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Abstract—We address the problem of assigning in such regions is a very tough job. The conventional
consistently oriented normal vectors to unorganized methods usingninimal spanning tree (MST) (e.g., [1])
point cloud with noises, non-uniformities, and thin- or Voronoi diagram (e.g., [2], [3], [4]) fail. Some recent
sharp features as a pre-processing step to surfaceresearches consider estimating normals from captured
reconstruction. The conventional orienting scheme images using photometric stereo [5], [6], which however
using minimal spanning tree fails on points with suffers from the unideal acquisition conditions like spec-
the above defects. Different from the recently devel- ular reflections, material artifacts, and shadowing. The
oped consolidation technique, our approach does not most recent work presented in [7] does not assign normal
modify (i.e., down-sampling) the given point cloud vectors directly to the given points. It first adopts a
so that we can reconstruct more surface details weighted locally optimal projection operator to produce
in the regions with very few points. The method a setof denoised and evenly distributed particles over the
consists of three major steps. We first propose a original point cloud, and then conducts a priority-driven
modified scheme of generating adaptive spherical normal propagation scheme to assign normal vectors
cover for unorganized points by adding a sphere to the particles. This down-sampling strategy actually
splitting step based on eigenvalue analysis. This further removes limited information of underlying sur-
modification can better preserve the connectivity of faces from those highly sparse regions, therefore the
surface generated from the spheres in the highly reconstructed surface in such regions will not be as good
sparse region. After generating the triangular mesh as ours (see Fig.1). Our approach proposed in this paper
surface and cleaning its topology, a local search basedcan assign consistently oriented normal vectors to the
algorithm is conducted to find the closest triangle to scattered points so that the downstream reconstruction
every input points and then specify their orientations. algorithm can successfully generate surface in the re-
Lastly, an orientation-aware principle component gions with highly sparse points.
analysis step gives correct and consistently oriented To orient unorganized points effectively and effi-
normal vectors to the unorganized input points. ciently, we develop two techniques by extending the
Conventional implicit surface fitting based approach integrating approach for meshing scattered point data
can successfully reconstruct high quality surfaces [8]. First, a modified scheme is proposed to generate
from the unorganized point cloud with the help of Adaptive Spherical Cover (ASC) for unorganized points
consistently oriented normal vectors generated by by adding an eigenvalue analysis based sphere splitting
our method. step. With this step, our approach can better preserve
the surface’s connectivity in the regions with highly
sparse points. After getting the spherical cover for
scattered points, the triangulation and topology cleaning
procedure (ref. [8]) can generate a triangular mesh
1. INTRODUCTION surface M roughly presenting the underlying surface
né[. Although this mesh\/ is not a good approximation

three dimensional models in a computer system frofi 5+ it gives a very robust evidence for assigning the
unorganized points that are generated by 3D surfagentation of input points. A stralghtforward way is to
scanning devices has been a subject of intensive resed}efl the closest poing, on M for each input poinp,

for many years. The scanned 3D surface representedif§" the normal vecton., of ¢, on M is assigned
an unorganized point cloud is typically noisy, contain@ the normal vector op. Nevertheless, ad/ is an
holes, and has high variations in point density. Orientdg@ccurate approximation of, such normal vectors
normals at the points play a critical role in surface recoliVe inaccurate surface information to the downstream
struction. It is because that the oriented normals defiffdsh reconstruction algorithm (e.g., [9]). Therefore,

the reconstructed surface to the first order and identiﬁ‘g}?te""d_‘Jf assigning., to p, we only letp hold the
orientation ofn., — thus, we name our method as-

the inside/outside information. As will be shown in”'" ! ) S
our tests below, the oriented normals become extrem(%‘I ng approach (ORT). An orientation-awakeinciple
0

important at the regions with very sparse points. Also, fgomponent Analysis (PCA) step is adopted to assign

generate correctly oriented normal vectors on the poirf@Tect and consistently oriented normal vectors to the
unorganized points. Moreover, the ASC constructed

