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Fig. 1. We present a slicing framework to generate curved layers for multi-axis 3D printing. (a) Toolpaths of a Bunny model that simultaneously satisfy the
fabrication objectives of support free (SF), strength reinforcement (SR) and surface quality (SQ), which makes the name of our approach as 𝑆3-slicer. (b) All the
objectives of fabrication are formulated as the requirements of local printing directions (LPDs) – the ranges displayed in red color, and our quaternion-based
deformation optimization can effectively generate curved layers satisfying these requirements. (c) Comparison of the models 3D printed by conventional
planar layers (left) vs. our optimized layers in curved surfaces (right), where the surface errors evaluated by a structured-light based 3D scanner are shown as
color maps. (d) Multi-axis 3D printing of curved layers is realized on the hardware equipped with a UR5e robotic arm.
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Multi-axis motion introduces more degrees of freedom into the process of
3D printing to enable different objectives of fabrication by accumulating ma-
terials layers upon curved layers. An existing challenge is how to effectively
generate the curved layers satisfying multiple objectives simultaneously.
This paper presents a general slicing framework for achieving multiple fabri-
cation objectives including support free, strength reinforcement and surface
quality. These objectives are formulated as local printing directions varied in
the volume of a solid, which are achieved by computing the rotation-driven
deformation for the input model. The height field of a deformed model is
mapped into a scalar field on its original shape, the isosurfaces of which
give the curved layers of multi-axis 3D printing. The deformation can be
effectively optimized with the help of quaternion fields to achieve the fab-
rication objectives. The effectiveness of our method has been verified on a
variety of models.

CCS Concepts: • Computing methodologies → Shape modeling; Mesh
geometry models.
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1 INTRODUCTION
Multi-axis 3D printing has caught a lot of attention in recent years.
The additional degrees-of-freedom can lead to a variety of advan-
tages compared with the planar layer based 3D printing, including
the reduction of supporting structures [Mitropoulou et al. 2022],
the enhanced mechanical strength [Tam and Mueller 2017], and the
improved surface quality [Ahlers et al. 2019]. Although approaches
have been developed to decompose the volume of a given model
into curved layers for optimizing different objectives, curved slicing
to achieve multiple objectives is still an unsolved problem. Existing
approaches [Dai et al. 2018; Etienne et al. 2019; Fang et al. 2020]
are specifically designed for one particular objective and they are
difficult to be modified to achieve other objectives.

This paper introduces a general slicing framework to tackle this
challenge. We consider the three objectives including support free
(SF), strength reinforcement (SR) and surface quality (SQ). These can
be satisfied on the same model independently or simultaneously.
Moreover, we have also considered the manufacturing constraints
including the local collision (i.e., gouging) and the layer thickness
in the same framework. An example is shown in Fig.1, where the
Bunny model can be fabricated in a support free manner on a multi-
axis 3D printing hardware equipped with a UR5e robotic arm. The
breaking force of the Bunny model fabricated by our curved layers is
25.3% higher than that of the model fabricated by planar layers. The
average surface error is significantly reduced 28.2% from 0.632mm to
0.454mm. We name our approach 𝑆3-slicer since all three objectives
SF, SQ and SR can be achieved simultaneously.

1.1 Method and Contributions
We argue that all the SF, SR and SQ requirements can be formulated
as objectives in terms of local printing directions (LPDs), where the
LPD indicates the ideal local orientation for material accumulation
in the printing process. Every model to be fabricated is represented
as a volumetric mesh in our framework. Ideally, we need to compute
the working surfaces as layers satisfying the requirements of LPDs
in all elements. Optimizing for LPDs under multiple objectives is
difficult as angular constraints may disagree with each other. In
addition, directly optimizing orientation by vectors is not stable
as blending constraints-disagreed vectors may result in vanished
vectors. A better approach is needed.

We proposed a rotation-driven deformation framework to solve
this issue. All the relevant elements are rotated into orientations
satisfying the fabrication objectives when printing layers along the
height direction (i.e., z-axis as LPD). After that, the height field
of a deformed model is mapped into a scalar field on the input
model. We use the isosurfaces of the scalar field as the curved layers
of multi-axis 3D printing. We decouple the deformation problem

into the sub-problems of 1) computing optimized and compatible
quaternions as rotations on all elements and 2) computing a scale-
controlled deformation driven by the optimized rotations – both
can be efficiently obtained by a local/global solver. Rotations on
elements are determined as an optimized quaternion field. The SF,
SR and SQ objectives as well as the constraint to avoid local collision
are all defined as constraints of quaternions. The manufacturing
constraint of layer thickness is defined as scales to be controlled in
the rotation-driven deformation. This newly proposed framework
can simultaneously achieve SF, SR and SQ objectives and effectively
overcomes the problem of vanishing LPDs (i.e., vectors). As a byprod-
uct, optimizing quaternions on elements gives a linear system with
the dimension only 1/3 of that of the deformation computed on
vertices – therefore, it can be computed more efficiently.

Our technical contributions are summarized as follows:
• A slicing framework to generate curved layers for multi-axis
3D printing that can simultaneously satisfy multiple fabrica-
tion objectives.

• A quaternion-based formulation to effectively achieve the SF,
SR and SQ objectives while preventing the local collision in
multi-axis 3D printing.

• A rotation-deformation decoupled paradigm to efficiently
determine the rotation-driven deformation.

To verify the performance of curved layers generated by our slicing
framework, we physically fabricated prototypes on a robotic setup
of multi-axis 3D printing. The surface quality is evaluated with the
help of a structured-light based 3D scanner, and the mechanical
strength is tested on a universal testing machine.

1.2 Related Work
1.2.1 Multi-axis 3D printing. Traditional additive manufacturing
devices are limited to three-axis movement with most slicers produc-
ing 2.5D toolpaths. While this simplification results in an easy-to-
implement software solution, it causes the problems of 3D printed
parts in both the weak mechanical strength [Ahn et al. 2002] and the
poor surface quality [Chakraborty et al. 2008]. Moreover, supporting
structures are needed below the large overhangs, which leads to the
problems of hard-to-remove, surface damage, and material waste
[Zhang et al. 2015].

Previous research has shown that multi-axis 3D printing can help
to achieve support-less or even support-free material accumulation
[Dai et al. 2018; Huang et al. 2016; Mitropoulou et al. 2020; Wu
et al. 2016], enhance the mechanical strength of printed parts [Fang
et al. 2020; Tam and Mueller 2017], and reduce the staircase effect
[Etienne et al. 2019], where many works were physically realized
on robot-assisted 3D printing hardware (ref. [Bhatt et al. 2021; Li
et al. 2022]). All these existing methods only work for a specific
objective. For example, Dai et al. [2018] decomposed the volume
into curved layers with support-free consideration, where the algo-
rithm is based on local progressive optimization but not a global one.
Etienne et al. [2019] proposed deformation-based slightly curved
printing for 3-axis machines, which however does not exploit addi-
tional degrees of freedom of multi-axis machines. Fang et al. [2020]
provided a pipeline to take advantage of the anisotropy of mechani-
cal properties introduced by the process of fused filament fabrication.
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However, there is ambiguity in the vector field calculation of their
method requiring special treatments to ensure conformity. Existing
approaches only considered a single objective for the generation
of curved layers and toolpaths. There is no direct way to change
existing approaches’ formulation to achieve other objectives – e.g.,
making a support-free approach to preserve surface quality. It is
more challenging for them to meet multi-objectives simultaneously,
which can be realized by our framework.

1.2.2 Field generation / optimization. As discussed above, the prob-
lem to achieve all the SF, SR and SQ objectives can be formulated
as requirements defined on LPDs, which are actually vectors. One
may consider to extend the existing techniques that process vector
fields on triangular mesh surfaces [de Goes et al. 2016] to volumet-
ric meshes. However, as discussed in [Fang et al. 2020], directly
smoothing vectors pointing to significantly disagreed directions
is not an effective method to obtain a compatible vector field. An-
other option is to formulate the problem into frame-based field
optimization (e.g., [Huang et al. 2011; Li et al. 2012; Ray et al. 2016]).
Arora et al. [2019] proposed an approach to generate volumetric
Michell trusses by non-linear optimization of frames, which how-
ever is very time-consuming. Differently, we propose a simple and
efficient method to achieve the SF, SR and SQ objectives in different
combinations.

