
ACM Symposium on Solid Modeling and Application (2004)  

G. Elber, N. Patrikalakis, P. Brunet (Editors) 

 

Developability-Preserved Free-Form Deformation of 

Assembled Patches  

Charlie C. L. Wang 

Department of Automation and Computer-Aided Engineering, 

The Chinese University of Hong Kong, 

Shatin, N.T., Hong Kong 

cwang@acae.cuhk.edu.hk 

 

Kai Tang 

Department of Mechanical Engineering,  

The Hong Kong University of Science and Technology, 

Clear Water Bay, N.T., Hong Kong 

mektang@ust.hk

 

 Abstract 

A novel and practical approach is presented in this paper that solves a constrained free-form deformation (FFD) problem 

where the developability of the tessellated embedded surface patches is preserved during the lattice deformation. The 

formulated constrained FFD problem has direct application in areas of product design where the surface developability is 

required, such as clothing, ship hulls, automobile parts, etc. In the proposed approach, the developability-preserved FFD 

problem is formulated as a constrained optimization problem. Different from other contained FFD approaches, the 

positions of lattice control points are not modified in our algorithm – as their control is insufficient in regarding to the 

developability of all the nodes in the mesh. Moreover, the optimization is performed on the parameters of the mesh nodes 

rather than directly modifying the 3D coordinates, which avoids the time-consuming inverse calculation of the parameters 

of every node in a non-parallelepiped control lattice when further deformations are required.  

Categories and Subject Descriptors: I.3.5 [Computational Geometry and Object Modeling]: Curve, Surface, solid and 

object representation; Modeling packages. J.6 [Computer- Aided Engineering]: Computer-Aided Design (CAD).  

 

1. Introduction 

The design of complex models is a key problem in 

geometric modeling. One of the most powerful tools for 

deforming a complex model is free-form deformation (FFD) 

first introduced by Sederberg and Parry [SP86]. The idea of 

the FFD method is to deform a complex object by deforming a 

simple flexible solid (called embedding volume or solid) in 

which the given object is embedded so that the deformation of 

the simple solid is propagated to the embedded object. This 

tool is very useful for designing product shapes, especially 

when the topology of the product is required to be retained. 

Usually such an FFD is constrained: a set of points on the 

original embedded object are specified and their new locations 

in space are given; the embedding volume is deformed in such 

a way that under the parametric mapping of the deformed 

embedding volume the specified set of points take the given 

new locations. 

After Sederberg and Parry [SP86] firstly introduced the 

free-form deformation (FFD) method, many variants have 

been reported. The original FFD method adopts a trivariate 

parallelepiped Bézier volume as the embedding solid. In 

[Coq90, CR94], the control lattices were extended to non-

parallelepiped; in [MJ96], a further improvement was 

proposed to support lattices with arbitrary topology. Trivariate 

B-Splines or NURBS solids are the most popular types of 

embedding volume [GP89, LW94]. To overcome the difficulty 

in getting the deformed object pass through desired points 

precisely, the direct manipulation FFD methods were 

proposed. Hsu et al. [HHK92] adopted least-square fitting 

approach to determine the movement of the control points, and 

the method of Hu et al. [HZT01] is based on a constrained 

optimization scheme. As some specified points are required to 

be on the object after deformation, the methods in [HHK92, 

HZT01] are constrained FFD approaches. The algorithm 

presented in [HML00] is another kind of constrained FFD, 

where the total volume of a solid undergoing FFD is 

preserved. 

