps.

• Firstly, we obtain the intersection point between all
boundary grid edges and∂H by the bisection method.
The closest pointcq of an intersection pointq is then
searched by the method of [30]. The Hermite data
(q, q−cq

‖q−cq‖ ) is stored on the grid edge for positioning ver-
tices in the next step.

• Secondly, the vertex in each boundary grid cell is cre-
ated and located at the average position of all inter-
section points on the grid edges of this cell. For the
boundary-curve grid cells, as the vertices have been cre-
ated and located on the existing boundary edges ofS , no
new vertex will be generated and the positions of exist-
ing vertices will not be changed.

• Thirdly, if the ends of a boundary grid edge have dif-
ferent signs for their signed distances toS , this edge is
possible to intersect the original surface region (accord-
ing to Remark 3). Therefore, we further check in which
region the intersection point between this edge and∂H
is located. If the intersection point is in the original sur-
face region, this boundary grid edge is neglected. Other-
wise, a quadrilateral face will be created by connecting
the vertices in four grid cells adjacent to this boundary
grid edge. The Hermite data of a boundary grid edge is
also stored in the face constructed on it, which will be
used in the next step of shape optimization.

Figure 8: Face generation for the resultant mesh surfaceM:
(left) the quadrilateral faces are generated on both the inner-
shell region (in green) and the cross-section region (in blue),
and (right) the holes are filled and quadrilateral faces are split
into triangles.

The reconstructed quadrilateral faces will cover the inner-
shell region and the cross-section region meanwhile connect-
ing to the boundary edges ofŜ (see Fig.8 for an example).
Specifically, the faces for the inner-shell region and the cross-
section region are constructed simultaneously. The faces in
the cross-section region can be classified by Remark 4. Dif-
ferent from the original DC algorithm, the faces overlap the
input surfaceS are neglected in this modified face generation
step.

On the mesh surface generated by our extended dual con-
touring algorithm, a few holes may be generated near the
boundary curves of the given surface patchS . Some of these
holes are generated in a boundary-curve cells holding more
than one boundary vertices, where only one vertex is used in
the face generation step. Other holes are caused by neglect-
ing the face generation on a boundary grid edge in mistake,
which may happen because of round-off errors. Such holes
can be easily filled by the minimal area triangulation method
in [32]. Moreover, the non-manifold entities generated in
DC algorithm can be eliminated (or repaired) by the method
presented in [31]. Note that the triangles onŜ must not be
changed. An example of the repaired mesh surface is shown
in the right of Fig.8.

4.3 Shape processing

In DC based algorithms, the faces generated according to the
boundary grid edges do not always interpolate the Hermite
sample data stored on the boundary grid edges. The faces
generated by our method above also have this problem. As
shown in the left of Fig.9, the shape of reconstructed surface
near the boundary between the cross-section region and the
inner-shell region is not very smooth. We process the shape
of reconstructed faces iteratively.

• Step 1). Apply a Laplacian operator to smooth the nor-
mal vectors of the faces located at the cross-section re-
gion.

• Step 2). Update the normal of the Hermite data stored
in a face at the cross-section region by the smoothed
normal vector of this face2.

2This is because that the normal vector of a pointq at the cross-section
region is not

q−cq
‖q−cq‖ .
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• Step 3). Compute the optimal positionov of a recon-
structed vertexv (i.e., not including the vertices on̂S ) by
minimizing the QEF defined by the Hermite data stored
in all faces adjacent tov, and movev to a new position
pnew

v = (1−α)pv+αov with pv being the current position
of v andα being a blending factor (α = 0.25 is selected
in all examples of this paper).

• Step 4). Update the normal vectors of all reconstructed
faces (i.e., faces not on̂S ).

Repeatedly running these steps for 10 to 20 times will gen-
erate a smoother surface and form sharp edges between the
cross-section region and the inner-shell region (see the right
of Fig.9 for an example).

Figure 9: The mesh surface of a thickened solid before (left)
vs. after (right) shape optimization. From the silhouette of
the blue region, we can find the improvement of shape on the
processed mesh (right). The blue region is the reconstructed
boundary,∂H(S ) \ Ŝ , of H, and the gray region is the input
mesh surface.

5 Implementation Details and Results

We have implemented the proposed mesh thickening opera-
tion in a program by C++ and OpenGL. All the results shown
in this paper are generated on a laptop PC with Inter Core i7
Q740 CPU plus 4GB RAM.

