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ABSTRACT

Following the definition of developable surface in differential ge-
ometry, the flattenable mesh surface, a special type of piecewise-
linear surface, inherits the good property of developable surface
about having an isometric map from its 3D shape to a corresponding
planar region. Different from the developable surfaces, a flattenable
mesh surface is more flexible to model objects with complex shapes
(e.g., cramped paper or warped leather with wrinkles). Modelling
a flattenable mesh from a given input mesh surface can be com-
pleted under a constrained nonlinear optimization framework. In
this paper, we reformulate the problem in terms of estimation er-
ror. Therefore, the shape of a flattenable mesh can be computed by
the least-norm solutions faster. Moreover, the method for adding
shape constraints to the modelling of flattenable mesh surfaces has
been exploited. We show that the proposed method can compute
flattenable mesh surfaces from input piecewise linear surfaces suc-
cessfully and efficiently.

Index Terms: I.3.5 [Computational Geometry and Object Model-
ing]: Curve, surface, solid, and object representations—Physically
based modeling; J.6 [COMPUTER-AIDED ENGINEERING]:
Computer-aided design (CAD)—Computer-aided design (CAD)

1 INTRODUCTION

In sheet manufacturing industries, the products are fabricated from
two-dimensional patterns of sheet materials (e.g., metal in ship in-
dustry, fabric in apparel industry and toy industry, and leather in
shoe industry and furniture industry). The final products are fabri-
cated by warping and stitching 2D patterns together. The traditional
design process in these industries is conducted in a trial-and-error
manner. A designer will draft 2D pieces on a paper and then make
a prototype to check whether the fitting is good. If the result is not
satisfactory, the designer needs to modify the patterns by his expe-
rience and make another prototype. The prototyping and the mod-
ification steps will be applied repeatedly, which is very inefficient.
Designers in these industries wish to have a geometric modelling
tool to model the products by surfaces that can be flattened into 2D
pieces without stretching, i.e., holding an isometric map to some
2D regions. In the rest of the paper, we simply call it the stretch-
free flattening property. The well-known developable surface in
differential geometry [10] inherits such an elegant property. The
form of developable surfaces could be planes, generalized cylin-
ders, conical surfaces (away from the apex), or tangent developable
surfaces. However, the shape of products in practice could be more
complex (e.g., as shown in Fig.1), which can hardly be modelled
by the conventional developable surfaces. The approach presented
in this paper provides an efficient method to deform a user-defined
3D piecewise linear surface S into a new mesh surface M that will
induce minimized distortion error in flattening.

∗e-mail:cwang@mae.cuhk.edu.hk

Figure 1: Products made from 2D sheets. Their shape can hardly be
modelled by the conventional developable surfaces.

1.1 Problem definition

Without lose of generality, we assume that the user-defined 3D
piecewise linear surface S is with the disk-like topology. This is
because only the surface patches with such a topology can easily
be fabricated from 2D pieces. For example, without adding a cut
between the two loops, generalized cylinders cannot be made from
a piece of sheet material. Here, there are two general requirements
for the mesh surface M deformed from S:

• M is a mesh surface that shows the stretch-free flattening
property;

• The difference between M and S is minimized.

A mesh surface satisfying the stretch-free flattening property is
named as a flattenable mesh surface. The difference between two
mesh surface M and S can be measured by some shape error (e.g.,
[21]). Therefore, the problem we are going to solve is to find a flat-
tenable mesh surface M in ℜ3 to approximate the input piecewise
linear surface S. Note that this is different from mesh surface pa-
rameterization [11] in computer graphics, where the mesh is com-
puted in ℜ2 so that the shape deformation in 3D cannot be explicitly
controlled.

1.2 Related work

The mesh processing method for flattenable mesh surface relates to
the developable surface in differential geometry [10]. In general, a
surface is developable if and only if the Gaussian curvature of ev-
ery surface point is zero. To satisfy this, there are many approaches
modelling [7, 16, 28] or approximating [6, 26, 27] a model with de-
velopable ruled surfaces (or ruled surfaces in other representations
– e.g., B-spline or Bézier patches). However, it is difficult to use
these approaches to model freeform surfaces.