However, under an FFD many geometrical surface 

properties of the embedded object will have some change, very 

often undesirable. Among these properties one particularly 

important one is the developability of a surface. Informally, a 

surface is developable if it can be flattened into a plane 

without any distortion [Car76]. This is a highly desirable 

property in sheet manufacturing industry, where the stretch or 

compression in the sheet material is not wanted, as they make 

the product more prone to damage since internal strains and 

stresses are generated. As an example shown in Figure 1a, the 

original design of the duct has a developable shape which can 

thus be rolled by a metal sheet. After redesigning it by FFD, its 

shape becomes the one as shown in Figure 1b which is non-

developable. The elastic energy maps of the duct surface 

before and after the FFD are given in Figure 1c and Figure 1d 

respectively. As clearly shown, a great amount of elastic 

energy is generated because of the FFD which will translate 

into stretch and compression if the newly designed duct is to 

be manufactured by metal sheet. Manufacturers thus require 

eliminating this kind of stretch and compression at the design 

stage. This requirement exists in many applications (e.g., 

clothing, ship hulls, ducts, shoes, aircraft and automobile 

parts). This leads to the concept of developability-preserved 

FFD which is the theme of this paper. 

No prior research on developability-preserved FFD has 

been found in literature. In our approach, the original given 

surface to be deformed is developable and has been tessellated 



into triangular mesh surface patch. The developability of a 

surface relates to every point on it, by this simplification, we 

only need to consider about the developability at the mesh 

vertices – the triangles linking them are of course developable. 

The mesh patches are assembled together by sharing some 

triangular edges. After analyzing the developability property of 

a tessellated surface, the developability-preserved FFD 

problem is formulated as a constrained optimization problem, 

where the parameters of each triangular node inside the 

embedding volume are chosen as variables to be optimized.  

Different from other constrained FFD approaches 

[HHK92; HML00; HZT01], in our approach the positions of 

the lattice control points of the embedding volume are not 

modified. This is because changing the positions of the lattice 

control points can only lead to coarse-scale modification; 

however, the developability preservation needs fine-scale 

modification of the deformed surface. Furthermore, we do not 

directly optimize the positions of triangular nodes either, based 

on the reasoning that usually successive deformations are 

performed and they require inversely computing the 

corresponding parameters of the relocated nodes, which is 

extremely tedious and very time-consuming. The constrained 

optimization problem is numerically solved by a penalty 

function based scheme, and the optimization scheme is further 

enhanced to maintain the continuity between the assembled 

patches. A NURBS solid is adopted as the embedding volume 

function in our implementation; however, our method can be 

easily extended to any lattice-based free-form deformation 

functions. 

  
(a) original shape with 

lattice 

(b) deformed shape with lattice 

 
 

(c) elastic energy map of 

the original duct 

(d) elastic energy map of the 

newly shaped duct 

Figure 1: example I – a deformed duct leads to stretch in 

manufacturing 

 

2. Mathematical Formulation 

In this section, the mathematical formulation of the 

developability-preserved free-form deformation for assembled 

tessellated surface patches is presented. 

2.1. Deformation volume 

Deforming a shape via embedding it into a (usually 

uniform) volume such as a NURBS volume and then 

modifying its control points is a popular approach. Here, we 

utilize a NURBS solid ),,( wvuQ  with a control net of 

uniformly distributed control points kjiP ,,  as the deformation 

volume. The object to be deformed is denoted by O  which is a 

set of assembled surface patches iM . Each surface patch iM  

is a piecewise linear triangular mesh either provided by the 

user or generated using a standard tessellation algorithm, and 

the surface patches are assembled together by sharing some 

common triangular edges (as shown in Figure 2). All patches 

of the object O  are embedded in ),,( wvuQ  by determining 

the parameters ),,( wvu  of every triangular node on O  with 

reference to ),,( wvuQ . Then, after adjusting the control 

points, weights, or knot vectors of the NURBS volume 

),,( wvuQ , and substituting the parameters ),,( wvu  of every 

point on O  into the adjusted ),,( wvuQ , the object O  is 

deformed. The parameters ),,( wvu  can be quickly derived 

through simple linear transformation if the contribution of the 

control points is uniform and paralleled. 

  
assembled surface patches mesh representation 

Figure 2: Assembled surface patches after tessellation 

2.2. Developability of a tessellated surface patch 

Let us first recall the following theorem in differential 

geometry [Car96]. 