1.2.3 Deformation. Our framework employs a strategy of rotation-
driven deformation to obtain the deformed shape of a model to sat-
isfy the LPD requirements, which borrows the ideas of local/global
optimization [Bouaziz et al. 2012; Liu et al. 2008] and as-rigid-as-
possible (ARAP) deformation [Sorkine and Alexa 2007; Sorkine et al.
2004]. The final results of deformation are obtained by first conduct-
ing rotations separately on each element in a local project step and
then stitching all the elements together in a global blending step,
where the optimization problem can be solved by computing least
squares solution in iterations. The computation of local/global solver
converges very fast when the rotations applied to neighboring ele-
ments are nearly compatible – i.e., with small difference. However,
this is not naturally satisfied in the problem to be solved in this
paper. Therefore, a quaternion-field optimization step is introduced
as the inner loop of our framework to obtain nearly compatible ro-
tations, which is also solved by using the local/global optimization
strategy.

1.2.4 Volume parameterization. In our approach, the height field
on the deformed model is mapped to a scalar field defined on the
input model. This shares some similarity to the problem of volume
parameterization [Patane et al. 2013], which are widely used for
all-hex mesh generation [Livesu et al. 2013], isogeometric analysis
[Aigner et al. 2009] and biomedical application [Xu et al. 2013]. The
problem to compute a deformed model for SF, SR and SQ objectives
can be considered as a special volume parameterization problem
with orientation constraints. We need to achieve multiple objectives
related to the LPDs while considering the manufacturing constraints
such as local collision and layer thickness. A new formulation is
proposed in this paper.

Our work focuses on computing deformation optimized for mul-
tiple fabrication objectives, which leads to a general curved slicing

framework for multi-axis 3D printing. The existing techniques for
optimizing volume parameterization such as resolving foldovers
to ensure the local injectivity (ref. [Du et al. 2020; Fu et al. 2015;
Garanzha et al. 2021; Kovalsky et al. 2015; Liao et al. 2021; Schüller
et al. 2013; Su et al. 2019])) can be applied to improve the qual-
ity of the mapping determined by our approach. For example, the
injectivity was achieved by further optimizing the ARAP-based de-
formation in [Rabinovich et al. 2017]. A comprehensive survey of
inversion-free mapping can be found in [Fu et al. 2021].

2 OVERVIEW
Our framework represents every input model as a tetrahedral mesh
M, where the boundary surface 𝜕M is formed by a set of triangle
faces and the boundary region B is defined as a set of tetrahedral
elements that have faces on 𝜕M. This section first presents the
objectives (Sec. 2.1) and the manufacturing constraints (Sec. 2.2) of
multi-axis 3D printing that need to be considered when generating
curved layers for an input model. After that, the overall algorithm
is introduced in Sec. 2.3.

2.1 Objectives for Multi-Axis 3D Printing
Three fabrication objectives are considered in our framework –
all defined according to a LPD (denoted by d𝑝 ). Instead of directly
computing a distribution of LPDs in the givenmodelM, we compute
a deformed model M𝑑 by rotating the elements in M to satisfy the
fabrication objectives in the deformed space with a fixed d𝑝 =

(0, 0, 1). Equivalently, the mapping fromM𝑑 toM converts d𝑝 =

(0, 0, 1) into spatially changed LPDs onM.

2.1.1 Support free (SF). As shown in the
wrapped figure on the right, supporting
structures (shown in blue) are required
in planar layer based 3D printing to en-
able the fabrication of overhangs. The
support free criterion is defined on every
face 𝑓 ∈ 𝜕M by its surface normal vector
n𝑓 as (ref. [Hu et al. 2015])

n𝑓 · d𝑝 + sin(𝛼) ≥ 0, (1)

where 𝛼 is self-supporting angle that depends on the material prop-
erties and d𝑝 is the vector of printing direction. Both n𝑓 and d𝑝
are unit vectors. When being applied to multi-axis 3D printing, the
printing direction d𝑝 is allowed to change in different regions. This
SF objective is realized in our framework by rotating every bound-
ary element 𝑒 ∈ B into an orientation such that the above condition
is satisfied on the deformed modelM𝑑 of M when d𝑝 = (0, 0, 1).

2.1.2 Strength reinforcement (SR). Anisotropicmechanical behaviour
is observed on models fabricated by filament-based 3D printing due
to the weak adhesion between deposited filaments. Under a given
load scenario, the mechanical strength of printed models can be
significantly improved when the filament is aligned with the stress
field direction [Riddick et al. 2016; Tam and Mueller 2017]. In other
words, the 3D printed model can have a reinforced strength when
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the LPD is nearly perpendicular to the direction of maximum prin-
cipal stress 𝜏max (𝑒) in an element 𝑒 . The SR criterion regarding the
printing direction d𝑝 can be defined as

|d𝑝 · 𝜏𝑚𝑎𝑥 (𝑒) | ≤ sin(𝛽), (2)
where 𝜏max (𝑒) is a unit vector, 𝛽 is a parameter to allow a certain
level of tolerance, and 𝛽 = 10◦ is employed in our experimental
tests. This SR objective is realized in our framework by rotating
every element 𝑒 in critical regions1 into an orientation so that Eq.(2)
is satisfied on the deformed modelM𝑑 when d𝑝 = (0, 0, 1).

2.1.3 Surface quality (SQ). The stair-
case effect is themain reason for the sur-
face quality issues in 3D printing. Dif-
ferent from the approaches using slices
with varied thicknesses (e.g., [Mao et al.
2019; Wang et al. 2015]), multi-axis 3D
printing research has been conducted to 1) use a boundary con-
formal layer to realize a large smooth region [Ahlers et al. 2019],
or 2) generate curved layers by forming boundary surfaces nearly
‘vertical’ to the printing direction [Etienne et al. 2019] – see the
wrapped figure above for an illustration. These observations lead to
two criteria for achieving the SQ objective defined on a boundary
face 𝑓 ∈ 𝜕M as:

n𝑓 = ±d𝑝 (3)
|n𝑓 · d𝑝 | ≤ sin(𝛾) (4)

where𝛾 controls the maximally allowed ‘cliff-angle’ for surface qual-
ity. A smaller value of 𝛾 will lead to better surface quality with fewer
stair-cases. The criterion defined in Eq.(3) is to impose boundary
‘conformal’ layers (denoted by SQ-C) and the one in Eq.(4) is for
enabling boundary ‘vertical’ layers (denoted by SQ-V).

2.2 Manufacturing Constraints
In addition to the user-defined objectives (SF, SQ, SR), manufacturing
constraints such as collision prevention and layer-thickness bounds
have to be enforced.

2.2.1 Local collision-free. Asmore degrees-
of-freedom are available to drive the mo-
tion of the 3D printing process, collisions
can happen locally if the curved layers
as working surfaces are not properly de-
signed. Specifically, the geometry of a
printer head forms a cone with the apex
angle 𝜃 . When using this cone to contact
a point on the working surface, any concave region with a dihedral
angle less than 𝜃 leads to an unavoidable local collision between
the working surface and the printer head. This definition is adapted
from the multi-axis CNC machining in which gouging (i.e., local
collision) is a commonly encountered issue (e.g., [Bartoň et al. 2021]).
The local collision-free constraint is defined by the dihedral an-

gle between two neighboring faces on a curved layer, which is an
1We employ the region with top 30% of the tensile stress as critical regions in all our
examples. Users can define different regions as critical.

isosurface extracted from the tetrahedral mesh M as a piece-wise
linear polygonal mesh. For two neighboring elements 𝑒𝐿 and 𝑒𝑅
containing the polygonal faces 𝑓𝐿 and 𝑓𝑅 as isosurface, the local
collision is unavoidable when with n𝐿 and n𝑅 being the unit normal
of 𝑓𝐿 and 𝑓𝑅 and{

− sin(𝜃 ) ≤ (n𝐿 × n𝑅) · h < 0 (𝜃 < 𝜋
2 )

(n𝐿 × n𝑅) · h ≤ − sin(𝜃 ) (𝜃 ≥ 𝜋
2 )

(5)

h being a unit vector for the edge shared by 𝑓𝐿 (as its left) and 𝑓𝑅 (as
its right). Local collision is prevented in our framework by control-
ling the rotations applied to face-neighbored elements (details can be
found in Sec. 3.3.2). Global collision is checked and resolved during
the motion planning process of the physical realization (ref. [Ezair
et al. 2018; Zhang et al. 2021a]), which is not the focus of this paper.