*Corresponding Author. E-mail:cwang@mae.cuhk.edu.hk in the first step will be employed to speed up the
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The reverse engineering problem for reconstructi
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Fig. 1. Surface reconstruction results on (a) the Venus iM@&@e5k points) with noises and non-uniform point densiyydifferent approaches,
including: (b) Tight CoCone [4], (c) the integrating appcbawith adaptive spherical cover (ASC) followed by a meshing step [8], (d) the
conventionalminimal spanning tree (MST) based normal estimation [1] followed byradial basis function (RBF) based surface reconstruction
[9], (e)-(i) the point cloudconsolidation (Cons) [7] followed by RBF-based surface reconstructiord §) our orienting approach (ORT) with
RBF-based reconstruction. For those resultant mesh ssrigenerated by RBF, the left picture shows the direct ramglef points (or particles
for [7]) with estimated normal vectors. From the result of M& is easy to find that many points are displayed in blackesitheir orientations
are detected incorrectly. In the results of Cons [7] ((B)-G is a parameter for the support size of particles d@ner stands for the number
of iteration steps. The failure of Tight CoCone, ASC+Meghand MST+RBF is mainly caused by the sparseness of inputspdinoducing
a denser and more uniformly distributed set of points carréwe the quality of reconstructed surfaces by them.

closest point search of/. The experimental resultsa correct model given a minimum sampling density
demonstrate that our approach can successfully orietgpendent on the local feature size. The approach was
the unorganized point clouds for various models — darther extended to be able to handle noisy input in
that conventional schemes like [9] can reconstruct [&0]. However, as they did not remove outliers, the
proper surface for the input data. Figure 1 shows @uality of the resultant meshes was not good. Several
comparison of the results between other approaches agdiations of [2] are available in [3], [4], [11], [12].
ours on a Venus head model with non-uniform pointvhen applying these algorithms to practical data sets,
density and noises. Our approach (ORT+RBF) gives tlieere are two difficulties. First, both memory and time
best reconstruction result. The good performance of ocost to compute Voronoi diagram are expensive. Second,
approach is benefited by 1) the proposed framework sfich approaches request the input points to satisfy the
using adaptive ASC to give the consistent orientation @fcovering requirement — i.e., the point sgtsampled
points and 2) the newly developed sphere splitting stégpm the modelH has any pointp on H that can

based on eigenvalue analysis. find a pointq € S such that||p — q| < d, where
d is less than the smallest feature’s size bh This
2. RELATED WORK is hard to be satisfied, especially in the regions with

The existing work in the literature can be classifie@ighly sparse points and with noises embeddedsin
into two major groups: 1) computational geometry agsSee the examples shown in Fig.1 and Fig.16 where
proaches and 2) volumetric reconstruction techniqud8€e Tight CoCone approach [4] fails). To the best of
which will be reviewed below. our knowledge, the integrating approach presented in

The computational geometry approaches are usudlf}l is & very good approach that can handle the above
based on the Voronoi diagram of a given point cloud arféifficulties while does not need the input points to be
reconstruct a mesh surface by directly linking the inpduipped with normal vectors. However, their algorithm
samples. Normal information is not required. Amenta &loes not preserve the connectivity of underlying surfaces
al. in [2] gave a provable guarantee of reconstructirifj the regions with very few points. Our extension of [8]



contributes to this.

adaptively by repeating the following steps until no point

The volumetric reconstruction techniques attempt s found to be uncovered.

build a signed implicit function that interpolates or 1)
approximates the point cloud samples (ref. [1], [9],
[13], [14], [15], [16], [17], [18]), and then extract its
isosurface using, e.g., the Marching Cubes algorithm
[19]. Nevertheless, the computation of such a signed
implicit function requires the point cloud samples to
be equipped with normal vectors, which can hardly be
obtained directly from scanning devices. The estimation
of consistently oriented normals on given cloudy points
is actually one of the most critical steps in the recon-
struction pipeline (ref. [1], [20]) — especially when the
points are in the presence of noise, holes, sharp features,
or thin structures. The most widely adopted approach
to make the consistently oriented normal vectors is
the orientation propagation algorithm usinginimal
spanning tree (MST) in [1], which however performs
very poor on point clouds with the above defects. The
orienting method presented in this paper overcomes
these difficulties, and can generate consistently oriented
normal vectors on unorganized points with noises, holes,
sharp features and regions with highly sparse points.
Moreover, compared with the conventional approach
using MST, our method for orienting unorganized points
is must faster.