Theorem 2-1 At regular points, the Gaussian curvature of a 

developable surface is identically zero. 

By this theorem, one can easily detect whether a surface is 

developable according to its overall Gaussian curvature. 

However, Gaussian curvature is not well defined 

mathematically on a piecewise linear polygonal mesh surface. 

An extension of theorem 2-1 is required to detect whether a 

piecewise linear polygonal surface patch is developable. Thus, 

the following proposition arises for this purpose. 

Proposition 2-1 At any internal point of a developable 

piecewise linear surface, the summed inner angle is 

identically π2 . 

Proof. For a point qi on a developable triangular mesh 

surface patch M, if jθ  is an inner angle adjacent to qi before 

flattening and 
F
jθ  is the corresponding inner angle flattened 

on the 2D plane, as illustrated in Figure 3, the inner angles 

satisfy 
F
jj θθ =  if the surface at this point can be flattened 

without stretching. In the 2D plane, ∑ j

F
jθ  equals π2  for an 

internal vertex. When M is developable, which makes 
F
jj θθ =  at every point on M, we have πθ 2=∑ j

j . 

F
jθ

jθ

 
Figure 3: The inner angles before and after flattening the 

triangles around a vertex 



The approximation Gaussian curvature formula in 

[KBB00] on an internal triangular node iq  is 

∑

∑−

=

j
j

j
j

q

A
i

3

1

2 θπ
κ ,                       (2-1) 

where jθ  are the inner angles adjacent to iq , and jA  are the 

corresponding triangle areas. When utilizing the above 

approximation of Gaussian curvature to detect the 

developability of the given surface patch M , by Theorem 2-1, 

we have 0=
iqκ , which also leads to πθ 2=∑ j

j .     Q.E.D. 

For an internal vertex, we call it a developable point when 

πθ 2=∑ j
j  is satisfied at this point; otherwise, it is called a 

non-developable point. Using Proposition 2-1, we can detect 

whether a given mesh patch M  is developable by checking 

every internal vertex. However, simply stating whether a 

surface is developable or not is insufficient to identify the 

degree of developability of the surface. Thus, we define the 

developability function on a tessellated surface to describe it. 

Definition 2-1 The developability function of a tessellated 

surface patch M  is defined as 

∑ −=
i

qisum i
Aq

A
MD ))(2(

1
][ θπδ  

where )(tδ  is the impulse function, ∑=
j

jq AA
i 3

1
 is the 

sum area of the adjacent triangle of a vertex iq  on M , and A  

is the area of M . )( isum qθ  is either the sum of inner angles 

adjacent to iq  when iq  is an internal vertex, or set to π2  

when iq  is on the boundary of M . 

The value of the developability function gives a 

progressive estimate of the developable property of a surface 

patch. When D[M]=1, all internal vertices on this surface are 

developable points; in other words, M is developable. When 

D[M]=0, it means that we cannot find any developable point 

on the surface – M is absolutely non-developable. For any 

)1,0(][ ∈MD , there are some developable points on M. The 

larger the value of D[M], the more developable the surface M 

is. 

2.3. Problem definition 

For a given surface M  with n vertices and D[M]=1, the 

parameters of the n vertices form a 3×n  matrix 

T

n

n

n

w

v

u

w

v

u

w

v

u

X

















=

−

−

−

1

1

1

1

1

1

0

0

0

L  

when it is embedded in the control lattice Q. After M is 

deformed into a new M ′  when Q is changed to Q′ , the 

developability function value ][MD ′  usually decreases if the 

same X is kept. For an embedded object with multiple patches, 

the parameters of all vertices on the object compose the final 

X. The problem we are to solve here is to find a new matrix X* 

so that an optimized M* is determined by Q′  and this X*. The 

M* should be developable (i.e., 1*][ =MD ), and the 

difference between *M  and M ′  should be minimized. 