Julius et al. developed an algorithm in [12] to separate a given
model into quasi-conical proxies. Based on a similar idea, in [8]
the authors processed a given mesh surface instead of segmenting
it, where a deformation process is applied to let the surface locally
approximate a conical surface. It is a sufficient (but not necessary)
condition for a conical mesh surface to be flattenable. In other



words, there are many flattenable mesh surfaces that are not con-
ical. Wang and Tang [39] adopted the discrete definition of Gaus-
sian curvature in [23] to process the given mesh surface through a
constrained optimization to make it more flattenable. This is re-
cently further developed into the Flattenable Laplacian (FL) mesh
processing method in [37], which has a more stable computation.
A least-norm solution based flattenable mesh processing approach
will be exploited in this paper to speed up the computation. An-
other related work is the PQ meshes presented by Liu et al. in [21].
The computation of PQ meshes is also under the constrained op-
timization framework; however, the developable surface modelled
in [21] is with relatively simple shape. A fast approach to com-
pute flattenable meshes with complex shapes is needed. In [29],
developable (discrete) surfaces are generated by triangulating 3D
boundary curves, which is different from our purpose.

The parameterization of a given three-dimensional surface com-
putes its corresponding 2D parametric domain, usually via surface
flattening. Therefore, a surface parameterization always introduces
distortion in either angles or areas. All parameterization approaches
in literature focus on how to minimize the distortions in some sense
(see [11] for a detail review). Among the methods of mesh param-
eterization, only a few schemes [9, 14, 15, 18, 30, 31, 41] generate
a planar domain with a free boundary so that it can be employed to
compute the shape of 2D patterns. The recent linear ABF presented
in [41] balances the speed and the quality of parameterization excel-
lently. We borrow their idea of reformulating constrained optimiza-
tion to a least-norm numerical solution in this paper. In the area of
computer-aided design, the surface flattening for pattern design has
been studied in various industries (cf. [1, 2, 3, 22, 24, 38, 40]).
Nevertheless, neither mesh parameterization nor mesh flattening
approaches provides a tool for modelling flattenable freeform mesh
surfaces in ℜ3.

1.3 Main result

Based on the method [37] for computing flattenable mesh surfaces
through constrained optimization, we reformulate the problem in
terms of estimation error. Therefore, the shape of a flattenable mesh
can be computed by the least-norm solutions of the estimation er-
ror with a faster speed. The resulting algorithm is faster than the
method in [37]. Moreover, the method for adding constraints to the
modelling of flattenable mesh surfaces has been exploited in this
new approach. We show that the proposed method can successfully
compute flattenable mesh surfaces from the input piecewise linear
surfaces.

The rest of the paper is organized as follows. After briefly de-
scribing the method for modelling flattenable mesh surfaces in sec-
tion 2, the problem is reformulated in terms of estimation error and
linearized in section 3. The least-norm solution of the reformulated
problem is presented in section 4. Also, in order to let the compu-
tation be more stable, the least-square scheme is adopted to update
the position of vertices. Lastly, experimental results are given in
section 5 together with the applications in freeform design of wet-
suit and furniture.

2 FLATTENABLE MESH SURFACE

The properties about modelling flattenable mesh surfaces [37] are
briefly summarized as follows. To be simple, the definition of flat-
tenable mesh surfaces refers to triangular mesh surface only.

• A flattenable mesh surface M is a triangular mesh surface
patch which can be flattened into a two-dimensional region
D without stretching any triangle on it.

• For any inner triangular mesh vertex vp, if and only if the
summed inner angle, θ(vp) = ∑ j θ j, around it is identically
2π , the triangles around it can be flattened into a plane without
distortion (see the illustration shown in Fig.2).

Figure 2: Stretch-free flattening of triangles around a vertex in differ-
ent cases.

• For a triangular mesh patch M in ℜ3 with only one boundary
loop, if the summed inner angles at all its inner vertices are
2π , M can be deformed into a patch D in ℜ2 without stretch-
ing any triangle (Proof can be found in [37]).

