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Abstract—We address the problem of assigning
consistently oriented normal vectors to unorganized
point cloud with noises, non-uniformities, and thin-
sharp features as a pre-processing step to surface
reconstruction. The conventional orienting scheme
using minimal spanning tree fails on points with
the above defects. Different from the recently devel-
oped consolidation technique, our approach does not
modify (i.e., down-sampling) the given point cloud
so that we can reconstruct more surface details
in the regions with very few points. The method
consists of three major steps. We first propose a
modified scheme of generating adaptive spherical
cover for unorganized points by adding a sphere
splitting step based on eigenvalue analysis. This
modification can better preserve the connectivity of
surface generated from the spheres in the highly
sparse region. After generating the triangular mesh
surface and cleaning its topology, a local search based
algorithm is conducted to find the closest triangle to
every input points and then specify their orientations.
Lastly, an orientation-aware principle component
analysis step gives correct and consistently oriented
normal vectors to the unorganized input points.
Conventional implicit surface fitting based approach
can successfully reconstruct high quality surfaces
from the unorganized point cloud with the help of
consistently oriented normal vectors generated by
our method.

Keywords—orientation; consistency; unorganized
points; PCA; surface reconstruction.

1. INTRODUCTION

The reverse engineering problem for reconstructing
three dimensional models in a computer system from
unorganized points that are generated by 3D surface
scanning devices has been a subject of intensive research
for many years. The scanned 3D surface represented by
an unorganized point cloud is typically noisy, contains
holes, and has high variations in point density. Oriented
normals at the points play a critical role in surface recon-
struction. It is because that the oriented normals define
the reconstructed surface to the first order and identify
the inside/outside information. As will be shown in
our tests below, the oriented normals become extremely
important at the regions with very sparse points. Also, to
generate correctly oriented normal vectors on the points
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in such regions is a very tough job. The conventional
methods usingminimal spanning tree (MST) (e.g., [1])
or Voronoi diagram (e.g., [2], [3], [4]) fail. Some recent
researches consider estimating normals from captured
images using photometric stereo [5], [6], which however
suffers from the unideal acquisition conditions like spec-
ular reflections, material artifacts, and shadowing. The
most recent work presented in [7] does not assign normal
vectors directly to the given points. It first adopts a
weighted locally optimal projection operator to produce
a set of denoised and evenly distributed particles over the
original point cloud, and then conducts a priority-driven
normal propagation scheme to assign normal vectors
to the particles. This down-sampling strategy actually
further removes limited information of underlying sur-
faces from those highly sparse regions, therefore the
reconstructed surface in such regions will not be as good
as ours (see Fig.1). Our approach proposed in this paper
can assign consistently oriented normal vectors to the
scattered points so that the downstream reconstruction
algorithm can successfully generate surface in the re-
gions with highly sparse points.

To orient unorganized points effectively and effi-
ciently, we develop two techniques by extending the
integrating approach for meshing scattered point data
[8]. First, a modified scheme is proposed to generate
Adaptive Spherical Cover (ASC) for unorganized points
by adding an eigenvalue analysis based sphere splitting
step. With this step, our approach can better preserve
the surface’s connectivity in the regions with highly
sparse points. After getting the spherical cover for
scattered points, the triangulation and topology cleaning
procedure (ref. [8]) can generate a triangular mesh
surfaceM roughly presenting the underlying surface
S. Although this meshM is not a good approximation
of S, it gives a very robust evidence for assigning the
orientation of input points. A straightforward way is to
find the closest pointcp on M for each input pointp,
then the normal vectorncp

of cp on M is assigned
as the normal vector ofp. Nevertheless, asM is an
inaccurate approximation ofS, such normal vectors
give inaccurate surface information to the downstream
mesh reconstruction algorithm (e.g., [9]). Therefore,
instead of assigningncp

to p, we only letp hold the
orientation ofncp

– thus, we name our method asori-
enting approach (ORT). An orientation-awarePrinciple
Component Analysis (PCA) step is adopted to assign
correct and consistently oriented normal vectors to the
unorganized points. Moreover, the ASC constructed
in the first step will be employed to speed up the