2.2.2 Layer thickness. Because of hardware limitations (e.g., the
speed of extrusion and the material properties during the phase
transition between solid and liquid), the layer thickness must be
controlled within a certain range [𝑑min, 𝑑max] which are commonly
determined by the hardware design and the materials employed
in 3D printing. In our curved slicing framework, the requirement
of layer thickness is formulated as a soft constraint to be imposed
by computing a field of compatible rotations (Sec. 3.2) and a scale-
harmonic deformation (Sec. 4.1). After that, the requirement on layer
thickness can be strictly preserved by using the adaptive (partial)
slicing algorithm (Sec. 4.2) although only one example needs this
post-processing step among all the examples tested in our work.

2.3 Optimized Deformation for Slicing
To achieve multiple fabrication objectives in multi-axis 3D print-
ing, we introduce a deformation-based computational paradigm
which generates curved layers efficiently. As illustrated in Fig. 2,
an input model is represented as a tetrahedral mesh M and the
curved layers are generated in the elements 𝑒 ∈ M. In order to
compute strength-reinforced toolpaths, the stress tensors according
to specified loading need to be generated by Finite Element Analysis
(FEA). The stress tensors work as input to our framework where
the maximum principal stress 𝜏max is defined in every element.

The main idea of our framework is to compute a deformed model
of M as M𝑑 that optimizes (multi-)objectives with LDP being
d𝑝 = (0, 0, 1) forM𝑑 . This deformation is driven by computing com-
patible rotations (represented by a field of quaternions q𝑒 defined
on 𝑒 ∈ M) so that the (multi-)objectives are satisfied locally when
pure rotations are applied to elements separately (see Fig. 2(b) for an
illustration). Computing the optimized quaternion field Q = {q𝑒 } is
the inner-loop optimization of our framework, and the outer-loop
optimization is to blend the rotations R(q𝑒 ) on all elements as a
scale-controlled deformation. The overall algorithm of our frame-
work is as follows:

(1) The input model M of our algorithm is a tetrahedral mesh
(see Fig. 2(a)), which is also used as the current modelM𝑑 in
the first iteration of computation.

(2) We compute the rotation applied to every element 𝑒 by de-
forming from M to M𝑑 and representing the rotations by
the quaternions which form a quaternion field Q = {q𝑒 }.
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(a) (b) (c) (d) (e) (f)

(g)

d𝑝 d𝑝 d𝑝 d𝑝

𝛼

𝜏maxn𝑓

n𝑓 n𝑓

Fig. 2. An overview of our slicing framework for generating curved layers that satisfy multiple objectives of multi-axis 3D printing. (a) The input armadillo
model is represented by a tetrahedral mesh M with principal stresses obtained from FEA. (b, c) A rotation-driven optimization is computed by first rotating
elements to locally satisfy the SF, SQ and SR objectives and then globally assembling the rotated elements to obtain a deformed model. These local / global
steps are run in iteration to obtain the deformed model M𝑑 , where the compatible rotations applied to elements are computed by optimizing a quaternion-field
Q as the inner loop of optimization. (d, e) The height field of M𝑑 is mapped to a scalar field𝐺 ( ·) defined on M. (f) The isosurfaces of𝐺 ( ·) are extracted to
work as curved layers. (g) Toolpaths are generated on curved layers for 3D printing.

(3) An inner-loop optimization problem is solved to determine a
new quaternion-field Q∗ = {q∗𝑒 } that a) minimizes the differ-
ence between quaternions in neighboring elements, and b)
satisfies the specific (multi-)objectives locally (i.e., SF, SQ-C,
SQ-V and SR). A local/global solver is employed to efficiently
compute the optimized field Q∗ (see Fig. 2(b) and the illus-
tration in the second row of Fig. 2). Details are presented in
Sec. 3.

(4) The rotations {R(q∗𝑒 )} determined for all element 𝑒 ∈ M are
assembled together to form a global shapeM𝑑 by minimizing
an objective function that can effectively control the scale
and therefore the variation of layer thickness on the slicing
results (Sec. 4.1). An example of this deformation for assembly
can be found in Fig. 2(c).

(5) The height field of M𝑑 defined as piecewise linear functions
in tetrahedral elements is mapped into a scalar field 𝐺 (·)
defined on M (see Fig. 2(d, e) for an example).

(6) The algorithm goes back to (2) or stops iterating when the
fabrication objectives are achieved on 𝐺 with the terminal
condition defined by using the gradient ∇𝐺 as LPDs (Sec. 4.1).

(7) The curved layers are generated by extracting the isosurfaces
of 𝐺 (·). We check the distance between layers and apply the
adaptive slicing algorithm when needed (Sec. 4.2).

(8) The hybrid strategy of contour-parallel and stress-reinforced
directional-parallel is employed to generate the toolpaths on
each curved layer (see Fig. 2(f, g)).

Considering𝐺 is a piecewise linear functionwith field values defined
on the vertices ofM, the gradient ∇𝐺 gives the surface normal (i.e.,
LPD) of curved layers which are constant inside each element 𝑒 ∈ M.
Therefore, we define the terminal condition by using ∇𝐺 .

3 QUATERNION-BASED ROTATION OPTIMIZATION
We formulate the inner loop of our framework as a constrained
optimization problem to determine the compatible rotations on all
elements ofM as a quaternion field Q = {q𝑒 }. The SF, SQ and SR
objectives are defined as constraints denoted by C𝑆𝐹 , C𝑆𝑄 and C𝑆𝑅 ,
where C𝑆𝐹 , C𝑆𝑄 are defined on the elements in the boundary region
B, and C𝑆𝑅 is defined on a set of critical elements S ⊂ M. The
optimization problem is formulated as

arg min
{q𝑒 }

∑︁
(𝑒𝑖 ,𝑒 𝑗 ) ∈N𝐹

𝑤𝑠 (𝑒𝑖 , 𝑒 𝑗 )∥q𝑒𝑖 − q𝑒 𝑗 ∥2

𝑠 .𝑡 . C𝑆𝑅 (q𝑒 ) (∀𝑒 ∈ S)
C𝑆𝐹 (q𝑒 ), C𝑆𝑄 (q𝑒 ) (∀𝑒 ∈ B)

(6)

where N𝐹 is the set of pairs of elements that are face-neighbors.
One of the major difficulties to solve this constrained optimization
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(a)

(b)

(c)

(d1)

(d2)

H𝑆𝐹

H𝑆𝑅

H𝑆𝑄

Hℎ𝑦𝑏𝑟𝑖𝑑

Hℎ𝑦𝑏𝑟𝑖𝑑

d𝑝

d𝑝

d𝑝

n𝑓

n𝑓

𝛼

𝜏max

2𝛽

2𝛾

Γ𝜏

Γ𝑓

Fig. 3. Illustrations of feasible regions defined for (a) support-free H𝑆𝐹 , (b)
strength-reinforcement H𝑆𝑅 and (c) surface-quality H𝑆𝑄 . (d1, d2) Feasible
regions for multi-objectives are defined as Hℎ𝑦𝑏𝑟𝑖𝑑 = H𝑆𝐹 ∩ H𝑆𝑅 ∩ H𝑆𝑄 .
The minimal rotation for moving d𝑝 into a feasible region can be determined
by searching its closest point on the boundary of feasible regions – indicated
by the red dashed arrows.

problem is that the initial guesses of Q = {q𝑒 } usually do not fall in
the feasible region defined by the constraints. A local/global solver
is employed to compute the optimized Q effectively (Sec. 3.2). The
constraints of quaternions are defined by analyzing the feasible
regions of LPDs (Sec. 3.1), and the weights𝑤𝑠 (·) will be employed
to control the concavity to prevent local collision (Sec. 3.3.2).