The most recent work presented in [7] tries to address
the similar problem as we do. However, their projection
and down-sampling based strategy may destroy some
small features of the underlying surface when the points
are sparse. Our approach does not have such defect.

2)

3)
3. MODIFIED ADAPTIVE SPHERICAL COVER

The adaptive spherical cover (ASC) generated in [8]
works well on a noisy point cloud = {p1,---,pn}
with n scattered points, and outputs a set of covering 4)
spheres which will be employed to construct triangular
meshes by linking the auxiliary points in the spheres. To
compensate the variation of point density Snevery

Randomly select a poimt from the set of uncov-
ered points to serve as the center of a new sphere.
For each sphere, if its radius was known, a
guadric-error function centered af is defined as

Qevr(x) = 3" wiGallIp; — 5l (m; - (x = py)?

2)
with G,(p) being a compactly supported
Gaussian-like function
exp(—8(p/a)?),  |pl € [0,0/2]
16(1—p/o)!/e?, |pl € (0/2,0]

0. lp| € (0, 00]

The function@e, -(x) is locally defined on all the
scattered pointp, falling in the range with|p; —
cj|| < o. A practical choice for the support size is
o = 2r. The positionx,,;, which minimizes the
value of Q(c;,r,x) can be determined robustly
through singular value decomposition (SVD) of
the linear equations

0Qe, r(x)/0x = 0.
The value ofr is determined by solving the
following nonlinear equation

Qci,r(xmin> = (5L)2, (3)

where L is the length of the main diagonal of the
bounding box of point sef5, ande is an error
control threshold £ = 10~° is employed in all
our tests).

After obtainingr, we check whether the point
Xmin li€s in the spherdjx — ¢;|| < r. If it does,
Xmin S€rves as the auxiliary point of the sphere;
otherwise, we simply assign the sphere cemter
as the auxiliary point.

Project the set of points in the sphere onto the
tangent plane gtx—c;)-c;, = 0, and then compute
the 2D convex hull of the projections. The points
not on the boundary of the 2D convex hull are
labeled as covered.

Gy(p) =

The ASC generated by these steps will later be tri-

point is assigned with a weight
k . .

Z Ipi — ijz angulated into _mesh s.urfaces..StlmuIated by the nerve

= complex associated with a family of balls [21], Ohtake
et al. [8] created a triangle for every three spheres
where {pj};‘f’:1 C S are thek-nearest neighbors of if and only if there exists two intersections points of
pi- We selectk = 10 in all our experimental tests, them and at least one of the intersection pointsas
which well balances the speed and quality. Also, the uriiiside other spheres (except these three). The triangle
normals{ny, - - -, n, } at the points of5 are evaluated by links the auxiliary points in the spheres. Although non-
their k-nearest neighbors using a standard covarianaeanifold entities may be generated, they can be removed
based technique [1]. Note that, at this moment, th®/ the mesh cleaning step (details can be found in
normal vectors are not necessary to be consistenf8]). The mesh cleaning step will also propagate the
oriented. Only their directions will be useful for theconsistent orientation along the resultant two-manifold
evaluation of quadric-error function below. mesh surfacél/.

At the beginning of the spherical covering algo- The weights defined on points (Eqg.(1)), which is based
rithm, all points inS are assigned asncovered. Then, on the average distance to théimearest neighbors of
the algorithm will generatem spheres centered atp;, work according to the non-uniform density of the
{c1,--+,em} C S with the radii{ry,---,r,} chosen given points in some sense. However, such weights do

(1)

e

w; =

3
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Fig. 4. Spheres in the anisotropic regions are detecteglégisd in

Fig. 2. lllustration of the problematic spheres generatgdhle ASC g
9 P P 9 e red) and split into sub-spheres.

scheme [8] in anisotropic sparse regions — the red pointstlagid
corresponding spheres.

distribution of spheres aroung, is computed by

Fey =) (¢j—ci)(c;—ci)T, 4)
J

which is a3 x 3 matrix. After computing the eigen-

values (\i1| > |X2] > |As|) of the neighbor voting

tensor Fg,, if the other two eigen-values are trivial

compared with the one with the greatest magnitude, the

distribution of spheres around, should be anisotropic.