Fig. 1. Surface reconstruction results on (a) the Venus model (72.5k points) with noises and non-uniform point density by different approaches,
including: (b) Tight CoCone [4], (c) the integrating approach with adaptive spherical cover (ASC) followed by a meshing step [8], (d) the
conventionalminimal spanning tree (MST) based normal estimation [1] followed by aradial basis function (RBF) based surface reconstruction
[9], (e)-(i) the point cloudconsolidation (Cons) [7] followed by RBF-based surface reconstruction, and (j) our orienting approach (ORT) with
RBF-based reconstruction. For those resultant mesh surfaces generated by RBF, the left picture shows the direct rendering of points (or particles
for [7]) with estimated normal vectors. From the result of MST, it is easy to find that many points are displayed in black since their orientations
are detected incorrectly. In the results of Cons [7] ((e)-(i)), h is a parameter for the support size of particles andIter stands for the number
of iteration steps. The failure of Tight CoCone, ASC+Meshing and MST+RBF is mainly caused by the sparseness of input points. Producing
a denser and more uniformly distributed set of points can improve the quality of reconstructed surfaces by them.

closest point search onM . The experimental results
demonstrate that our approach can successfully orient
the unorganized point clouds for various models – so
that conventional schemes like [9] can reconstruct a
proper surface for the input data. Figure 1 shows a
comparison of the results between other approaches and
ours on a Venus head model with non-uniform point
density and noises. Our approach (ORT+RBF) gives the
best reconstruction result. The good performance of our
approach is benefited by 1) the proposed framework of
using adaptive ASC to give the consistent orientation of
points and 2) the newly developed sphere splitting step
based on eigenvalue analysis.

2. RELATED WORK

The existing work in the literature can be classified
into two major groups: 1) computational geometry ap-
proaches and 2) volumetric reconstruction techniques,
which will be reviewed below.

The computational geometry approaches are usually
based on the Voronoi diagram of a given point cloud and
reconstruct a mesh surface by directly linking the input
samples. Normal information is not required. Amenta et
al. in [2] gave a provable guarantee of reconstructing

a correct model given a minimum sampling density
dependent on the local feature size. The approach was
further extended to be able to handle noisy input in
[10]. However, as they did not remove outliers, the
quality of the resultant meshes was not good. Several
variations of [2] are available in [3], [4], [11], [12].
When applying these algorithms to practical data sets,
there are two difficulties. First, both memory and time
cost to compute Voronoi diagram are expensive. Second,
such approaches request the input points to satisfy the
d-covering requirement – i.e., the point setS sampled
from the modelH has any pointp on H that can
find a point q ∈ S such that‖p − q‖ ≤ d, where
d is less than the smallest feature’s size onM . This
is hard to be satisfied, especially in the regions with
highly sparse points and with noises embedded inS
(see the examples shown in Fig.1 and Fig.16 where
the Tight CoCone approach [4] fails). To the best of
our knowledge, the integrating approach presented in
[8] is a very good approach that can handle the above
difficulties while does not need the input points to be
equipped with normal vectors. However, their algorithm
does not preserve the connectivity of underlying surfaces
in the regions with very few points. Our extension of [8]

2



contributes to this.
The volumetric reconstruction techniques attempt to

build a signed implicit function that interpolates or
approximates the point cloud samples (ref. [1], [9],
[13], [14], [15], [16], [17], [18]), and then extract its
isosurface using, e.g., the Marching Cubes algorithm
[19]. Nevertheless, the computation of such a signed
implicit function requires the point cloud samples to
be equipped with normal vectors, which can hardly be
obtained directly from scanning devices. The estimation
of consistently oriented normals on given cloudy points
is actually one of the most critical steps in the recon-
struction pipeline (ref. [1], [20]) – especially when the
points are in the presence of noise, holes, sharp features,
or thin structures. The most widely adopted approach
to make the consistently oriented normal vectors is
the orientation propagation algorithm usingminimal
spanning tree (MST) in [1], which however performs
very poor on point clouds with the above defects. The
orienting method presented in this paper overcomes
these difficulties, and can generate consistently oriented
normal vectors on unorganized points with noises, holes,
sharp features and regions with highly sparse points.
Moreover, compared with the conventional approach
using MST, our method for orienting unorganized points
is must faster.