3.1 Objectives as Feasible Regions of Quaternions
The analysis of feasible regions for LPDs (thus also quaternions) is
conducted on the Gauss sphere. As we will discuss later, a common
feasible region always exists. According to the formulas given in
Sec. 2.1, every fabrication objective indeed defines a feasible region
of LPDs for each element 𝑒 on the Gauss sphere. Specifically, we
need to figure out a rotation q𝑒 applied to 𝑒 to ensure that the LPD
of 𝑒 on the deformed model (i.e., d𝑝 = (0, 0, 1)) falls in every feasible
region. This can also be formulated as a requirement on the inversely
rotated d𝑝 as d = R−1 (q𝑒 )d𝑝 be within the following half-spaces:

H𝑆𝐹 ={d | ∀d ∈ S2, d · n𝑓 + sin(𝛼) ≥ 0}
H𝑆𝑅 ={d | ∀d ∈ S2, |d · 𝜏max | ≤ sin(𝛽)}
H𝑆𝑄 ={d | ∀d ∈ S2, d = ±n𝑓 or |d · n𝑓 | ≤ sin(𝛾)}

(7)

Given d𝑝 on the deformed modelM𝑑 , the feasible regions of C𝑆𝐹 ,
C𝑆𝑅 and C𝑆𝑄 should be the sets of q𝑒s that let

R−1 (q𝑒 )d𝑝 ∈ H𝑆𝐹 , R−1 (q𝑒 )d𝑝 ∈ H𝑆𝑅 , R−1 (q𝑒 )d𝑝 ∈ H𝑆𝑄

be satisfied respectively. Note that the constraints of q𝑒 are nonlinear
as R−1 (·) is involved (ref. [Voight 2021]).

The feasible regionsH𝑆𝐹 ,H𝑆𝑄 andH𝑆𝑅 defined on Gauss sphere
are illustrated in Fig.3. For an element applied with multiple objec-
tives, the feasible region is the intersection of three half-spaces as
Hℎ𝑦𝑏𝑟𝑖𝑑 = H𝑆𝐹 ∩ H𝑆𝑅 ∩ H𝑆𝑄 that is the red region in Fig. 3(d).
Two different configurations are given. It is worthy to mention that
the relative position betweenH𝑆𝐹 andH𝑆𝑄 is invariant as they are
both defined on the normal of boundary face n𝑓 . Defining the big
circle on the Gauss sphere perpendicular to n𝑓 as Γ𝑓 (see Fig.3(c)),
we can have Γ𝑓 ⊂ H𝑆𝐹 ∩H𝑆𝑄 (∵ 𝛼,𝛾 > 0). Similarly, we can define
the big circle perpendicular to 𝜏max as Γ𝜏 (see Fig.3(b)) and have
Γ𝜏 ⊂ H𝑆𝑅 (∵ 𝛽 > 0). It is easy to see that Γ𝑓 ∩ Γ𝜏 ≠ ∅. Therefore, we
can conclude thatHℎ𝑦𝑏𝑟𝑖𝑑 ≠ ∅, which guarantees that the feasible
solution can always be found for a single element 𝑒 .

3.2 Constrained Optimization for Quaternion Field
As an optimization problem with nonlinear constraints, Eq.(6) is not
easy to be solved effectively – especially when the initial guesses
of {q𝑒 } are not in the feasible regions. The problem becomes more
challenging when multiple objectives are applied; it would become
very difficult to naturally obtain feasible quaternions that are also
compatible to the neighbors – i.e., we seek for a smooth quaternion
field. We employ a local/global solver to compute the compatible
quaternions that satisfy the fabrication objectives.
For the local projection step, we need to determine a minimal

rotation that moves d𝑝 into Hℎ𝑦𝑏𝑟𝑖𝑑 . This can be solved by search-
ing d𝑝 ’s closest point d𝑐 on the boundary of Hℎ𝑦𝑏𝑟𝑖𝑑 (see the red
dashed arrows in Fig. 3(d)). A feasible quaternion q𝑡𝑒 according to
this minimal rotation is determined by d𝑝 = R(q𝑡𝑒 )d𝑐 .

Once feasible quaternions q𝑡𝑒 are found locally for all elements in
S and B, a global blending step is applied to compute the updated
quaternion field G = {q𝑒 } that is 1) smooth (i.e., compatible between
neighboring quaternions) and 2) not varied too much from the
locally determined feasible quaternions. This can be achieved by
solving the following problem:

arg min
{q𝑒 }

∑︁
(𝑒𝑖 ,𝑒 𝑗 ) ∈N𝐹

𝑤𝑠 (𝑒𝑖 , 𝑒 𝑗 )∥q𝑒𝑖 −q𝑒 𝑗 ∥2 +
∑︁

𝑒∈S∪B
𝑤𝑘 (𝑒)∥q𝑒 −q𝑡𝑒 ∥2,

(8)
where the first term is to impose the objective of compatible quater-
nions and the second term is employed to preserve the feasible
results that are obtained from the local projection step. Thanks to
its least squares form Eq.(8) can be efficiently solved. Note that the
hard constraints presented in Eq.(6) are actually converted into soft
constraints in Eq.(8) when the local/global solver is employed.

3.3 Weight Adaptation
The strategy for changing the weights in our optimization frame-
work is discussed below, where the weight 𝑤𝑘 (𝑒) is employed to
reflect the user’s preference on different objectives. The concavity-
aware weighting strategy is introduced to𝑤𝑠 (𝑒) for preventing local
collision.
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(a) (b) (c) (d) (e)

User Preference (a) Planar Slicing (b) 𝑤𝑆𝐹 : 𝑤𝑆𝑅 = 1.0 : 0.0 (c) 𝑤𝑆𝐹 : 𝑤𝑆𝑅 = 0.7 : 0.3 (d) 𝑤𝑆𝐹 : 𝑤𝑆𝑅 = 0.3 : 0.7 (e) 𝑤𝑆𝐹 : 𝑤𝑆𝑅 = 0.0 : 1.0

Strain Average 3.06e-3 2.94e-3 2.53e-3 2.16e-3 2.01e-3
Maximal 3.52e-2 3.76e-2 3.50e-2 3.01e-2 2.28e-2

Support Volume (%) 72.4% 0.0% (No Support) 0.0% (No Support) 61.6% 173.9%

Fig. 4. Comparison of results with different SF and SR preferences by adjusting the weights 𝑤𝑆𝐹 and 𝑤𝑆𝑅 for achieving multiple objectives. 𝑤𝑆𝑄 = 0.0 is used
for all these tests, and the volume of the supporting structure is given as the percentage of the given model’s volume. An interesting observation is that only
considering SR objective will lead to a slicing result that needs more supporting structures for fabrication.

3.3.1 Objective preference. As already discussed in Sec. 3.1, the fea-
sible solution satisfying all constraints exists locally for all elements
𝑒 ∈ S ∩ B. However, the feasible solution in neighboring elements
may still lead to incompatible quaternions. Two quaternions are
considered incompatible if the 𝐿2-norm of their difference is larger
than a threshold (e.g., 0.12 is used in our tests). A weighting scheme
is introduced here to reflect the user’s preference for the different
objectives by changing the values of𝑤𝑘 (𝑒). Specifically, we define

𝑤𝑘 (𝑒) = max(𝑤𝑆𝐹𝑈𝑆𝐹 (𝑒),𝑤𝑆𝑄𝑈𝑆𝑄 (𝑒),𝑤𝑆𝑅𝑈𝑆𝑅 (𝑒)) (9)

with the following switch functions defined on the deformed model
M𝑑 . The values of these switch functions will be updated after each
step of the global deformation in the outer loop of optimization.

𝑈𝑆𝐹 (𝑒) =
{

1, 𝑒 ∈ B, n𝑑
𝑓
(𝑒) · d𝑝 + sin(𝛼) < 0

0, otherwise

𝑈𝑆𝑅 (𝑒) =
{

1, 𝑒 ∈ S
0, otherwise

𝑈𝑆𝑄 (𝑒) =
{

1, 𝑒 ∈ B, n𝑑
𝑓
(𝑒) ≠ ±d𝑝 & |n𝑑

𝑓
(𝑒) · d𝑝 | > sin(𝛾)

0, otherwise

Here d𝑝 = (0, 0, 1) is fixed and n𝑑
𝑓
(𝑒) gives the normal of the bound-

ary face 𝑓 ∈ 𝜕M𝑑 on the tetrahedral element 𝑒 .
The values of𝑤𝑆𝐿 ,𝑤𝑆𝑅 and𝑤𝑆𝑄 are in the [0, 1] range and are

defined by users. An example of how𝑤𝑘 influences the slicing results
of curved layers is demonstrated in Fig. 4. The hybrid objectives of
SF and SR are required for this model that is generated by topology
optimization. As can be seen, the curved layers generated by our
framework can be 3D printed in a completely support-free way
manner when only the SF constraint is applied (e.g., 𝑤𝑆𝐹 : 𝑤𝑆𝑅 =

(a) (b)

Fig. 5. Different results of the bunny model for SQ-C objective by using
different values for 𝑤𝑘 in the last step of iteration: (a) 𝑤𝑘 = 1.0 and (b)
𝑤𝑘 = 10.0. The boundary conformal layer is enhanced in (b). Note that
𝑤𝑘 = 1.0 is employed in other steps of the iteration.