• When computing a flattenable mesh surface MF from a given
surface M, MF should approximate the shape of M.

Let M be a given triangular mesh with the graph G = (V,E) where
V and E are the set of vertices and edges respectively. The com-
putation of MF from M is formulated as a constrained optimization
problem [37]

min
p∈Vint

Jpos s.t. θ(vp) ≡ 2π (1)

where Vint is the collection of interior vertices. Jpos is defined as

Jpos = ∑p∈Vint
‖vp −v0

p‖
2 with v0

p being the closest position of vp

on the given surface M (or simply being the original position of
vp). Note that only interior vertices are allowed to be moved, and

the boundary vertices are fixed to preserve the G0 continuity with
other assembled patches.

When solving Eq.(1) under a constrained optimization frame-
work (e.g., the Lagrange multiplier method), the position objective
function Jpos enforces the new position vp of every vertex be close

to their original position v0
p on M. This prevents the deformation of

M into a flattenable mesh surface in some cases. Therefore, the con-
vergency of computation is slow in [37]. To overcome this short-
coming, we reformulate the minimization problem in Eq.(1) to a
minimum-norm problem in terms of estimation error as follows.

3 REFORMULATION

After linearizing the constraints in Eq.(1), the flattenable mesh
modelling problem can be converted into a minimum-norm prob-
lem and solved by a least-norm solution. As discussed in [41],
carefully selecting alternative variables could make the lineariza-
tion more accurate so that the computation converges faster than
the Newton steps. Here, we choose the update vectors of interior
vertices’ position as variables.

First of all, we assume that the updated positions vp of a vertex
be an ideal position satisfying the flattenable constraint (i.e., the 2π
constraint on its summed inner angles). The relationship between
vp and v0

p can be presented by

vp = v0
p +dp (2)

The current position v0
p can be considered as an initial guess, and

dp represents the estimation error. Therefore, the problem in Eq.(1)



can be rephrased as: we need to determine a set of minimal update
vectors dp on interior vertices so that the flattenable constraint is
satisfied on every interior vertex. Let nint be the number of vertices
in Vint , there are in total 3nint variables to be computed as each dp

has three components. However, only nint flattenable constraints are
given. Therefore, this is an underdetermined system of equations.
Among the infinitely many solutions, we wish to obtain the solution
with minimal-norm of estimation error.

The flattenable constraint defined on every interior vertex vp is

θ(vp) = 2π (3)

where the value of θ(vp) is in terms of positions of vp and vq

(∀q ∈ N(p)). Here, N(p) denotes the one-ring neighboring vertices
of vp. To linearize the nonlinear expression in Eq.(3), the Taylor
expansion for multi-variables is applied to θ(vp) as

θ(vp) = θ(v0
p)+∇θ(v0

p)
T (vp −v0

p,vq −v0
q)

T + ... (4)

by neglecting the high-order terms. More specifically, the nonlinear
flattenable constraint in Eq.(3) can be rewritten as

θp(v
0
p) ·dp + ∑

q∈N(p)

θq(v
0
p) ·dq ≈ 2π −θ(v0

p) (5)

where θp(v
0
p) and θq(v

0
p) are the derivatives of θ(vp) in terms of

vp and vq at current positions. Formulas for the gradients θp and θq

have been derived in [37], which can be efficiently calculated. The
error introduced by this approximation is quadratical to the estima-
tion error dp and dq, thus the computation converges fast.