The most recent work presented in [7] tries to address
the similar problem as we do. However, their projection
and down-sampling based strategy may destroy some
small features of the underlying surface when the points
are sparse. Our approach does not have such defect.

3. MODIFIED ADAPTIVE SPHERICAL COVER

The adaptive spherical cover (ASC) generated in [8]
works well on a noisy point cloudS = {p1, · · · ,pn}
with n scattered points, and outputs a set of covering
spheres which will be employed to construct triangular
meshes by linking the auxiliary points in the spheres. To
compensate the variation of point density onS, every
point is assigned with a weight

wi =
1

k

k
∑

j=1

‖pi − pj‖
2 (1)

where {pj}
k
j=1

⊂ S are thek-nearest neighbors of
pi. We selectk = 10 in all our experimental tests,
which well balances the speed and quality. Also, the unit
normals{n1, · · · ,nn} at the points ofS are evaluated by
their k-nearest neighbors using a standard covariance-
based technique [1]. Note that, at this moment, the
normal vectors are not necessary to be consistently
oriented. Only their directions will be useful for the
evaluation of quadric-error function below.

At the beginning of the spherical covering algo-
rithm, all points inS are assigned asuncovered. Then,
the algorithm will generatem spheres centered at
{c1, · · · , cm} ⊂ S with the radii {r1, · · · , rm} chosen

adaptively by repeating the following steps until no point
is found to be uncovered.

1) Randomly select a pointci from the set of uncov-
ered points to serve as the center of a new sphere.

2) For each sphere, if its radiusr was known, a
quadric-error function centered atci is defined as

Qci,r(x) =
∑

j

wjGσ(‖pj − cj‖)(nj · (x − pj))
2

(2)
with Gσ(ρ) being a compactly supported
Gaussian-like function

Gσ(ρ) =







exp(−8(ρ/σ)2), |ρ| ∈ [0, σ/2]
16(1 − ρ/σ)4/e2, |ρ| ∈ (σ/2, σ]
0. |ρ| ∈ (σ,∞]

The functionQci,r(x) is locally defined on all the
scattered pointspj falling in the range with‖pj−
cj‖ ≤ σ. A practical choice for the support size is
σ = 2r. The positionxmin which minimizes the
value of Q(ci, r,x) can be determined robustly
through singular value decomposition (SVD) of
the linear equations

∂Qci,r(x)/∂x = 0.

The value of r is determined by solving the
following nonlinear equation

Qci,r(xmin) = (εL)2, (3)

whereL is the length of the main diagonal of the
bounding box of point setS, and ε is an error
control threshold (ε = 10−5 is employed in all
our tests).

3) After obtaining r, we check whether the point
xmin lies in the sphere‖x − ci‖ ≤ r. If it does,
xmin serves as the auxiliary point of the sphere;
otherwise, we simply assign the sphere centerci

as the auxiliary point.
4) Project the set of points in the sphere onto the

tangent plane at(x−ci)·ci = 0, and then compute
the 2D convex hull of the projections. The points
not on the boundary of the 2D convex hull are
labeled as covered.

The ASC generated by these steps will later be tri-
angulated into mesh surfaces. Stimulated by the nerve
complex associated with a family of balls [21], Ohtake
et al. [8] created a triangle for every three spheres
if and only if there exists two intersections points of
them and at least one of the intersection points isnot
inside other spheres (except these three). The triangle
links the auxiliary points in the spheres. Although non-
manifold entities may be generated, they can be removed
by the mesh cleaning step (details can be found in
[8]). The mesh cleaning step will also propagate the
consistent orientation along the resultant two-manifold
mesh surfaceM .