1.0 : 0.0). When the weights are set as 𝑤𝑆𝐹 : 𝑤𝑆𝑅 = 0.7 : 0.3, we
can achieve a result with a good balance between the SF and SR
objectives – i.e., the printed model shows an enhanced strength
compared to the result with the SF objective only (see data in the
table of Fig. 4). The SQ objective is left out of these tests by setting
𝑤𝑆𝑄 = 0.0.

The feasible region of the SQ objective,H𝑆𝑄 , contains two points
(for SQ-C) and a band region (for SQ-V). Our optimization pipeline
will automatically project d𝑝 to the closet solution in a feasible
region. Therefore, whether it will be an SQ-C or SQ-V case is selected
automatically. For those elements defined as SQ-C in the last step
of iteration, we assign a very large 𝑤𝑘 to ensure q𝑒 = q𝑡𝑒 . This is
very important for preserving the surface quality of a boundary
conformal layer in a large area (see the Bunny model in Fig. 5 for
an example).
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3.3.2 Local collision and concavity control. A uniform weight as
𝑤𝑠 (𝑒) = 1.0 is assigned to all elements in the first iteration of our
optimization framework for generally controlling the compatibility
(i.e., smoothness) of neighboring quaternions. The values of𝑤𝑠 (𝑒)
on different elements are changed in the later steps of iteration to
prevent local collisions (i.e., gouging) between the printer head and
the curved layers as working surfaces (see Fig.6 for an example).
The concavity-aware weighting scheme applied here is based on
the analysis of local collision conducted in Sec. 2.2.
After obtaining a deformed model M𝑑 and mapping its height

field into a scalar-field 𝐺 (·) on M, we can evaluate the local con-
cavity of curved layers in two neighboring tetrahedral elements 𝑒𝐿
and 𝑒𝑅 . Using the isovalue 𝑔𝑐 as the average at the center of the face
shared by 𝑒𝐿 and 𝑒𝑅 , we obtain an isosurface𝐺 (x) = 𝑔𝑐 in these two
elements as two polygons with normal vectors n𝐿 and n𝑅 . At the
same time, we can obtain the edge vector h on the face shared by 𝑒𝐿
and 𝑒𝑅 . Whether the dihedral angle formed as the edge h is concave
can be evaluated by the sign of (n𝐿 × n𝑅) · h – i.e., ‘+’ for convex
and ‘-’ for concave edge. We define the signed angle between n𝐿
and n𝑅 as

𝜔 (𝑒𝐿, 𝑒𝑅) = sign ((n𝐿 × n𝑅) · h) arccos(n𝐿 · n𝑅) (10)

In our framework, we check if there are cases of local collisions by
using the condition defined in Eq.(5). When a collision happens, the
concavity-aware adaptive weights defined below are employed to
‘flatten’ concave regions by applying a large weight for smoothness.

𝑤𝑠 (𝑒𝐿, 𝑒𝑅) =
{
1.0 + |𝜔 (𝑒𝐿, 𝑒𝑅) |𝑝 (𝜔 (𝑒𝐿, 𝑒𝑅) < 0)
1.0 (𝜔 (𝑒𝐿, 𝑒𝑅) ≥ 0)

(11)

with 𝑝 = 1. The curves of𝑤𝑠 (𝑒𝐿, 𝑒𝑅) by using different 𝑝 are shown
in the right.

As shown in Fig.6, this adaptive weight-
ing scheme can effectively remove local
collisions. Note that this will slightly mod-
ify the rotation directly determined by
fabrication objectives because a larger
smoothness term is imposed in highly con-
cave regions. When cases of local colli-
sions are still found after applying the weights defined in Eq.(11),
we further ‘flatten’ the local concave region by incrementally en-
larging the value of 𝑝 – although it has never happened in our
experiments. As shown by the curves of𝑤𝑠 in the wrapped image,
using a larger 𝑝 will impose stronger smoothness requirement in
the highly concave regions.

4 CURVED LAYERS GENERATION
This section introduces the scale-controlled deformation scheme
which forms the outer loop of our framework. After that, the adap-
tive slicing algorithm that ensures the required range of layer thick-
nesses is presented.

4.1 Scale-Controlled Deformation
After computing the quaternion field G(·) = {q𝑒 } on the input
model M, we realize the desired rotation on every element 𝑒 as

(a)

(b)

Fig. 6. The adaptive scheme to assign the values of𝑤𝑠 can effectively remove
local collisions generated by using uniform weights – see the result shown in
(a). Collision-free results (b) are obtained by the concavity-aware adaptive
weights.

R(q𝑒 ) (NV𝑒 )T with V𝑒 being a position matrix formed by the coordi-
nates of 𝑒’s vertices onM. N is used to transfer an element’s centre
to the origin as N = I4×4 − 1

414×4. The rotated elements need to
be deformed and stitched together to compute the deformed mesh
M𝑑 .

When using the conventional as-rigid-as-possible (ARAP) defor-
mation for this task of stitching, the computation can end up being
stuck in a local optimum because of the rigidity requirement. To
solve this problem, scaling variables are introduced for each ele-
ment as S𝑒 = diag(𝑠𝑥𝑒 , 𝑠

𝑦
𝑒 , 𝑠

𝑧
𝑒 ) – this gives a locally scaled and rotated

element as R(q𝑒 )S𝑒 (NV𝑒 )T. After controlling the rigidity by the
difference between S𝑒 and I and controlling the compatibility of
scales between neighboring elements, we compute the deformed
modelM𝑑 as

argmin
M𝑑

∑︁
𝑒∈M

∥(NV𝑑𝑒 )T − R𝑒S𝑒 (NV𝑒 )T∥2𝐹︸                              ︷︷                              ︸
Position−Compatibility

+

𝑤𝑟

∑︁
𝑒∈M

∥S𝑒 − I∥2𝐹︸     ︷︷     ︸
Rigidity

+𝑤𝑐

∑︁
(𝑒𝑖 ,𝑒 𝑗 ) ∈N𝐹

∥S𝑒𝑖 − S𝑒 𝑗 ∥2𝐹︸         ︷︷         ︸
Scale−Compatibility

(12)

where ∥ · ∥𝐹 is the Frobenius norm, and the positions of vertices in
M𝑑 to be determined are kept in the position matrix V𝑑𝑒 .

The optimization problem defined in Eq.(12) is highly non-linear,
therefore a local/global solution strategy is applied here to com-
pute it efficiently. The quaternion-based optimization (Sec. 3) is
employed to determine the rotations as an inner loop step of scaled-
deformation. After that, we only consider the scales of elements and
the positions of vertices as variables to compute the deformed model
M𝑑 . Therefore, the problem in Eq.(12) keeps a least squares form
and can be solved efficiently. Note that this is different from existing
as-similar-as-possible approaches which determine the scales in the
steps of local projection (ref. [Jiang et al. 2017; Liu et al. 2008]).
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(a) (b) (c) (d)

(e) (f)
Max. Strain = 5.5e-2
Avg.. Strain = 2.3e-3

Max. Strain = 4.2e-2
Avg.. Strain = 1.2e-3

Fig. 7. The comparison of ARAP and our scale-controlled deformation: (a) the stress field under given forces that are shown by arrows, (b, e) the deformed
shape obtained by ARAP and its resultant curved layers, (c, f) the shape of M𝑑 determined by our method (𝑤𝑟 = 1.0 and 𝑤𝑐 = 6.0) and the corresponding
curved layers, and (d) the histogram to visualize the results of different deformations in terms of angles between LPDs and maximal principal stresses. It
shows that the layers generated by our scale-controlled deformation can meet the requirements of SR w.r.t. the stress field better. FEA is conducted to verify
the mechanical strength – i.e., smaller strains are observed on the result of scale-controlled deformation when applying the same load.