4 FLATTENABLE MESH SURFACE PROCESSING

The reformulation in previous section leads to the method of flatten-
able mesh processing here. By linearizing the flattenable constraint
into Eq.(5), the set of flattenable constraints is converted into nint

linear equations with only 3nint unknown variables – an underde-
termined linear equations system. Letting d denote a vector with
3nint components formed by the nint update vectors dp, together
with Eq.(5), the flattenable mesh processing problem becomes

min ‖d‖2 s.t. Ad = b (6)

where Ad = b is from Eq.(5). Clearly, it now becomes a least-norm
problem. The matrix A has full rank as the flattenable constraints
are independent. From the literature of mathematics, we know that
for a full rank coefficient matrix A, the above least-norm problem
has a unique solution (cf. [36])

d = AT (AAT )−1b (7)

The value of d can be solved by finding a solution to the normal
equation

(AAT )x = b (8)

followed by a substitution that d = AT x. The matrix A is sparse, so
the solution in Eq.(8) can be efficiently solved. In our implemen-
tation, the SuperLU solver [19] packaged by the OpenNL interface
[17] is employed.

The squared norm ‖d‖2 of the vector d is exactly the shape ap-
proximation term Jpos in Eq.(1). Therefore, when the current po-

sitions v0
p of vertices are close to the optimal positions vp (i.e., the

approximation error introduced in Eq.(5) is small), the optimal so-
lution can directly be obtained. Although it is not easy to find a
good initial guess, the estimation error will become smaller and
smaller if the positions of vertices are repeatedly updated by Eq.(2)
after computing the least-norm solution of dp. The newly updated
positions will be adopted as the current position in the next round of

Algorithm 1 Flattenable Mesh Processing

1: repeat
2: Setup the linearized constraints of Eq.(5) in AT ;
3: Compute x by Eq.(8);
4: Compute the update vectors d = AT x;
5: Update the position of each vertex vp ∈Vint ;
6: until the terminal condition is satisfied.

Figure 3: Example of flattenable mesh processing: (a) the progres-
sive results by the direct update of vertex positions – the compu-
tation even diverges in some examples, and (b) the results by the
least-square update. Colors represent the difference between each
vertex’s summed inner angle and 2π.

evaluation. The outline of the flattenable mesh processing method
is listed below.

The terminal condition consists of two parts. We stop the itera-
tion if 1) ‖d‖2 < ε or 2) the iteration has been repeated for more

than 50 times. ε = max{nint ×10−8,10−5} is usually chosen in our
implementation.

4.1 Least-square update of shape

The above outline of flattenable mesh surface processing works
well when the given surface M is nearly flattenable. However, if M
is far from flattenable, the movement of vertices during the above
flattenable mesh processing routine may break the regularity of ver-
tex distribution on the surface. One example is shown in Fig.3(a).
There are two causes of this instability: 1) the formulation of flat-
tenable mesh processing does not consider the distribution of ver-
tices, and 2) the linearized flattenable constraints in Eq.(5) are only
in the first order of accuracy. As no consideration is given for the
distribution of vertices, they are freely moved during the mesh pro-
cessing. This gives more degree-of-freedom to process mesh, but it
easily leads to instability when M is far from flattenable. Further-
more, the first order approximation of flattenable constraints may
drive the vertices to some inaccurate places when M is far from
flattenable.

In order to improve the robustness of the flattenable mesh pro-
cessing, we update the shape of mesh surface through a least-square
solution, which is stimulated by the Laplacian mesh editing tech-
nique (cf. the state-of-the-art report in [32] and its relevant tech-
nical papers [5, 33, 34, 35]). Let v∗p = v0

p + dp where dp is the
update vector determined in Eq.(7), the updated position of vertices
are computed by

(

L
I

)

v =

(

g
v∗

)

(9)

where L denotes the discrete graph Laplacian operator, v is a vec-
tor consisting of all vertices in Vint , v∗ is a collection of their cor-
responding v∗p, and g is a vector containing those static boundary



Figure 4: The influence of mixed area on the results of least-square
update: (a) without normalization, the least-square update is effected
by the dimension of input surface (when scaling the surface by 0.01
or 0.001), and (b) the consistent result is given by using the normal-
ized mixed area.

vertices. Solving the above least-square problem is in fact

min { ∑
p∈Vint

‖L(vp)‖
2 + ∑

p∈Vint

‖vp −v∗p‖
2} (10)

We can choose the uniform Laplacian operator for L(· · ·), or choose
the cotan weighted discrete Laplacian operator proposed in [23] to
balance the irregular meshes, which is as