The weights defined on points (Eq.(1)), which is based
on the average distance to theirk-nearest neighbors of
pi, work according to the non-uniform density of the
given points in some sense. However, such weights do

3



Fig. 2. Illustration of the problematic spheres generated by the ASC
scheme [8] in anisotropic sparse regions – the red points andtheir
corresponding spheres.

Fig. 3. The connectivity on separated regions is damaged in the
cleaning step of [8] – the scattered points of this human bodyare
shown in Fig.8.

not reflect the distribution of the points around a point
pi. Based on this reason, the spheres generated by the
above ASC scheme is problematic in the regions with
very sparse points where the sparseness isanisotropic.
An illustration of such a case is shown in Fig.2, where
only one single line of spheres is constructed by the ASC
scheme. As a result, no triangles (nor triangles linked by
hanging vertices) can be generated around such spheres.
Thus, the surfaces in the left and the right regions are
separated on the resultant meshM . The regions will
be further separated after the cleaning step as the non-
manifold entities will be removed. Figure 3 shows such
a region on the feet of a human model from scanned
raw data. The connectivity for linking these regions is
important as breaking the connectivity may make two
originally connected regions have opposite orientations
– i.e., one is flipped. Such an orientation flip will fail
the downstream surface reconstruction algorithm. To
prevent the orientation flip, the best way is to avoid
breaking the spheres connectivity of ASC in anisotropic
sparse regions.

First, the spheres in the anisotropic sparse regions are
detected. For a spheresci

centered atci, the spheres
centered atcj intersecting withsci

form its neighboring
sphere set. Then, the neighbor voting tensor for the

Fig. 4. Spheres in the anisotropic regions are detected (displayed in
red) and split into sub-spheres.

distribution of spheres aroundsci
is computed by

Fci
=

∑

j

(cj − ci)(cj − ci)
T , (4)

which is a 3 × 3 matrix. After computing the eigen-
values (|λ1| ≥ |λ2| ≥ |λ3|) of the neighbor voting
tensor Fci

, if the other two eigen-values are trivial
compared with the one with the greatest magnitude, the
distribution of spheres aroundsci

should be anisotropic.
In our practical implementation, we can detect spheres
in the anisotropic distributed regions by checking if
|λ1| > µ|λ2| with µ ∈ [2.0, 5.0]. µ = 3.0 is employed
for all examples shown in this paper. Figure 4 shows the
sphere detection on the foot example of Fig.3.

The spheres in the anisotropic sparse regions, which
cannot preserve the connectivity of regions on their
two sides during the triangulation and mesh cleaning,
will be modified by a splitting scheme. Every such
sphere is split into four sub-spheres. For a spheresci

in the anisotropic region, its centerci and the unit
normal vectorni at the center have been defined. If
ν1 is the eigen-vector of its neighbor voting tensorFci

corresponding to the largest eigen-value|λ1|, we first
projectν1 onto the tangent plane(x−ci) ·ni = 0 at ci.

va =
ν1 − (ν1 · ni)ni

‖ν1 − (ν1 · ni)ni‖
(5)

Its orthogonal vector on the tangent plane can then be
found by the cross-product asvb = ni × va. The four
sub-spheres split fromsci

are located at

ci ±
r

2
va ±

r

2
vb + ǫ (6)

with r being the radius ofsci
andǫ being a very small

random perturbation for each sphere.r
2

is assigned as
the radius of these sub-spheres. To enhance the robust-
ness of this splitting scheme, we also split the spheres
adjacent to (i.e., intersecting) the detected spheres in the
anisotropic distributed regions. An illustration is given
in Fig.5.

