
Supplementary Document:
Support-Free Volume Printing by Multi-Axis Motion

CHENGKAI DAI, Delft University of Technology, The Netherlands
CHARLIE C. L. WANG∗, Delft University of Technology, The Netherlands
CHENMING WU, Tsinghua University, China
SYLVAIN LEFEBVRE, INRIA, France
GUOXIN FANG, Delft University of Technology, The Netherlands
YONG-JIN LIU, Tsinghua University, China

Fig. 1. There are many choices for decomposing a volume into curved layers with nearly uniform thickness for tool-path generation – here different layers are
shown in different colors. Among all these listed decompositions, the ‘micro’-structure of (a) is conformal to the boundary surface of a given solid. However,
separated regions in (a) are impossible to be fabricated even when a multi-axis AM device is used. Alternatively, the process planned in (c) can be physically
realized. When printing a model by using the layers in (b), supporting structures need to be added below overhangs. A better appearance with less staircase
artifacts might be obtained from the decomposition as shown in (d). With the help of multi-axis motion, supporting structures can be avoided by using the
curved layers shown in (e). The purpose of our work presented in this paper is to compute such a feasible solution to fabricate a given solid model by minimal
supporting structures.

1 HARDWARE SYSTEM
Physical fabrications using the tool-paths generated by our approach
have been taken on a filament-based 3D printing setup – i.e., Fused
Deposition Modeling (FDM) equipped with a 6DOF UR5 robotic
arm for multi-axis motion. As shown in Fig.2, we fix the nozzle of
FDM printer head so that good material adhesion can be obtained
comparing to the multi-axis AM with a moving nozzle (e.g., [Huang
et al. 2016; Wu et al. 2016]). After installing the printer head and
the UR5 robotic arm, the relative pose between them is calibrated.

In our hardware system, both the printer head and the UR5 robotic
arm are controlled by the robot operating system (ROS) so that the
communication between them can be synchronized. During the
fabrication, the required volume of material is determined by the
length of a tool-path, and the speed of material extrusion at the
nozzle is determined by the time needed for traveling a given path.
All are synchronized by ROS.

2 PRIMARY GREEDY SCHEME
The pseudo-code for the greedy convex-front advancing as a primary
scheme is given in Algorithm GreedySchemeCFA.
∗Corresponding author: c.c.wang@tudelft.nl (Charlie C. L. Wang)

2018. 0730-0301/2018/7-ART1 $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Fig. 2. The hardware of our multi-axis 3D printing system using a 6DOF
robotic arm, where each red arrow indicates a motor to provide one rota-
tional DOF. The printer head is fixed in our system so that the orientation
change for material accumulation is realized by moving the end effect of
the robot arm inversely.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 1. Publication date: July 2018.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1:2 • Chengkai Dai, Charlie C. L. Wang, Chenming Wu, Sylvain Lefebvre, Guoxin Fang, and Yong-jin Liu

ALGORITHM 1: GreedyGrowingCFA

Input: Voxel representation of a solid model, H̄ = {vi, j,k }
Output: A growing field G(·) with value defined on every voxel of H̄

1 Adding all voxels adjacent to the platform T to the first layer, L1, as a set
of voxels;

2 Set L1 as the current working layer Lc and Cprev = ∅;
3 Set the layer index τ = 1;
4 while Lc , ∅ do
5 Add all voxels of Lc into the already processed set, V;
6 Compute the new convex-front by the convex hull of Cprev , Lc and

T as Cc = C(Cprev ∪ T ∪ Lc);
7 Set Lnext = ∅ and τ = τ + 1;
8 foreach vi, j,k ∈ Lc do
9 foreach vr ,s,t ∈ N(vi, j,k) do

10 if vr ,s,t NOT inside Cc then
11 if vr ,s,t < V AND vr ,s,t < Lnext then
12 Add vr ,s,t into Lnext ;
13 end
14 end
15 end
16 end
17 foreach vr ,s,t ∈ Lnext do
18 Assign the field-value as G(c(vr ,s,t)) = τ ;
19 end
20 Set Lc = Lnext and Cprev = Cc ;
21 end

3 GROWING SCHEME WITH SHADOW PREVENTION
The incremental scheme of preserving accessibility can be summa-
rized as the pseudo-code in Algorithm IncrementalShadowPreven-
tion. The recursive refinement based shadow preservation that has
a better efficiency is presented as the pseudo-code in Algorithm
AdaptiveRefinementShadowPrevention.