In our practical implementation, we can detect spheres

in the anisotropic distributed regions by checking if

[A1] > p|Az] with € [2.0,5.0]. 4 = 3.0 is employed

for all examples shown in this paper. Figure 4 shows the

Fig. 3. The connectivity on separated regions is damagedhén tSphere detection on the foot example of Fig.3.

cleaning step of [8] — the scattered points of this human bady  The spheres in the anisotropic sparse regions, which

shown in Fig.8. cannot preserve the connectivity of regions on their
two sides during the triangulation and mesh cleaning,
will be modified by a splitting scheme. Every such
sphere is split into four sub-spheres. For a sphgre

not reflect the distribution of the points around a poinh the anisotropic region, its centar; and the unit

p;. Based on this reason, the spheres generated by #ft#mal vectorn; at the center have been defined. If

above ASC scheme is problematic in the regions with is the eigen-vector of its neighbor voting tendar,

very sparse points where the sparsenesmisotropic. corresponding to the largest eigen-valug|, we first

An illustration of such a case is shown in Fig.2, Wherproject,/1 onto the tangent plangx — c;) -n; = 0 atc;.

only one single line of spheres is constructed by the ASC

scheme. As a result, no triangles (nor triangles linked by Vv, = (5)

hanging vertices) can be generated around such spheres. l1 = (w1 - mi)mg]|

Thus, the surfaces in the left and the right regions ahs orthogonal vector on the tangent plane can then be

separated on the resultant mesh. The regions will found by the cross-product as, = n; x v,. The four

be further separated after the cleaning step as the neob-spheres split froms., are located at

manifold entities will be removed. Figure 3 shows such r r

a region on the feet of a human model from scanned ci t 5 Va + Vb +e (6)

raw data. The connectivity for linking these regions is

. . S With ing the radi . an ing a very small
important as breaking the connectivity may make tWP th r being the radius ok, ande being a very sma

- . . : ._random perturbation for each sphetgis assigned as
originally connected regions have opposite onentatlort}ﬁe radius of these sub-spheres. To enhance the robust-

— i.e., one is flipped. Such an orientation flip will fail f thi ltti h | lit th h

the downstream surface reconstruction algorithm 10000 this spiitting scheme, we aiso split the spheres
revent the orientation flio. the best way is to a\}oigdjacent to (i.e., intersecting) the detected spheresin th

P . P, the y : nisotropic distributed regions. An illustration is given

breaking the spheres connectivity of ASC in anisotropi

: i Fig.5.
sparse regions. The points of the given point cloud covered by the

First, the spheres in the anisotropic sparse regions aheres., will be checked to see if they are covered by
detected. For a spherg.,, centered ak;, the spheres the new sub-sphere. The auxiliary point in a new spheres
centered at; intersecting withs., form its neighboring is assigned by finding a point minimizing the quadratic-
sphere set. Then, the neighbor voting tensor for theror function defined in Eq.(2). In addition, the new

vy — (1/1 . ni)ni

4
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Fig. 5. Sphere splitting scheme: the red ones are split froen t
spheres in the anisotropic sparse regions, and the gresnaoaesplit
from the neighboring spheres of the detected spheres.

Fig. 7. The normal vectors estimated by the orientationravWRCA
scheme give better results than the direct transfer scherdettee
direct flipping scheme on the reconstructed mesh surfacey RBF
approximation: (top-left) the reconstruction based onrtbiemals from
the direct flipping scheme, (top-right) from the orientat@mwvare PCA
scheme, (bottom-left) the reconstruction by the normahftbe direct
transfer scheme, (bottom-right) result from the orientathware PCA
scheme. The surfaces from the direct transfer scheme andirtret
flipping scheme have some small separate spheres genesstedsb
of the errors on normal vectors of scattered points. Thetippints
of the pelvis and the vase-lion models are given in Figs.iD Hnh

Fig. 6. The connectivity on separated regions is presenfest a
the cleaning step on the mesh generated from the modifiedieelap
spherical cover.