L(vp) =
1

2Ā(vp)
∑

q∈N(p)

(cotαpq + cotβpq)(vp −vq) (11)

with αpq and βpq the opposite angles in two triangles adjacent to
edge vpvq. The static boundary vertices in L(vp) are moved to

the right-hand side vector g. Note that here Ā(vp) is a normalized
mixed area at vp as

Ā(vp) = Am(vp)/(
1

nint
∑

p∈Vint

Am(vp)). (12)

The formula for Am(vp) has been given in [23]. Without this nor-
malization, the value of coefficients in L(vp) will be much greater
if the dimension of mesh surface is small, and vice versa. Once the
coefficients are large which means the weight on the Laplacian term
in Eq.(10) is great, vp will hardly converge to the position v∗p. On
the other hand, if the coefficients are small, the Laplacian term in
Eq.(10) becomes useless. Fig.4 illustrates the influence of normal-
ization on mixed area for the mesh surface given in Fig.3, where the
listed results are after the first iteration.

This least-square position update is adopted in step 5 of Algo-
rithm Flattenable Mesh Processing with a fixed Laplacian matrix
L computed at the beginning of iteration. However, the positions
of vertices computed by Eq.(9) will never equal to v∗p. Therefore,
when the mesh surface under processing becomes nearly flatten-
able, the positions are updated by moving vp to vp +dp directly. In
our implementation, a hybrid condition is employed to change from
the least-square update to the direct update – either 1) θ i

err < 0.001

or 2) (θ i−1
err −θ i

err) < 0.01 after 20 iteration steps.

θ i
err = max{|θ(vp)−2π|} (13)

defines the flattenable error after the ith iteration. One example
by using this scheme to update positions has already been given in
Fig.3(b). More examples will be given below.

4.2 Weights on vertices

The formulas of least-norm solution assume that all vertices are
with the same importance during the flattenable mesh processing.
However, we need to define different weights on vertices in prac-
tice. For example, the vertices adjacent to the boundary of a given
surface are expected to have less movement than other interior ver-
tices so that the tangential continuity across the boundary can be ap-
proximated. In the garment design applications, semantic features

Figure 5: Example by using weights on vertices to preserve the
shape of semantic feature curves: (a) the input surface for wet-
suit with feature curves in green, (b) the flattenable mesh process-
ing result without using weight on vertices (θerr = 1.10× 10−5), (c)
the result by adding higher weight on the vertices on feature curves
(θerr = 1.15× 10−5). Note that the uniform Laplacian is used in this
test, the distortion of features in (b) will not be such significant if the
cotan weighted Laplacian is employed.

are defined on some vertices. These vertices are often required to
have much smaller movement than others to preserve the shape of
feature curves (see Fig.5). All these can be implemented by intro-
ducing different weights on vertices.

Without loss of generality, let wp denote the weights we wish
to add on the vertex vp where a greater wp will lead to a smaller
movement dp. By a simple change of variables

rp = wpdp (14)

we then compute the least-norm solution of rp as

min ‖r‖2 s.t. AWr = b (15)

where r is the vector containing all rp and W is a diagonal matrix
with 1/wp as the diagonal element. After solving r by

r = (AW)T ((AW)(AW)T )−1b (16)

the value of d can be determined by d = Wr. Similarly, the least-
square update is changed to

(

L

W−1

)

v =

(

g

W−1v∗

)

(17)

to let the vertices with larger weight to be less free.
The weight wp should be carefully selected. Too small value will

have no effect on the computational results, but too high weights
can cause numerical problems. Choosing wp = 10 for vertices to
be constrained and wp = 1 for other vertices works well for all tests
in our experience. Fig.5 shows an example from garment industry
for keeping the semantic feature curves by using different weights
on vertices.



Figure 6: Underwear example: (a) the given mesh surface that the
direct update by the least-norm solution diverges, and (b) the com-
putation using the least-square update scheme with cotan weighted
Laplacian converges (θerr = 1.04×10−5).