The reason we do not contemplate computing an optimized 

M* by directly changing the positions of control points in Q′  

is that such a modification is always of coarse-scale nature. 

The density of control points on the FFD lattice is usually 

much less than that of the triangular mesh vertices. Thus, by 

the NURBS properties of the deformation volume, when the 

position of a control point in Q′  is adjusted, it changes the 

positions of more than one mesh vertices on M ′ . However, 

the developability-preserved optimization needs fine-scale 

modification of M ′  to eliminate some non-developable points 

locally. When the parameters of one mesh vertex iq  are 

adjusted, only the position of this vertex is modified – there is 

no effect on the developability of other vertices not adjacent to 

iq . A fine-scale modification is thus achieved. 

Another question to answer is why not directly changing 

the positions of vertices on M ′  to get M*? When a new 

deformation is required after the positions of the vertices on 

M ′  are altered, we need to compute the new parameters of 

these vertices in a non-parallelepiped control lattice. This 

inverse calculation is extremely difficult and very time-

consuming. Furthermore, trying to optimize the positions of 

vertices on M ′  may lead some vertices moving outside the 

deformation volume. In such a case, no further deformation 

can be expected. 

When determining the optimized X* of M* to achieve 

1*][ =MD , we attempt to minimize the surface discrepancy 

between M ′  and M* since the shape of M ′  is what the 

designer wants. An elastic energy *)(XE  is defined below to 

quantify this change, 

( )∑ −=
j

jejsj lXqXqXE
20

,, *)(*)(*)(         (2-2) 

where j is the index of a triangular edge, Mq sj ∈,  and 

Mq ej ∈,  are the vertices of the edge, and 0
jl  is the length of 

the triangular edge j on M ′ . This energy function simulates a 

spring network in which every spring follows along a 

triangular edge on M*. The energy measures the change of 

length on every triangular edge between M* and M ′ . Our goal 

is to find a new configuration X*, which preserves the 

developability of the embedded surface patch while at the 

same time minimizes the incurred discrepancy between M* 

and M ′ . Therefore, we formulate the problem as a 

constrained optimization problem, where we search for the 

minimum energy configuration of X subject to the constraint of 

developability preservation: 

min *)(XE  subject to 1*][ =MD .             (2-3) 

In the definition of the developability function, there is an 

impulse function which may lead to irregularity during the 

optimization. Here, we define a new developability detect 

function ][LG  to take place of the developability function 

][LD  as 

2
)))(((][ ∑=

i
i XqgXG                        (2-4) 

where )(Xqi  is the position of a triangular vertex Mqi ∈  

determined by the parameter configuration X, and the function 

)( iqg  is a vertex developability detect function given as 







Β∈

Β∉−
= ∑

)(0

)(2
)(

i

i
k

k
i

q

q
qg

θπ
                (2-5) 

where Β  is the set of triangular vertices on the boundary of 

the given mesh patch M. It is not hard to verify that when 

0*][ =XG , the sum of the inner angles at every internal 

vertex equals π2 , hence 1*][ =MD  is satisfied. Thus, we 



replace the developability constraint by this new one and the 

constrained optimization problem is redefined as 

min *)(XE  subject to 0*][ =XG .             (2-6) 

It is important to state that the optimization formulation of 

(2-6) pertains to a single patch Mi on the embedded object O. 

Since O is usually made of several surface patches assembled 

together, the continuity constraint should also be added when 

these patches are optimized individually. This will be 
discussed in the following section. 