(a) (b) (c)

(d1) (d2) (d3) (d4)

Fig. 8. Comparison of ARAP deformation and our scale-controlled deformation: (a) the input Ankle model, (b) the deformed models after applying ARAP
deformation (top) and our scale-controlled deformation (bottom with 𝑤𝑟 = 0.1, 𝑤𝑐 = 6.0) where the distribution of scales are visualized by colors, and (c) the
slicing result based on ARAP deformation. The process of adaptive slicing are: (d1) initial slicing by considering the required minimal layer thickness 𝑑min, (d2)
inserting new layers by considering the required maximal layer thickness 𝑑max, (d3) partially removing newly inserted layers in the regions where the layer
thickness is less than 𝑑min, and (d4) the exploded view of the resultant layers.

4.1.1 Flexibility and control of scales. Adding scales as variables
brings in more flexibility for the optimization process to converge. A
comparison is given in Fig.7, where our scale-controlled deformation
allows for smoother deformation. As a result, curved layers of the
bridge model are better aligned with the directions of principal
stresses (see the histograms of the directional analysis in Fig.7(d).
This also leads to a stronger mechanical strength as can be observed
from the results of the FEA.

It is also very important to control the scale-compatibility among
neighboring regions because that a radical change in a local re-
gion may lead to a large variation in layer thicknesses at the end.
The scale-compatibility term plays a very important role in this
purpose. A balance is needed between the rigidity term and scale-
compatibility term. In most examples conducted in this paper, we
choose𝑤𝑟 = 1.0 and𝑤𝑐 = 6.0 which we determined experimentally.

There is only one exceptional case – the anchor example shown in
Fig.8, where the rigidity control is released to achieve a complete
conformal layer at the top (i.e.,𝑤𝑟 = 0.1 and𝑤𝑐 = 6.0 are employed).
The layer thickness issue is then solved by the adaptive slicing
algorithm (Sec. 4.2), which generates additional partial layers.

4.1.2 Iteration of deformation. As presented in Sec. 2.3, the scale-
controlled deformation needs to run iteratively until the terminal
condition is reached. This is mainly because stitching locally rotated
elements together and allowing scale change in the deformation
step may introduce slight distortion from the rotations determined
in the inner loop. An improved result can be obtained by repeatedly
running the outer loop of scale-controlled deformation.
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4.1.3 Terminal condition. The following metric is employed to de-
fine the terminal condition for the outer loop of our computational
framework. Without loss of generality, the feasible region of an
element 𝑒 is denoted as H𝑒 which can be defined by a single ob-
jective (i.e., H𝑆𝐹 , H𝑆𝑄 or H𝑆𝑅 ) or a combination of them. Given
the resultant scalar field 𝐺 (·) defined on the input model M, the
resultant local printing direction is in fact the gradient of ∇𝐺 (·) in
each element that is a constant vector. Given a function 𝐷 (d,H)
that returns the geodesic distance between d andH on the Gauss
sphere, the metric below defines how the objectives are achieved
(the smaller the better):

Π =
∑︁

𝑒∈S∪B
𝐷 (∇𝐺 (𝑒)/∥∇𝐺 (𝑒)∥,H𝑒 ) (13)

The terminal condition for the scale-controlled deformation (i.e.,
the outer loop of optimization) is chosen as |Π𝑘−Π𝑘−1 |

Π𝑘−1
< 5%, where

Π𝑘 and Π𝑘−1 denote the metric values in the current step and the
previous step, respectively.

4.2 Adaptive Slicing

After obtaining the deformed modelM𝑑 by the optimization above,
we can obtain the scalar-field 𝐺 (·) on M by assigning every node’s
field-value by its height value onM𝑑 . In each element 𝑒 , a piecewise
linear function is employed to define the field value𝐺 (x). Isosurfaces
are extracted from 𝐺 (x) to work as curved layers.
An adaptive slicing algorithm is introduced to ensure the dis-

tances between neighboring layers in the range of [𝑑min, 𝑑max].

• Step 1): Starting from the first layer 𝐿0 as 𝐺 (x) = 𝑑min, we
extract isosurfaces incrementally as 𝐿𝑖 by ensuring that the
minimal distance between two neighboring layers 𝐿𝑖 and 𝐿𝑖−1
is larger than 𝑑min.

• Step 2): For any two neighboring isosurfaces 𝐺 (x) = 𝑑𝑖 and
𝐺 (x) = 𝑑𝑖+1, we insert a new layer at 𝐺 (x) = 1

2 (𝑑𝑖 + 𝑑𝑖+1)
when the maximal distance between them is larger than 𝑑max.
This refinement is repeated until the maximal distance bound
is guaranteed between all layers.

• Step 3): For a layer 𝐿𝑖 as a complete isosurface 𝐺 (x) = 𝑑𝑖
defined inM, we remove a polygon from 𝐿𝑖 if the distance
between the polygon and all previous layers 𝐿𝑗 (∀𝑗 < 𝑖) is less
than𝑑min. Again, this checking and removal is only conducted
on the layers newly inserted in the second step.

See also Fig.8(d1)-(d4) for an example. In many cases the ranges
of thickness [𝑑min, 𝑑max] are satisfied without having to produce
partial layers. Step 2) and 3) are only applied if there are layers
with thickness larger than 𝑑max. In order to leave more space for
optimization, we do not explicitly control the layer thickness in our
optimization framework. Therefore, the adaptive slicing algorithm
is essential to obtain manufacturable layers. In our implementation,
the layer thickness is controlled in the range [0.4𝐷, 1.0𝐷] with 𝐷

being the diameter of the printer head’s nozzle. All layers within
this range of thickness can be fabricated by the method of extrusion
control in [Etienne et al. 2019].

5 RESULTS AND DISCUSSION

5.1 Implementation details
We implemented our computational framework in C++. Source code
of this work will be released after the publication of this paper. The
numerical library Eigen [Guennebaud et al. 2010] is employed as the
solver of linear equations, and the MKL library [Wang et al. 2014]
developed by Intel is used for accelerating the sparse matrix calcula-
tion. The PQP library [Gottschalk et al. 1996] is applied to compute
the point-to-surface distances for layer thickness evaluation.
The focus of this paper is the generation of curved layers. After

that, toolpaths are generated on each curved layers to govern the
material deposition of filaments. For the layers passing through the
critical regions, the hybrid strategy [Fang et al. 2020] is adopted
where the contour-parallel toolpaths and the directional-parallel
toolpaths are used for the boundary and the interior regions, respec-
tively. For other layers, the contour-parallel toolpaths are employed.
Contour-parallel toolpaths can be generated from the boundary dis-
tance field of each curved layer. The directional-parallel toolpaths
are generated from the vector-field, which is obtained by projecting
the maximal principal stresses onto the surface of each layer. Eti-
enne et al [2019] generated toolpaths on the planar layers and then
deformed them back into the original space. A different strategy
is conducted in our framework. We directly generate toolpaths on
the curved layers as it is easier to control the distances between
toolpaths and the distances between sample points on a toolpath.
Each toolpath is sampled into a sequence of waypoints by con-

trolling the distance between neighboring waypoints and using the
surface normals as the orientations of the printer head. After that,
each waypoint is converted into feasible poses of the robotic arm by
a solver of inverse kinematics. The final trajectory of robot motion
is computed on the directed graph that uses the poses as the graph’s
nodes and the collision-free motions between the poses of two neigh-
boring waypoints as the graph’s edges. By weighting every edge
with the total joint-angle variations between two poses linked by
this edge, a smooth trajectory can be determined by searching the
shortest path on the graph [Dai et al. 2018; Zhang et al. 2021a]. The
feedrate of the extruder is changed according to the layer thickness
by using the strategy employed in [Etienne et al. 2019].

5.2 Computational Results
All the computational experiments are conducted on a laptop with
an Intel(R) Core(TM) i7-10875H CPU (8 cores @ 2.3GHz) + 32GB
RAM, running Windows 10. Models employed in our tests have a
variety of topology and the numbers of elements range from 25k to
250k.

5.2.1 Examples and computing time. We tested our approach on a
variety of models. The first example is the Bunny model with 196.8k
tetrahedral elements that has been shown in Fig. 1. All the SF, SR and
SQ objectives are required on this model. Specifically, the surface
quality at the feet, the back and the head of bunny is well preserved.
The ear region can be 3D printed without supporting structures, and
the strength has been improved by 25.3% in the compression test.
Besides the physical evaluation, the results of SQ optimization are
further verified by a digital evaluation. Each toolpath is converted

ACM Trans. Graph., Vol. 41, No. 6, Article 277. Publication date: December 2022.



𝑆3-Slicer: A General Slicing Framework for Multi-Axis 3D Printing • 277:11

Table 1. Computational statistics for the pipeline of 𝑆3-slicer.