Figure 7: Pants example: (a) the given mesh surface, (b) the result by
directly updating the positions has unwanted wrinkles (θerr = 3.19×
10−5), and (c) the result using the least-square update scheme is
very smooth (θerr = 2.96×10−6) and with more natural wrinkles.

5 RESULTS

Experimental tests and some applications are given in this section to
demonstrate our least-norm approach to flattenable mesh process-
ing. The discussion about limitation is also included.

5.1 Experimental tests and discussion

The first test has been shown in Fig.3 to compare the direct position
update strategy and the least-square update scheme. The numerical
computation of the least-square update scheme is more stable than
directly updating the positions of vertices by the least-norm solu-
tion. However, the cost of such an improvement is the computing
time, which is twofold – 1) each iteration takes more computing
time and 2) usually a few more iteration steps are needed. This
slow-down of computation makes up the inaccuracy introduced in
the linear approximation of flattenable constraints. More specifi-
cally, without the least-square update, the computation of few ex-
amples diverges. For example, the underwear shown in Fig.6, us-
ing the direct update strategy on the pieces will lead to a diverged
result; however, the computation using the least-square update suc-
ceeds. For the surfaces that the direct update scheme converges, the
smoothness on the resultant surfaces is not as good as the results
using the least-square update scheme. Fig.7 shows such an exam-
ple. This is because the least-square update scheme in fact acts as a
second-order filter that minimizes the thin-plate energy (cf. [25]).

The least-norm approach for flattenable mesh processing is an
extension of the Flattanable Laplacian (FL) meshes [37], which
solves the following problem

min {∑p∈Vint
‖L(vp)‖

2 +∑p∈Vint
‖vp −v0

p‖
2}

s.t. θ(vp) ≡ 2π
(18)

by the sequential linearly constrained programming. In this paper,
after introducing the least-norm solution and the least-square up-
date scheme, both the convergency speed and the stability of com-
putation have been improved. Tests have been given to verify the
improvement. Comparisons between the FL mesh processing ap-
proach and the least-norm approach have been given in Table 1 and
2. From the statistics, it is easy to find that the least-norm approach

Table 1: Mesh Size Statistics

Example Face Number Vertex Number

Patch (Fig.3) 250 142

Body (Fig.5) 2,122 2,388

Underwear (Fig.6) 1,122 1,271

Pants (Fig.7) 3,458 3,644

Table 2: Computational Statistics

Example Method Time+ Steps θerr

Patch FL meshes 0.75 43 2.11×10−4

(Fig.3) Least-norm 0.52 26 1.29×10−4

Body FL meshes 13.01 24-100 1.38×10−5

(Fig.5) Least-norm 8.95 26-31 1.15×10−5

Underwear FL meshes 4.13 37-100 3.29×10−3

(Fig.6) Least-norm 2.84 26-28 1.02×10−5

Pants FL meshes 37.92 100 1.31*

(Fig.7) Least-norm 30.03 28-31 2.96×10−6

* The computation has not converged yet.
+ The time is reported in second, and all tests are evaluated on a PC
with 3.0GHz Pentium IV CPU.

always converges in fewer steps and in shorter time. The sparse lin-
ear equations in both are solved by the LU-decomposition solver
[19]. Also, the final results from the least-norm approach have
smaller flattenable error θerr (which is defined in Eq.(13)) – i.e.,
the resultant meshes are more flattenable. The steps of iteration are
not a fixed number because there are multiple pieces of patches in
these examples.

After the flattenable mesh processing, all processed surface
patches can be flattened into plane with almost no distortion. The
comparison of flattening results for surfaces before vs. after pro-
cessing has been given in Fig.8. Here, we conduct the least square
conformal mapping method in [18] to compute planar meshes. To
better illustrate the distortion introduced during flattening, the color
maps for the homogeneity of distortion Eh and the aspect ratio Er

(see the detail computation formulas in [4]) are also included. Both
Eh and Er should be equal to zero for an isometric mapping.

Limitation The least-norm approach for flattenable mesh process-
ing presented in this paper also has some limitations.