3. Numerical Scheme 

Recall our constrained optimization problem: 

min *)(XE  subject to 0*][ =XG , 

we can convert it into an unconstrained optimization problem 

by adding the constraint as a penalty term on the objective 

function [MS92]. As a result, the objective function to be 

optimized becomes 

2
*))((

2
*)(*)( XGXEXJ

ρ
+=                    (3-1) 

where ρ  is the coefficient to balance the weight between 

*)(XE  and *)(XG . The choice of ρ  is by no means trivial; 

for smaller ρ , the computing procedure converges slowly to 

0*][ =XG ; for larger ρ , the shape of the surface patch after 

optimization usually deviates too much from the one before 

optimization. For any starting optimization point X0, the 

procedure begins to minimize J(X0) with 

∑=
j

j

e

l
XGn

20

20
)(

])[(

1
ρ , where en  is the number of 

triangular edges. After applying the conjugate gradient method 

to minimize the value of J(X) with a fixed number of iteration 

steps (which is empirical and is 5 in our implementation), we 

obtain a new point X1. Then, we use X1 as a starting guess for 

the minimum of J(X) with ∑=
j

j

e

l
XGn

20

21
)(

])[(

1
ρ  and 

obtain X2, and so on. In actual computation, we stop the 

process either when the constraint violation is less than a given 

threshold or when changes in J(X) become insignificant. 

Theoretically, we arrive at X* in the limit as ρ  tends to 

infinity. 

In the object O  consisting of assembled mesh patches iM  

( mi ,,1 L= ), a vertex shared by more than one patches is 

called an assembling vertex. Associated with an assembling 

vertex pq , we define a linked vertex set 
pqL which contains 

all the mesh vertices in O  coincidental at pq ; also, for any 

vertex 
pqq Lq ∈ , there is an associated linked vertex set 

qqL  

where we have 
qqp Lq ∈ . The cardinality of the linked vertex 

set of a vertex is exactly the number of patches sharing the 

vertex. By means of these linked vertex sets, the connectivity 

information of assembled patches is stored. However, this 

connectivity is ignored when the shape of every OM i ∈  is 

optimized individually – for two coincidental triangular nodes 

belonging to two different patches, their (u, v, w) parameters 

are adjusted independently since the parameters are in different 

rows in X; consequently, cracks will appear at places where 

two patches originally met. For example, in Figure 4, the 

object with assembled patches is deformed from the shape in 

(a) to the one in (b). (The color map on the surface indicates 

the value of vertex developability detection function )(Lg  at 

each triangular node – called developability detection map; a 

linear interpolation is utilized to compute the values at non-

vertex points on the surface. The blue color indicates full 

developability while other colors symbolizes non-

developability in different degrees.) After applying the 

conjugate gradient method to determine the optimized X, a 

crack appears on the optimized shape, as shown in Figure 4c; 

an enlarged mesh about this crack is given in Figure 4d. 

The numerical scheme then needs to be enhanced to take 

into consideration of preserving the position continuity of O. 

The basic idea is to make the linked vertices consistent during 

the optimization. To achieve this consistency, the formulas of 

computing gradients at the assembling vertices are modified. 

When changing the position of an assembling vertex qa, the 

positions of vertices in 
aqL  should be maintained the same as 

qa. Thus, the gradient of E with respect to qa relates to not only 

( )∑ −
20

ajja lqq  but also all the other terms 

( )∑ −
20

pqqp lqq  (
aqq Lq ∈ ) in E. Also, the numerical 

gradient of G  with respect to aq  should be changed to  

h

hqGhqG

q

G aPAaPA

a 2

)()( −−+
=

∂

∂
 

instead of 
h

hqghqg

q

G aa

a 2

))(())(( 22 −−+
=

∂

∂
, where 

∑∑ ++=
j

j
q

qaaPA qgqgqgqG
222

))(())(())(()(  

with jq  being either the adjacent vertices of aq  or the 

adjacent vertices of qq  (
aqq Lq ∈ ). 

When calculated with the above prescribed method, the 

gradients of the linked vertices become consistent with each 

other. Therefore, while searching the optimum along the 

conjugate direction, the update of their positions is also 

consistent, which in turn then ensures the position continuity 
(e.g., the result shown in Figure 4e and 4f). 