Solid Computing Time of 𝑆3-Slicer (sec.) Toolpath Total Time
Model Objective Fig. #tets LDP Proj. Quaternion Opt. Scale-controlled Def. Total of Def. Slicing Gen. (sec.) (sec.)
Bunny (SF, SR & SQ) 1,9 196.8𝑘 0.7 42.7 12.8 56.2 8.6 10.9 75.7
Armadillo (SF, SR & SQ) 2 245.4𝑘 1.0 44.5 15.4 60.9 29.9 9.3 100.1
Topo-Opt (SF & SR) 4 70.5𝑘 0.3 7.4 2.3 10.0 3.3 11.2 24.5
Teapot (SF & SQ) 11 201.8𝑘 0.8 51.1 15.2 67.1 16.6 31.3 115.0
Ankle (SF & SQ) 8,12 97.8𝑘 0.4 11.9 5.3 17.6 97.6† 2.9 118.1
Ring (SF) 6,13 24.8𝑘 0.1 2.8 1.5 4.4 2.4 1.1 7.9
Bridge (SR) 7 100.4𝑘 0.5 9.8 4.9 15.2 7.1 1.5 23.8

† The adaptive slicing is only applied to a model when necessary. The reported time of Ankle model includes the time for adaptive slicing.

(a) (b)

Fig. 9. Digital evaluation of surface quality for the Bunny model fabricated
by (a) planar layers (𝐸avg = 0.051; 𝐸max = 2.01) vs. (b) curved layers gen-
erated by our method (𝐸avg = 0.042; 𝐸max = 1.39), where 𝐸avg and 𝐸max
denote the average and the maximal surface distance errors respectively.

into a tube where the cylindrical cross-section’s radius is determined
according to the extrusion rate. The surface distances between the
input model and the tubes are computed on sample points. Both the
average and the maximal distance-errors (denoted by 𝐸avg and 𝐸max)
are reported in Fig.9. The results generated by this digital evaluation
are consistent with those obtained from physical experiments.
The second example with all three objectives is the Armadillo

model (245.4k tetrahedral elements), as shown in Figs. 2 and 10. In
the third example, SF and SR objectives are applied to produce a
model that was initially generated by topology optimization – i.e.,
the Topo-Opt model in Fig. 4. We also tested other two models with
SQ and SF objectives: the Teapot in Fig.11 and the Ankle in Fig.12.
Lastly, the Ring model (Fig.6) for SF objective and the Bridge model
for SR objective (Fig.7) are tested. Computational statistics on these
models are given in Table 1. It can be seen that the computation of
𝑆3-slicer can be finished in less than 2 minutes on all examples.

5.2.2 Statistics in LPDs. Histograms are employed to visualize the
level of compliance for LPDs generated by our method compared
to the required objectives. Specifically, as already shown in Fig.1,
the angle between the surface normal (n𝑓 ) and the LPD (as ∇𝐺 (𝑒))
on boundary elements are visualized through the histograms for
SF and SQ objectives. The angles between LPDs (as ∇𝐺 (𝑒)) and the
directions of maximal principal stress (as 𝜏max) on all elements in
the critical region S are displayed in the histogram for SR objective.
Optimal regions are all indicated on all histograms. We also applied

(a)

Planar Slicing Curved Slicing(b)

Planar Slicing Curved Slicing(c)

Fig. 10. The result analysis of the Armadillo model according to the tool-
paths given in Fig.2: (a) histograms of LPDs, (b) the strain distribution
simulated by FEA, and (c) the surface quality analysis visualized by color
maps of shape approximation errors (the average errors are 0.738mm and
0.534mm – reduced by 27.6%).

all the SF, SR and SQ objectives to the Armadillo model. As can be
observed from the histograms of LPDs shown in Fig.10(a), curved
layers are significantly optimized for the SF, SR and SQ objectives.
The histogram of SR objective for the Bridge model has been given in
Fig.7(d). More histograms of other models can be found in Figs.11-13.

5.2.3 Verification by FEA. To verify the results of SR objectives,
we conducted FEA simulation with anisotropic material properties
by assigning different Young’s moduli along different directions at
the element level. Specifically, 𝑌1 = 3.5 GPa is used as the strongest
modulus and is assigned to the toolpath’s tangential direction. The
weakest modulus is assigned both to the surface normal direction of
each layer and to the third orthogonal direction as𝑌2 = 𝑌3 = 1.2 GPa.

The simulation result of the Bunny model (Fig.14) shows that the
curved layers can reduce the maximal strain and the average strain
by 27.81% and 18.53%, which is similar to the results obtained by the
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(a) (b)

(c)

Fig. 11. The result of the Teapot model: (a) The fabrication result, (b) the
surface quality analysis visualized by color maps of shape approximation
errors (the average errors are 0.537mm and 0.364mm – reduced by 32.2%),
and (c) the histograms of LPDs.

(a) (b)

(c)

Fig. 12. The result of the Ankle model: (a) The fabrication result, (b) the
histogram of LPDs, and (c) the surface quality analysis by the color maps of
shape approximation errors (the average errors are 0.580mm and 0.432mm
– reduced by 25.5%).

(a) (b) (c)

Fig. 13. The result of the Ring model: (a) The histogram of LPDs, (b) the
fabrication result, and (c) collision-free fabrication by robotic arm.

physical test (Sec. 5.3.2). The FEA results of the Armadillo model are
given in Fig.10(b), where the model with curved layers has reduced
19.4% in the maximal strain and reduced 26.2% in the average strain
compared to the model with planar layers. In the third experiment

(a) Planar Slicing Curved Slicing

(b) Planar Slicing Curved Slicing

Fig. 14. The simulation results of Bunnymodel: (a) the frames for anisotropic
FEA and (b) the color maps for strain distribution. The curved layers can
reduce the maximal strain and the average strain by 27.81% and 18.53%.

Fig. 15. The results of physical fabrication using curved layers generated
by our framework.

of simulation, we evaluate the maximal and the average strains for
the Topo-Opt model when different user preferences are applied (see
Fig.4). It is interesting to find that using a completely support-free
slicing (i.e., 𝑤𝑆𝐹 : 𝑤𝑆𝑅 = 1.0 : 0.0) can make the maximal strain
slightly larger than the result of planar slicing when applying the
same loading condition. However, the situation can be improved
after adding a small weight for SR – e.g., both the average and the
maximal strains have been reduced by using𝑤𝑆𝐹 : 𝑤𝑆𝑅 = 0.7 : 0.3.
Lastly, the FEA results of the Bridge model with different curved
layers have been given in Fig.7.

5.3 Physical Experiments
5.3.1 Hardware. We have tested the curved layers and the corre-
sponding toolpaths generated by our framework on a multi-axis
3D printing hardware realized by a UR5e robotic arm, which has
the repeatability of ±0.03mm. The extruder control is realized by
a Duet3D board. Our printer head has the 1.0mm diameter nozzle.
Polylactic acid (PLA) filament with 1.75mm diameter is used in our
physical fabrication. As a result, layers with thickness in the range
of [0.4mm, 1.0mm] can be reliably produced in our system.
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Table 2. Statistics of physical fabrication.

Curved Layers† Planar Layers†
Model Layer # Weight Time Layer # Weight‡ Time
Bunny 150 450g 21.3h 151 483g 23.6h
Armadillo 205 183g 19.1h 187 275g 24.4h
Topo-Opt 99 337g 14.8h 100 352g 15.5h
Teapot 150 114g 9.3h 132 127g 8.9h
Ankle 59 52g 2.3h 42 54g 1.8h
Ring 100 56g 2.4h - - -

† The thicknesses for curved layers are in the range of [0.4mm, 1.0mm], and
the thickness for planar layers is 0.8mm.
‡ The weight of a model fabricated by planar layers includes the weight of
its supporting structures.

Fig. 16. Results of the Bunny model under compression test, where the
pushing forces are applied on the ears and the bottom of Bunny is fixed.
Force-displacement curves are generated to study the mechanical strength
of models 3D printed by planar layers (red) vs. our curved layers (blue).