The points of the given point cloud covered by the
spheresci

will be checked to see if they are covered by
the new sub-sphere. The auxiliary point in a new spheres
is assigned by finding a point minimizing the quadratic-
error function defined in Eq.(2). In addition, the new
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Fig. 5. Sphere splitting scheme: the red ones are split from the
spheres in the anisotropic sparse regions, and the green ones are split
from the neighboring spheres of the detected spheres.

Fig. 6. The connectivity on separated regions is preserved after
the cleaning step on the mesh generated from the modified adaptive
spherical cover.

xmin must be detected to see whether it is inside the
corresponding sphere. If it is not, the sphere’s center will
simply be used as the auxiliary point. Note that, there is
no guarantee that all the points originally covered bysci

will be covered by the new spheres. However, this will
not affect the later meshing and normal estimation step
of our algorithm. From the foot model example shown in
Fig.6, we can easily find that the modified ASC scheme
with sphere splitting step can better preserve the original
shape on the underlying surface.

4. ORIENTING UNORGANIZED POINTS

After triangulating the auxiliary points in the modified
adaptive spherical cover into a triangular mesh and
cleaning its topology, we obtain a rough mesh surface
M for approximating the underlying surface, which is
represented by the input scattered data pointS. Although
M does not accurately approximate the shape of the
underlying surfaceH , it gives a very good estimation
of H ’s topology. Therefore, very good estimation of the
orientation onH for the points inS can be found from
M .

Basically, there are three ways to determine the
normal vectors for the points of the given setS =
{p1, · · · ,pn}. All need to first search the closest point
cpi

on the rough mesh surfaceM to every scattered
point pi. The normal vector ofcpi

on M , ncpi
, can

also be obtained.

Fig. 7. The normal vectors estimated by the orientation-aware PCA
scheme give better results than the direct transfer scheme and the
direct flipping scheme on the reconstructed mesh surface using RBF
approximation: (top-left) the reconstruction based on thenormals from
the direct flipping scheme, (top-right) from the orientation-aware PCA
scheme, (bottom-left) the reconstruction by the normal from the direct
transfer scheme, (bottom-right) result from the orientation-aware PCA
scheme. The surfaces from the direct transfer scheme and thedirect
flipping scheme have some small separate spheres generated because
of the errors on normal vectors of scattered points. The input points
of the pelvis and the vase-lion models are given in Figs.10 and 11.

• Direct Transfer: Simply assignni = ncpi
.

• Direct Flipping: With the pre-computed unit nor-
mal vectorni using PCA analysis, ifncpi

·ni < 0,
let ni = −ni.

• Orientation-aware PCA: For the k neighboring
pointspj aroundpi, only the points which satisfy
ncpj

· ncpi
≥ 0 are included to be applied with

a new covariantPrincipal Component Analysis
(PCA) to calculate a new normal vectorn

new
i on

pi.

The reconstructed mesh surface using the RBF based
approach [9] is more sensitive to the orientation direc-
tion than the exact normal as the method does not really
interpolate (or approximate) the normal vectors on the
scattered points – instead, the off-points are generated
to for approximating the inside/outside of the implicit
surface. However, study still shows that the orientation-
aware PCA scheme outperforms other two schemes in
some examples (see Fig.7). Thus, the orientation-aware
PCA scheme is adopted in our approach.

The only issue left unsolved now is how to efficiently
find the closest point onM to the scattered pointpi. A
general solution for closest point search is to establish
the Bounding Volume Hierarchy (BVH) (e.g., theSwept
Sphere Volume Hierarchy (SSVH) presented in [22]).
However, as the closest point search problem has its
own characteristic, a faster approach can be developed
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rather than using the general method like SSVH. This
is because every vertex on the rough meshM is always
covered by spheres of theadaptive spherical cover
(ASC). Moreover, most scattered points inS must also
be covered by the spheres from ASC although there are
very few escapees after the adaptive sphere splitting.
Therefore, for a pointpi from S, if it is covered by
a sphere̺, its closest point will be searched on the
triangles of a setTset. Tset includes all the triangles
with at least one vertex enclosed by̺. If the vertex
enclosed by̺ has been removed during the mesh
cleaning process, the triangles adjacent to the vertices
enclosed by̺neigh will be included into Tset. Here,
̺neigh are spheres intersecting̺. If the pointpi is not
covered by any sphere, we will select the sphere who
covers the closest neighbor ofpi as̺ to determine the
set Tset of triangles. In the experimental tests shown
in the section below, we compare the search conducted
by SSVH with this local search scheme. The results
show that ours is three to four times faster than SSVH
as the construction of SSVH takes a lot of time while
ours only use the ASC structure which has already been
established.