  
 

(a) (c) (d) 

 
  

 

(b) (e) (f) 

Figure 4: Example II – optimization without vs. with 

continuity preservation: (a) before FFD; (b) after FFD; (c) 

result without preserving continuity; (d) mesh view – crack 

occurs; (e) result with preserving continuity; (f) mesh view – 

continuity preserved. 

So far, the prescribed optimization process is applied 

indiscriminately to the parameters of all vertices on the given 

object O. However, it is intuitive to conjecture that, as also 

observed in some of our experiments, usually only a subset of 

the vertices need to be optimized. For example, in the object 

shown in Figure 4, after free-form deformation, the area with 

blue color (which indicates full developability) takes more 



than half of the object’s total area. By this observation, we 

could improve the algorithm as follows: the parameters of a 

vertex iq  are inserted into X only if its λ>)( iqg  or it is 

adjacent to a vertex whose developability detection function 

)(Lg  returns a value greater than λ . In all of our testing 

examples in this paper the λ  is set to 10-8. 

  

  
 

before optimization     after optimization 

Figure 5: Example I – a duct: using our new approach, the 

developability of resultantant surface is preserved. 

   

   

 

(a) before FFD (b) after 

traditional FFD 

(c) after developability 

preserved FFD 

Figure 6: Example III – the style modification of lady dress: 

the developability is preserved in our FFD. 

4. Experimental Result 

We have implemented the proposed optimization 

algorithm and tested it on a number of examples of which four 

are given here. Figure 5 shows the optimization result of 

example I. In example III and IV, real samples from apparel 

industry are used. Garment pattern assembly and cloth 

simulation techniques have been studied for a long time 

[VCM95, CK02] and recently people have been exploring the 

use of the free-form deformation technique in style design of a 

cloth model with assembled 3D patterns. However, as 

aforementioned at the beginning of this paper, the FFD 

technique applied here ought to be constrained to preserve the 

developability of the assembled surface patches. Figure 6 – 7 

shows the experimental results of our approach in this regard. 

The computational statistics is listed in Table 1. 

During the iteration of optimization, the value of constraint 

function decreases while the number of iteration increases. 

Here, these two factors are utilized together to give the 

terminal criterion of iterations. Thus, our terminal condition is 

either ε<− − ][/][][ 01 XGXGXG ii  or the iteration number 

is greater than Nmax, where G[Xi] is the value of the constraint 

function in the ith iteration (current value), G[X0] is the value 

of the constraint function before optimization, Nmax is the 

maximum iteration number, and ε  is a small number (we 

choose %01.0=ε  in all of our testing examples). 

Table 1    Computation statistics of the examples  

Developability 
Example 

G[X0] G[X*] 

Node 

No. 

Time 

Cost 

Total 

Steps 

I (Fig.1, 5) 0.0541 0.0129 328 21s 200 

II (Fig.2, 4) 0.0257 0.0005 149 5s 175 

III (Fig. 6) 0.4778 0.0396 1170 104s 200 

IV (Fig. 7) 0.1930 0.0139 1494 135s 200 

*All with Nmax=200 on a PIII 900 PC with a program in C++. 

 

5. Conclusion and Discussion 

In this paper, we consider the problem of preserving the 

developability of a surface under FFD and propose a practical 

solution to it. In our approach, the developability-preserved 

FFD problem is formulated as a constrained optimization 

problem, where the parameters of each node on the mesh of 

the embedded surface are chosen as variables for optimization. 

Optimizing by modifying the parameters rather than the 

position of each mesh node benefits the successive 

deformation – the time-consuming process of determining the 

parameters of the nodes in a non-parallelepiped control lattice 

is avoided. The popular NURBS solid is adopted as the 

deformation function in our implementation; however, our 

method can be easily generalized to any variants of lattice-

based free-form deformation. 

Since our main objective is to model the developability 

preservation problem in the FFD as a functional optimization 

problem, the adoption/development of the exact numerical 

solution for solving such an optimization is rather pedagogical 

and a very simple one is used in our current implementation. 