4 CONVEX-FRONT PEELING
The procedure of peeling is formed by iteratively removing voxels
that are ϵ-located on the boundary of convex-hulls containing un-
processed voxels. In this way, the voxels are always removed from
the surface of a convex-front – therefore, collision-free is ensured.
Again, a greedy strategy is employed here to remove as many as
possible voxels from the current convex-front every time. Figure
3(a) illustrates the result of a convex-front peeling. The pseudo-code
is given in Algorithm PeelingFieldGeneration. Note that, greedily
peeling all the voxels on the current convex-front may easily lead
to a result with isolated components, which are disconnected to the
platform of fabrication and will collapse by gravity. However, as
the shadow-prevention is conducted in the process of convex-front
advancing, the disconnected region can be automatically avoided
when computing the growing field (see Fig.3(b)).

5 PLANNING FOR POSE-CONTINUITY
The minimization problem of motion planning in Eq.(1) below is
solved on a directed graph Gmo (see Fig.4 for an illustration).∑

j
∥âj âj+1∥1 (∃âj ∈ {aj,k }), (1)

ALGORITHM 2: IncrementalShadowPrevention
Input: The voxel set of an input model H̄, the set of processed voxels V ,

the next layer Lnext and the current set of shadow region Sc
Output: An reduced set of Lnext

1 Set Sp = ∅, and L̃ = ∅;
2 Compute Cp = C(Cc ∪ T ∪ Lnext);
3 ∀v ∈ (H̄ \ V), add v into Sp if it is inside Cp ;
4 if Sp = Sc then
5 Return Lnext ;
6 end
7 Determine a heuristic sequence Q of voxels in Lnext by a flooding

algorithm;
8 while Q , ∅ do
9 Remove a voxel v from the head of Q;

10 Compute the set of shadowed voxels St according to
Ct = C(Cc ∪ T ∪ L̃ ∪ v);

11 Add v into L̃ if St = Sc ;
12 end
13 if L̃ , ∅ then
14 Set Lnext = L̃;
15 else
16 Set Sc = Sp ; // update the set of shadowed voxels

17 end
18 return Lnext ;

Fig. 3. An illustration of convex-front peeling and the peeling-governed
convex-front advancing. (a) Isolated components will be generated when
the voxels in the critical region are removed together with other voxels in
the same layer. However, such problem on the peeling field F (·) will be au-
tomatically avoided when shadow-region preserved convex-front advancing
is conducted – see (b) for a result.

Specifically, a node is defined in Gmo for each pose aj,k . For two
neighboring sample points, a directed edge pointing from aj,k to
aj+1,l (∀k, l) is constructed with the weight ∥aj,kaj+1,l ∥1 when
∥aj,kaj+1,l ∥∞/∆t is less than ξ – a hardware-dependent threshold
(i.e., ξ = 1 rad./sec. is required by our hardware). Here the time
step is ∆t = ∥cjcj+1∥/v̄ with v̄ being a setting linear speed of robot
movement in the Euclidean space. Using the multi-source Dijkstra’s
algorithm (using all nodes of a1,k s as sources), the solution of the
problem in Eq.(1) can be determined by computing the shortest path
linked to one of these sources. {âj } are the nodes of this shortest
path, which provides a smooth motion of robotic arm. Note that, it
is possible that the graph Gmo is disconnected between aj,k (∀k)

ACM Transactions on Graphics, Vol. 36, No. 4, Article 1. Publication date: July 2018.