Xmin Must be detected to see whether it is inside the ] ] ]

corresponding sphere. If it is not, the sphere’s center will * Direct Transfer: - Simply assign; = n., .
simply be used as the auxiliary point. Note that, there is ® Diréct Flipping: With the pre-computed unit nor-
no guarantee that all the points originally coveredspy mal vectorn; using PCA analysis, ific, -n; <0,
will be covered by the new spheres. However, this will Iet_ni =~ ] )
not affect the later meshing and normal estimation step® Orientation-aware PCA:  For the & neighboring
of our algorithm. From the foot model example shownin ~ POINtSp; aroundp;, only the points which satisfy
Fig.6, we can easily find that the modified ASC scheme ~ 1c,, - ic,, = 0 are included to be applied with

with sphere splitting step can better preserve the original & N€w covariantPrincipal Component Analysis
shape on the underlying surface. (PCA) to calculate a new normal vectaf* on

Pi-
4. ORIENTING UNORGANIZED POINTS The reconstructed mesh surface using the RBF based

After triangulating the auxiliary points in the modifiedapproach [9] is more sensitive to the orientation direc-
adaptive spherical cover into a triangular mesh aritpn than the exact normal as the method does not really
cleaning its topology, we obtain a rough mesh surfadeterpolate (or approximate) the normal vectors on the
M for approximating the underlying surface, which iscattered points — instead, the off-points are generated
represented by the input scattered data pSimlthough to for approximating the inside/outside of the implicit
M does not accurately approximate the shape of tisgrface. However, study still shows that the orientation-
underlying surfacef, it gives a very good estimationaware PCA scheme outperforms other two schemes in
of H's topology. Therefore, very good estimation of th&éome examples (see Fig.7). Thus, the orientation-aware
orientation onH for the points inS can be found from PCA scheme is adopted in our approach.

M. The only issue left unsolved now is how to efficiently
Basically, there are three ways to determine thnd the closest point o/ to the scattered point;. A
normal vectors for the points of the given s&t = general solution for closest point search is to establish

{P1, -, pn}- All need to first search the closest pointhe Bounding Volume Hierarchy (BVH) (e.g., theSwept

cp, on the rough mesh surfackl to every scattered Sphere Volume Hierarchy (SSVH) presented in [22]).
point p;. The normal vector ok,, on M, n.,, can However, as the closest point search problem has its
also be obtained. own characteristic, a faster approach can be developed



rather than using the general method like SSVH. Th
is because every vertex on the rough méghs always
covered by spheres of thadaptive spherical cover
(ASC). Moreover, most scattered pointsSnmust also
be covered by the spheres from ASC although there ¢ /
very few escapees after the adaptive sphere splittir § §
Therefore, for a poinp; from S, if it is covered by !
a spherey, its closest point will be searched on the |
triangles of a sefls.;. Tse: includes all the triangles
with at least one vertex enclosed ly If the vertex
enclosed byp has been removed during the mes
cleaning process, the triangles adjacent to the vertic |
enclosed byo,cign Will be included into 7., Here,
Oneigh are spheres intersecting If the pointp; is not
covered by any sphere, we will select the sphere wt
covers the closest neighbor pf as to determine the
set Ty, of triangles. In the experimental tests showi
in the section below, we compare the search conduct
by SSVH with this local search scheme. The resul
show that ours is three to four times faster than SSV
as the construction of SSVH takes a lot of time whili
ours only use the ASC structure which has already be
established.

Scattered Points Tight CoCone  ASC+Meshing  Cons+RBF (h=1.96; Iter=10)

5. RESULTS

The proposed approach has been implemented
Visual C++. Our implementation has been tested on
variety of models. The statistics in this paper are a
tested on a standard PC with Intel Core 2 CPU 6600
2.4GHz plus 2.0GB RAM.