But even using this very primitive numerical method, the 

speed of our developability preserved free-form deformation 

has already been seen to be acceptable (see Table 1), at least 

for design purpose. It is believed that with more efficient and 

elaborate numerical optimization algorithms (e.g., projected 

polyhedron algorithm [PM02] or GPD-based optimization 

approaches [BFG03]) and with the increasing processing 

power available on the desktop, the running time can be 

further shortened. Also the multi-level optimization can be 

considered. Transforming a surface to a developable one 

will destroy some desirable geometric characteristics of 

the surface (e.g., smoothness). This work could be taken 

into account in our future reseach. 

References 

[BFG03] Bolz J., Farmer I., Grinspun E., Schröder P.: Sparse 

Matrix Solvers on the GPU: Conjugate Gradients 

and Multigrid, SIGGRAPH 2003. 

[Car76] do Carmo M.P.: Differential Geometry of Curves 

and Surfaces, Englewood Cliffs, N.J.: Prentice-Hall, 

1976. 



[CK02] Choi K.J., Ko H.S.: Stable but resposive cloth, 

SIGGRAPH 2002 Conference Proceedings, pp.604–

611, 2002. 

[Coq90] Coquillart S.: Extended free-form deformations: A 

sculpting tool for 3D geometric modeling, Computer 

Graphics, 24(4): 187-196, 1990. 

[CR94] Chang Y.K., Rockwood A.P.: A generalized de 

Casteljau approach to 3D free-form deformation, 

Computer Graphics, 28(4): 257-260, 1994 

[GP89] Griessmair J., Purgathofer W.: Deformation of solids 

with trivariate B-splines, EUROGRAPHICS '89, 

pp.137-48, Amsterdam, Netherlands, 1989. 

[HHK92] Hsu W., Hughes J., Kaufmann H.: Direct 

manipulations of free-form deformations, Computer 

Graphics, vol.26, no.2, pp.177-184, 1992. 

[HML00] Hirota G., Maheshwari R., Lin M.C.: Fast volume-

preserving free-form deformation using multi-level 

optimization, Computer-Aided Design, 32(8-9): 499-

512, 2000. 

[HZT01] Hu S.M., Zhang H., Tai C.L., Sun J.G.: Direct 

manipulation of FFD: efficient explicit solutions and 

decomposible multiple point constraints, The Visual 

Computer, 17(6): 370-379, 2001. 

[KBB00] Kobbelt L.P., Bischoff S., Botsch M., Kähler K., 

Rössl C., Schneider R., Vorsatz J.: Geometric 

modeling based on polygonal meshes, 

EUROGRAPHICS 2000 Tutorial.  

[LW94] Lamousin H.J., Waggenspack W.N.: NURBS-based 

free-form deformation, IEEE Computer Graphics 

and Application, 14(6): 59-65, 1994. 

[MJ96] MacCracken R., Joy K.: Free-form deformations 

with lattices of arbitrary topology, Computer 

Graphics, 30(4): 181-189, 1996. 

[MS92] Moreton H.P., Sequin C.H.: Functional optimization 

for fair surface design, Computer Graphics, vol.26, 

no.2, July 1992, pp.167-76. 

[PM02] Patrikalakis N.M., Maekawa T.: Shape interrogation 

for computer aided design and manufacturing, 

Berlin; New York: Springer, 2002. 

[SP86] Sederberg T., Parry S.: Free-form deformations of 

solid geometric models, Computer Graphics, vol.20, 

pp.151-160, 1986. 

[VCM95] Volino P., Courchesne M., Magnenat-Thalmann N.: 

Versatile and Efficient Techniques for Simulating 

Cloth and Other Deformable Objects, 

SIGGRAPH’95 proceedings, pp.137-144, 1995. 

 

    

 

before FFD 

    

 

after traditional FFD 

    

 

after developability preserved FFD 

Figure 7: Example IV – the style modification of lady pants: using our new approach, the developability of resultant surface is 

preserved comparing to the traditional FFD approach. 