• First, although the least-square update scheme improves the
stability of numerical computation, it however does not re-
ally converge to the solution for a flattenable mesh. This is
the reason why we need to adopt the direct update strategy in
the last few steps of computation. About the problem when
we should stop the least-square update, the current method is
based on experimental tests. A better condition for changing
the update scheme needs to be studied.

• Many engineering applications wish to preserve the G1 conti-
nuity across the boundary of assembled patches. In the current
setting of the flattenable mesh processing, the constraint can
only be added softly by using higher weights on the vertices
adjacent to boundaries. There will have numerical problems
if making G1 continuity constraints hard by fixing these ver-
tices. Moreover, the numerical problem occurs if choosing
too great weights on these vertices. The G1 continuity preser-
vation is still a problem to be solved.



Figure 8: The comparison of planar pieces flattened from (a) the original meshes and (b) the processed flattenable meshes. The least-square
conformable mapping [18] is adopted to generate the planar pieces, and the color maps illustrate the values of the homogeneity of distortion Eh

and the aspect ratio Er (cf. [4]).

• Lastly, by the Laplacian operator employed in the least-square
update scheme, the processed mesh surfaces always shrink in
some sense. This is fine in the applications where the 2D ma-
terial pieces used to fabricate the final product can slightly be
stretched. However, it will become a problem in the applica-
tions where no stretch is allowed. The control of shrinking or
inflating effect (cf. [25]) needs to be considered.

These current limitations are the possible research topics in our fu-
ture research.

5.2 Application I: wetsuit design

We have applied the flattenable mesh processing technique pre-
sented in this paper to the freeform wetsuit design application. An
illustration is given in Fig.9. To freeform design wetsuit for a cus-
tomer, the human body of the customer is firstly scanned and the
mesh surface of human is reconstructed (see Fig.9(a)). After defin-
ing the freeform cutting lines, the 3D patterns of wetsuit are gen-
erated by trimming the mesh surface of human body (cf. [20]).
The cutting result is given in Fig.9(b), and Fig.9(c) shows the color
map for the flattenable error on the 3D patterns. After applying the
flattenable mesh processing on the 3D patterns, its shape and flat-
tenable errors are as shown in Fig.9(d). It is not difficult to find
that, although all the patterns have become flattenable, the shoulder
patterns cave in too much. If the final wetsuit is fabricated by these
patterns, the user will feel too much pressure on his shoulder. To
overcome this, we add a dart at the back of the shoulder patterns –
see Fig.9(e). Then, the processed shape of shoulder patterns is more

similar to its original shape (as shown in Fig.9(f)), so less pressure
will be given on the shoulder of user by these patterns.

5.3 Application II: furniture design

The flattenable mesh processing technique presented in this paper
can also be applied in the furniture design. For example, the sofa-
chair shown in Fig.10. After defining the wire-frame, the mesh
surfaces can be generated by the method presented in [13] and
then be processed into flattenable mesh surfaces by our method.
The stretch-free planar patterns generated from the flattenable mesh
patches can then be easily determined by [18] (or even simpler
greedy flattening). The final product can be fabricated by the leather
sheets in the determined planar shape – the seam-allowance also
needs to be considered.

6 CONCLUSIONS

In this paper, we reformulate the problem of modelling a flattenable
mesh from a given input mesh surface in terms of estimation error
so that the original nonlinear optimization problem is linearized and
can be solved by a least-norm solution. Working together with a
least-square update scheme, the computation of a flattenable mesh
can be numerically stable and converge faster. Furthermore, the
method for adding shape constraints by vertex weights has also
been exploited. Several experimental tests have been conducted to
demonstrate the performance of this approach, and the applications
in garment industry and furniture industry have been shown.



Figure 9: Application of wetsuit freeform design: (a) the given human
model, (b) the 3D patterns for wetsuit cut out from the human body’s
surface, (c) color map for showing the flattenable error on 3D pat-
terns, (d) the resultant patterns of flattenable mesh processing, (e) a
modification with darts added at the back of shoulder patterns, and
(f) the shape of flattenable mesh surfaces has been improved at the
shoulder.
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