According to our experimental tests, the most time-
consuming step in our mesh thickening algorithm is the eval-
uation of values on grid nodes. Even after applying the fast
evaluation method presented in Section 3, the step to gener-
ate the narrow signed distance-field does still dominate the
computational time of our algorithm (especially when the
resolution of grid nodes is high). More than 60% of the time
is spent on this step. However, the computation in this step
can be easily parallelized to run on the multi-cores of CPU.
Our primary implementation by using OpenMP can reduce
the time in this step into around 1/4 of the original time
when running on the above laptop PC with 8 cores. We test
our mesh thickening operation on several examples. Table
1 gives the computational statistics of our algorithm on dif-
ferent examples and in different resolutions of grid nodes. It
is easy to find that our algorithm can efficiently generate the
mesh surface of the thickened solid from a give surface patch.
Figure 10 shows an application of using our thickening oper-
ation to build a stand from a scanned surface patch of human
face. Figure 11 demonstrates the application in biomedical

Figure 10: (Top row) The thickening result on a face model
which is obtained by scanning the face of an individual. (Bot-
tom row) The thickened solid model can be used to build a
stand by solid fabrication.

engineering. Comparing to build the whole femur model,
significant less processing time and materials are needed to
fabricate a physical model for fitness checking of the match-
ing faces (notice that they are not changed in our approach).
Physical models in both these examples are fabricated by a
mask projective SLA machine.

Notice that the method given in Definition 1 to assign
signs for distance-fields requires the input mesh surface to
be intersection-free. Detailed analysis about evaluatingsigns
for the distance-field to a given mesh surface can be found
in [33]. If a self-intersected mesh surface is given, incorrect
sign may be given to a grid node therefore leads to an incor-
rect representation for the thickened solid. As shown in the
left of Fig.12, unwanted solid will be generated (see the sep-
arated blue bump above the shoulder) when self-intersection
occurs on the input surface patch. After removing the self-
intersected triangles, a correct solid will be obtained ac-
cording to Definition 1 and 2 (see also Fig.12). For the
mesh surface generated by our modified dual contouring al-
gorithm, the method presented in [7] is used to prevent the
self-intersection.

When being applied to a closed mesh surface, the thicken-
ing result will be the same as “one-side” offsetting. Using a
plane to clip the “one-side” offsetting shows different shape
comparing to the model obtained from 1) clipping the given
closed mesh model and 2) thickening the clipped open sur-
face. See Fig.13 for an example to illustrate this difference.

Our last experimental test is to check the shape approx-
imation error presented on the mesh surface of a thickened
solid at the original surface region. Figure 14 shows analysis
on the helmet example by using the publicly available Poly-
MeCo [34] to visualize the geometric error. It is not difficult
to find that no error is presented between the given surface
patch and the original surface region on the resultant mesh.
The analysis of other examples in this paper gives the similar

8



Table 1: Computational Statistics

Input Time for Res. 128× 128× 128 (sec.) Time for Res.: 256× 256× 256 (sec.)
Model Fig. Thickness+ Trgl. No. Grid Eva. Face Gene. Shape Opt. Grid Eva. Face Gene. Shape Opt.

Helmet 2 -2.5 10,822 1.03 1.16 1.33 6.07 4.93 5.37
Pig-Tail 9 0.5 204 0.310 0.180 0.460 1.87 0.980 1.95

Face 10 2.5 23,154 0.983 0.499 0.734 5.74 2.06 2.79
Femur 11 2.5 8,856 1.28 0.552 0.828 8.04 2.52 3.31

Sculpture 12 3.0 57,396 0.954 0.538 0.479 5.15 1.92 1.59
Repaired 13 3.0 134,136 0.850 0.654 0.743 4.29 2.21 2.33

+The input thickness is reported as a value with reference to the average edge length of the given mesh surface patch.

Figure 11: Application in biomedical engineering: the lower
part surface of a femur model is selected to be thickened and
then fabricated into a physical model which can be used in
surgical planning and physical check of products such as im-
plant or prosthetic limp.

results.

6 Conclusion

In this paper, we develop a novel thickening operation to
convert a given intersection-free mesh surface patchS into a
solid located at one side ofS for solid fabrication. The solid
is represented by an implicit function defined on an extension
of signed distance-fields. We developed a partial surface re-
construction algorithm to generate the boundary surface of
the thicken solid, which remains the given surfaceS on the
resultant model without introducing any shape approxima-
tion error. Moreover, the model generated by the proposed
thickening operation has nearly uniform thickness. The mesh
thickening operation presented in this paper is a very useful

Figure 12: Input mesh model is required to be intersection-
free; otherwise, incorrect result will be generated (left and
top) – see the separated blue bump above shoulder. A correct
result will be generated (right and bottom) after removing the
self-intersected triangles on the input surface patch.

tool for solid fabrication.
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Figure 13: Hollowing vs. thickening: (a) our mesh thickening operation can also be directly applied to closed mesh surfaces to
obtain the hollowing results – the left most figure shows the resultant inner mesh surface, and (b) as a comparison, the Greek
sculpture model is also clipped into open surface and then conduct the thickening operation.

Figure 14: Using the publicly available PolyMeCo [34] to
analyze and visualize the geometric error – no shape approx-
imation error is generated on our result.
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