Supplementary Document:
Support-Free Volume Printing by Multi-Axis Motion • 1:3

ALGORITHM 3: AdaptiveRefinementShadowPrevention

Input: The voxel set of an input model H̄, the set of processed voxels V ,
the next layer Lnext and the current set of shadow region Sc

Output: An reduced set of Lnext
1 Set Sp = ∅, and L̃ = ∅;
2 Compute Cp = C(Cc ∪ T ∪ Lnext);
3 ∀v ∈ (H̄ \ V), add v into Sp if it is inside Cp ;
4 if Sp = Sc then
5 Return Lnext ;
6 end
7 Call Refinement(L̃,Lnext);
8 if L̃ , ∅ then
9 Set Lnext = L̃;

10 else
11 Set Sc = Sp ; // update the set of shadow points

12 end
13 return Lnext ;

/* The recursive function for adaptive refinement */

1 Procedure Refinement(L̃,Lsub)
2 Compute the set of shadow points St according to

Ct = C(Cc ∪ T ∪ L̃ ∪ Lsub);
3 if St , Sc then
4 if |Lsub | > 1 // Set Lsub has more than one voxel

5 then
6 Divide Lsub into two subset LL

sub and LR
sub by PCA;

7 Call Refinement(L̃,LL
sub);

8 Call Refinement(L̃,LR
sub);

9 end
10 end
11 Add Lsub into L̃;
12 return;

ALGORITHM 4: PeelingFieldGeneration

Input: Voxel representation of a solid model, H̄ = {vi, j,k }
Output: An indication-field F̄ (·) as the inverse of peeling with value

defined on every voxel of H̄
1 Assign all voxels of H̄ into a set of unprocessed voxels, U;
2 Compute the convex-hull of U and T as Cc = C(U ∪ T);
3 Set the peeling index τ = 1;
4 while U , ∅ do
5 Initialize Pc = ∅;
6 Assign all voxels that are ϵ -located on Cc into Pc ;
7 Update U as U = U \ Pc ;
8 For each vr ,s,t ∈ Pc , assign its field value as F (c(vr ,s,t)) = τ ;
9 Update the convex-front as Cc = C(U ∪ T);

10 τ = τ + 1.
11 end
12 foreach vi, j,k ∈ H̄ do

/* Note that: τ holds the value of max∀q∈H̃ (F (q)) now. */

13 F̄ (c(vr ,s,t)) = 1 + (τ − F (c(vr ,s,t))); ; // By Eq.(1) in the paper

14 end

and aj+1,l (∀l) (see Fig.4 for an example). In such a case, a smooth
motion stops at a pose of aj,k and thereafter start a newmotion from

Fig. 4. Pose-continuity based motion planning is computed on a directed
graph: (a) a smooth motion is determined on the graph by the Dijkstra’s
algorithm of shortest path (circled by the blue dash line) and (b) the dis-
connection (specified by the gray dash line) between the nodes of two
neighboring samples can be found by the same algorithm.

aj+1,l . This disconnection can also be determined by the Dijkstra’s
algorithm automatically.

REFERENCES
Yijiang Huang, Juyong Zhang, Xin Hu, Guoxian Song, Zhongyuan Liu, Lei Yu, and

Ligang Liu. 2016. FrameFab: Robotic Fabrication of Frame Shapes. ACMTrans. Graph.
35, 6, Article 224 (2016), 224:1–224:11 pages. https://doi.org/10.1145/2980179.2982401

Rundong Wu, Huaishu Peng, François Guimbretière, and Steve Marschner. 2016. Print-
ing Arbitrary Meshes with a 5DOF Wireframe Printer. ACM Trans. Graph. 35, 4,
Article 101 (2016), 101:1–101:9 pages. https://doi.org/10.1145/2897824.2925966

ACM Transactions on Graphics, Vol. 36, No. 4, Article 1. Publication date: July 2018.

https://doi.org/10.1145/2980179.2982401
https://doi.org/10.1145/2897824.2925966

	1 Hardware System
	2 Primary Greedy Scheme
	3 Growing Scheme with Shadow Prevention
	4 Convex-Front Peeling
	5 Planning for Pose-Continuity
	References