The first example tested is the Venus head model wi
noises and non-uniform sparseness, which is shown ...
Fig.1. Note that making the density of pomts_ muc'&ig. 8. Surface reconstruction results on a human model ¥tk
farther sparse may lead our method also failed, $@ints by different approaches.
as others. Our method gives better result than other
approaches here. The second example is the real data
of a human model captured by a laser-based humarnor procedure — we try several values farthe one
scan system with only two column laser scanners. Notgth best reconstruction result is displayed. Furthermore
that different from the previous system with four owhen testing the consolidation approach [7], in order
six columns, the points are roughly two pieces — orte estimate the normals correctly we apply the normal
is captured from the front and another from the bagkropagation and the orientation-aware PCA iteratively
(see Fig.8). The reconstructions from the Tight CoCorfer five to ten times in all tests. Another example for
[4] and the integrating approach (ASC + Meshing) [8lhe reconstruction of human body is shown in Fig.9.
do not give a good surface approximation at the pladéhe fourth example is to test our method on a pelvis
where no scan point is presented. The conventiormabdel with a more complex topology (i.e., with high
normal orienting method (MST) [1] will generate flippedgenus number). From the results shown in Fig.10, it is
orientation on the front and back parts of a humamasy to find that other approaches are likely to produce
model, so the resultant implicit surface from RBF baseah incorrect topology on the resultant surfaces because
reconstruction [9] will have wrong topology. The surfacef incorrect orientations assigned to sample points.
generated from the down-sampled particles and theirThe following examples are conducted to test the
normals from the consolidation scheme (Cons) [7] giveerformance of our approach versus others on models
a very poor shape to the right foot of the human bodwith sharp (or thin) features. The first try is given on a
This is because the points are highly sparse in thedse-lion model with 182k points (see Fig.11) — there
region, and the down-sampling strategy from [7] furtheare many small and thin features on the lion’s hair.
damages the very limited number of data points ther€he conventionaminimal spanning tree (MST) based
Similar effects from the consolidation approach can alswrmal propagation followed by a RBF-based surface
be found in other examples shown below. The parametecconstruction will destroy some of the small features
h used in all the tests here are chosen by a trial aad incorrect normal orientations are assigned to some

MTS+RBF - ORT+RBF



Fig. 9.  Surface reconstruction results on another humanemod
with 85.8k points: (left) the given scattered points, (néjdthe
reconstruction by MST+RBF, and (right) the reconstructesult by
our method.

points — see the points displayed in black in Fig.11.
When testing this vase-lion model on the executable
program shared by the authors of [7], the program
surprisedly crashed in the normal propagation step.
Our normal orienting approach can successfully assign
correct orientations to the given points so that a correct
vase-lion model can be reconstructed. The second ex
ample of the reconstruction with thin features is a blade
model (see Fig.12). The thin feature is also damaged
by the consolidation approach [7] as the point density
on the given point cloud is not high enough to makﬁg. 10. Surface reconstruction results on the pelvis m¢sel7k
the thin feature survive during down-sampling. Even ifoints) by different approaches. Left column displays tbs with

working on the dense point cloud, our method still doégiented normal vectors — incorrect normal may disable spoiets
g P from being displayed. The MST+RBF approach generates acurf

ou_tperform Other_ approaches — see the_ last exam_ple Qi/ifh an incorrect topology, and the Cons+RBF (with = 13.8,
scissor model with sharp features in Fig.13. Again, the = 0.45 and Iter = 50) produces an extra enclosure which is
MST+RBF approach cannot reconstruct surface with gt suggested by the input data (circled by the red dash. liat)

. these are led by the incorrectly oriented normals generbagetheir
correct topology, and the Cons+RBF method gives a bggl oaches.
shape at the tip. To further evaluate the oriented normal
vectors constructed by our approach, we apply them to
another volumetric reconstruction approach — Poisson

surface reconstruction [18]. Comparison of results for

the scissor model using oriented normals generated Y150 more efficient than the consolidation approach.
different approaches can be found in Fig.14. Moreoveenefited by the already constructed ASC structure, the
points equipped with the oriented normal vectors gefcq| search based normal orienting is about three to

erated by our approach have the capability to pres&gy times faster than the global search using SSVH.
complex geometry details on the reconstructed surfaces

(see the example shown in Fig.15). A major limitation of our approach is that we will

Another interesting study is about the efficiency oélso process the outliers in the given points as we
our algorithm presented in this paper compared wittho not modify the points (e.g., the incomplete model
the minimal spanning tree based conventional approastiown in Fig.16 with outliers and structured noises).
and the recently presented consolidation approach in [However, after checking all other approaches, it seems
In fact, the speed of our local search based schemene approach can generate satisfactory results when
compared with the global method using SSVH [22] isising RBF-based surface reconstruction. When apply-
also given. The computational statistics are shown ing the Poisson surface reconstruction approach, only
Table 1. From them, it is easy to find that our orientinthe oriented normal vectors generated by our approach
approach is much faster than the conventional approa@RT) can give satisfactory result (see the bottom row
using minimal spanning tree on those large models. Ow§& Fig.16).