5.3.2 Fabrication and mechanical test. All the models fabricated by
our system are shown in Fig.15. The statistics of physical fabrication
are given in Table 2. Note that because of the additional supporting
structures the models fabricated by planar layers are heavier and
took longer time. We conduct mechanical compression tests on
the Bunny model. Two specimens are employed – one by curved
layers generated by our 𝑆3-slicer and the other by conventional
planar layers. The force-displacement curves are generated by using
a Zwick / Roell tensile machine AGX-X (see Fig.16). From the force-
displacement curves of compression tests, we can observe 25.3%
improvement in the breaking force, which is consistent with the
simulation results as given in Fig.14.

5.3.3 Surface quality study. Wehave also studied the surface quality
on 3D printed models. Point clouds are obtained by a structured-
light based scanner EinScan Pro 2X with accuracy of 0.04mm. The
iterative closest point (ICP) based registration is applied to align the
input model with the scanned model, where the distances between
these models are generated by the PQP library [Gottschalk et al.
1996] to evaluate the surface approximation error. As already shown
in Fig.1, the surface errors on the model fabricated from our curved
layers can be significantly reduced. This does not only happen in
the region covered by conformal layers (e.g., the top of the Bunny’s
head and the back) but also other regions achieved by the ‘vertical’
layers (e.g., the Bunny’s mouth / nose regions and the feet region).
Similar results can also be observed on the Armadillo model (Fig.10),
the Teapot model (Fig.11) and the Ankle model (Fig.12).

(a) (b)

Fig. 17. Tests to study the importance of compatible quaternions on the
Bridge and the Ring models, where the metric Π defined in Eq.(13) is evalu-
ated. When different iterations are applied in the quaternion optimization
(i.e., the inner loop), different speeds of convergence can be observed for
the deformation iteration (i.e., the outer loop).

(a) (b) (c)

(a) Coarse mesh (b) Original (c) Dense Mesh
Tetrahedra # 63,787 143,111 390,212

Edge Length (avg.) 4.61 3.15 2.24
Value of Metric Π 0.052 0.048 0.042
Comp. Time (sec.) 8.5 35.6 158.3

Fig. 18. Results of our approach using volumetric meshes of different res-
olutions. Only the SF objective is imposed in these tests (i.e., 𝑤𝑆𝐹 = 1.0),
where the same values of weights 𝑤𝑟 = 1.0 and 𝑤𝑐 = 6.0 are applied.

5.4 Discussion
5.4.1 Importance of compatible quaternions. The computation of
scale-controlled deformation in our framework can converge very
fast when the input rotations are nearly compatible among neigh-
bors. It is interesting to study the performance of this outer loop
when feeding incompatible rotations to the deformation step. Specif-
ically, we applied 0 (no iteration), 1, 5 and 10 iterations in the quater-
nion optimization step as the inner loop. The tests are conducted on
the Bridge model and the Ring model (as shown in Fig.17). When
no iteration is applied in the quaternion optimization (i.e., only LPD
projections are applied to each element to obtain the rotations), the
computation does not converge on the Bridge model and needs a
large number of deformation steps to converge on the Ring model.
The speed of convergence can be immediately improved after apply-
ing 1 iteration in the inner loop – i.e., more compatible quaternions
(rotations) are fed into the scale-controlled deformation. By testing
examples presented in this paper, we found that the computation
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of deformation converges quickly when having 5 − 10 iterations in
the inner loop of quaternion optimization.

Better initial guesses of LPDs can also help to further improve the
speed of convergence in our computational framework. Therefore,
the heat kernel method [Crane et al. 2017] is extended to support
volume meshes to determine the initial guess for SR objective. By
using the plane that contacts ground as the heat source, the gradients
of a heat field can be employed as the initial guess of LPDs.

5.4.2 Influence of mesh density. Here we study the influence of
mesh density on the results when using the same values for the
weights𝑤𝑟 and𝑤𝑐 . As shown in Fig. 18, similar results are gener-
ated by our approach regardless of the resolution as long as the
tetrahedral mesh is fine enough to capture the geometric details
of an input model. Specifically, the computations converge to the
similar values of the metric Π (as defined in Eq.(13)) that indicates
the level of agreement with the objectives. Much longer computing
time is consumed on the input model with a dense mesh although
the resultant metric value is slightly smaller.

5.4.3 User preference on objectives. Two different types of weights
are conducted in our approach: 1) the algorithm related weights that
are either computed automatically (e.g.,𝑤𝑠 determined by Eq.(11)) or
fixed (such as𝑤𝑟 = 1.0 and𝑤𝑐 = 6.0), and 2) the user-defined param-
eters (𝑤𝑆𝐿 ,𝑤𝑆𝑅 ,𝑤𝑆𝑄 ). In our current implementation, these parame-
ters are employed to indicate the preference among multi-objectives.
Without loss of generality, we usually let 𝑤𝑆𝐿 +𝑤𝑆𝑅 +𝑤𝑆𝑄 = 1.0.
When the larger value is given to the weight of an objective, the
preference is given to that objective. Different combinations of the
weights and their corresponding results are demonstrated in Fig. 19.
In the future, a high-level interface can be considered to determine
the values of these weights by machine learning.

5.4.4 Limitations. In our current implementation, the foldover ele-
ments are not restrictively prohibited. Having such elements in the
deformed model will lead to self-intersected layers, which are not
possible to be fabricated. Adding new constraints into our frame-
work to prevent foldover may result in a highly nonlinear problem
to be solved. Practically, we find that the scale control terms used
in Eq.(12) can effectively avoid most of such cases. Only 9 foldover
elements were found in the Ring model (which has 40𝑘 elements
in total), and no case was found in any other model. Therefore, we
resolved this problem in the post-processing step by applying the
method presented in [Su et al. 2019].
Another limitation of our approach is that the setup orientation

of a model is not included as a variable to be optimized. For SQ
or SF objectives, we choose the setup orientation by the method
presented in [Zhang et al. 2015]. For SR objectives, we heuristically
determine the printing orientation by searching the orientation that
gives the minimal average strain when being fabricated by using
planar layers [Ulu et al. 2015]. An alternative could be to use the
upright orientation determined by [Fu et al. 2008].
Lastly, only the LPD related fabrication objectives can be inte-

grated into our computational framework now. The other require-
ments such as global collision avoidance, feedrate control of ex-
trusion and kinematics of hardware are all handled in the post-
processing steps. We plan to investigate how to incorporate these

SF

SRSQ

𝑤𝑆𝐹 : 𝑤𝑆𝑅 : 𝑤𝑆𝑄 = 1.0 : 0.0 : 0.0

𝑤𝑆𝐹 : 𝑤𝑆𝑅 : 𝑤𝑆𝑄 = 0.5 : 0.0 : 0.5

𝑤𝑆𝐹 : 𝑤𝑆𝑅 : 𝑤𝑆𝑄 = 0.3 : 0.3 : 0.4

𝑤𝑆𝐹 : 𝑤𝑆𝑅 : 𝑤𝑆𝑄 = 0.5 : 0.5 : 0.0

𝑤𝑆𝐹 : 𝑤𝑆𝑅 : 𝑤𝑆𝑄 = 0.0 : 0.0 : 1.0

𝑤𝑆𝐹 : 𝑤𝑆𝑅 : 𝑤𝑆𝑄 = 0.0 : 0.5 : 0.5

𝑤𝑆𝐹 : 𝑤𝑆𝑅 : 𝑤𝑆𝑄 = 0.0 : 1.0 : 0.0

Fig. 19. Users can indicate their preference among the multi-objectives
by changing the weights of 𝑤𝑆𝐹 , 𝑤𝑆𝑄 and 𝑤𝑆𝑅 . Different results can be
obtained – e.g., when letting 𝑤𝑆𝑄 = 0.0 such as the examples located on
the right edge of the triangle, only objectives SF and SR are considered.

objectives in the future work. Other objectives of optimization based
on LPDs will also be explored (e.g., the 3D printed magnetic materi-
als for advanced sensors [Zhang et al. 2021b]).

6 CONCLUSION
This paper presents a new general slicing framework for multi-axis
3D printing, where curved layers for material accumulation are
generated to achieve the combined objectives of support-free (SF),
strength reinforcement (SR) and enhanced surface quality (SQ). To
the best of our knowledge, this is the first time that all these objec-
tives are achieved simultaneously on the same model. The whole
framework consists of an inner loop of quaternion-field optimiza-
tion and an outer loop of scale-controlled deformation, which can
be efficiently computed by local/global solvers. The results of our
experimental tests are very encouraging. Multiple objectives of fab-
rication can be successfully achieved. Physical models have been
3D printed and scanned to verify the effectiveness of our approach.
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