ORT+RBF



TABLE 1
COMPUTATIONAL STATISTICS

Time of Consolidation Time of Our Approach (sec.)| Time of

Model Figure | Points Num.| MST (sec.) | Particles Num.[ Time' (sec.) | Modified ASC | Local Search| SSVH
Venus 1 72.5k 38.5 7,255 36.9 + 7.0 4.6 0.6 2.4
Human-body | 8 170k 93.0 8,518 23.1 + 10.0 4.7 0.7 2.2
Human-body I 9 85.8k 24.8 17,151 32.7 + 32.0 2.6 0.3 1.2
Pelvis 10 50.7k 17.7 10,137 13.0 + 17.0 3.3 0.4 1.3
Vase-lion 11 182k 166.4 Failed* Failed* 6.0 0.7 4.3
Blade 12 25k 3.7 5,000 6.8 +5.5 1.5 0.2 0.6
Scissor 13 212k 248.6 10,616 34.7 + 14.0 10.0 1.0 3.5
Fish 15 217k 247.5 21,698 44.6 + 19.3 5.2 0.6 2.6
Filigree 15 250k 330.3 25,000 39.4 + 50.5 13.8 1.6 4.5

tThe time for the consolidation approach has two componeveighted LOP (former) and normal estimation (latter).
*The test of vase-lion model is failed in the executable mogprovided by the authors of the consolidation approach [7]

Scattered Points

Fig. 11. Surface reconstruction results on the vase-liodeh@ 82k points) by MST+RBF versus ORT+RBF. Many smalldees are damaged
by the MTS+RBF approach (circled by red dash lines).

6. CONCLUSION AND DISCUSSION

In this paper, we have presented a robust and efficie[‘
method to assign consistently oriented normal vectors
unorganized points with noises, non-uniformities, an
thin sharp features as a pre-processing step to surf
reconstruction. The conventional method for this norm:
assignment step is through the minimal spanning tri
based normal propagation, which however is not robu
on the unorganized points with noises, non-uniformitie
and thin sharp features. The newly developed poi
consolidation approach [7] tries to overcome such di
ficulties. Different from [7], our approach does no
modify (i.e., down-sample) the given point cloud st
that it can reconstruct more surface details than the
consolidation approach in the regions with very feWid. 14. Surface reconstruction results on the scissor m@iek

. . . . _paints) by Poisson surface reconstruction [18] using wéfie ap-
points. Our orienting approach consists of three steps: ghyaches to generate oriented normal vectors.
modified ASC generation, 2) meshing and cleaning, and
3) local search based normal orienting. Experimental
results prove that our approach can successfully origdftour major future work. Another challenging problem
the unorganized point clouds for various models, whids how to handle the structural noises, which will also
benefits the downstream surface reconstructions. be considered in our future work.

A possible future work is to process the points by
the robust statistics based method presented in a recent ACKNOWLEDGEMENT
work (ref. [23]). Of course, this does not agree with The authors would like to thank the authors of [7] for
the spirit of our approach as the points are modifiedharing the executable program of their approach. This
which may also destroy the geometry details on thesearch is supported by the HKSAR Research Grants
underlying surfaces. To solve this problem will be on€ouncil GRF Grant (Ref.: CUHK/417109), and the
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Fig. 12. Surface reconstruction results on the blade m@&#¥ points) by different approaches. A surface with an irexrtopology is output
by the MST+RBF approach, and thin features (pointed by yeliorow) are damaged by the Cons+RBF approach (With 3.99, p = 0.45
and I'ter = 50).
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Fig. 13. Surface reconstruction results on the scissor mM@d€k points) by different approaches. A surface with agoimect topology is
output by the MST+RBF approach, and sharp features at theftthe scissor are damaged by the Cons+RBF approach (with 2.07,
1 = 0.45 and I'ter = 50).
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