5. RESULTS

The proposed approach has been implemented in
Visual C++. Our implementation has been tested on a
variety of models. The statistics in this paper are all
tested on a standard PC with Intel Core 2 CPU 6600 at
2.4GHz plus 2.0GB RAM.

The first example tested is the Venus head model with
noises and non-uniform sparseness, which is shown in
Fig.1. Note that making the density of points much
farther sparse may lead our method also failed, so
as others. Our method gives better result than other
approaches here. The second example is the real data
of a human model captured by a laser-based human
scan system with only two column laser scanners. Note
that different from the previous system with four or
six columns, the points are roughly two pieces – one
is captured from the front and another from the back
(see Fig.8). The reconstructions from the Tight CoCone
[4] and the integrating approach (ASC + Meshing) [8]
do not give a good surface approximation at the place
where no scan point is presented. The conventional
normal orienting method (MST) [1] will generate flipped
orientation on the front and back parts of a human
model, so the resultant implicit surface from RBF based
reconstruction [9] will have wrong topology. The surface
generated from the down-sampled particles and their
normals from the consolidation scheme (Cons) [7] give
a very poor shape to the right foot of the human body.
This is because the points are highly sparse in that
region, and the down-sampling strategy from [7] further
damages the very limited number of data points there.
Similar effects from the consolidation approach can also
be found in other examples shown below. The parameter
h used in all the tests here are chosen by a trial and

Fig. 8. Surface reconstruction results on a human model with170k
points by different approaches.

error procedure – we try several values forh, the one
with best reconstruction result is displayed. Furthermore,
when testing the consolidation approach [7], in order
to estimate the normals correctly we apply the normal
propagation and the orientation-aware PCA iteratively
for five to ten times in all tests. Another example for
the reconstruction of human body is shown in Fig.9.
The fourth example is to test our method on a pelvis
model with a more complex topology (i.e., with high
genus number). From the results shown in Fig.10, it is
easy to find that other approaches are likely to produce
an incorrect topology on the resultant surfaces because
of incorrect orientations assigned to sample points.

The following examples are conducted to test the
performance of our approach versus others on models
with sharp (or thin) features. The first try is given on a
vase-lion model with 182k points (see Fig.11) – there
are many small and thin features on the lion’s hair.
The conventionalminimal spanning tree (MST) based
normal propagation followed by a RBF-based surface
reconstruction will destroy some of the small features
as incorrect normal orientations are assigned to some
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Fig. 9. Surface reconstruction results on another human model
with 85.8k points: (left) the given scattered points, (middle) the
reconstruction by MST+RBF, and (right) the reconstructed result by
our method.

points – see the points displayed in black in Fig.11.
When testing this vase-lion model on the executable
program shared by the authors of [7], the program
surprisedly crashed in the normal propagation step.
Our normal orienting approach can successfully assign
correct orientations to the given points so that a correct
vase-lion model can be reconstructed. The second ex-
ample of the reconstruction with thin features is a blade
model (see Fig.12). The thin feature is also damaged
by the consolidation approach [7] as the point density
on the given point cloud is not high enough to make
the thin feature survive during down-sampling. Even if
working on the dense point cloud, our method still does
outperform other approaches – see the last example of a
scissor model with sharp features in Fig.13. Again, the
MST+RBF approach cannot reconstruct surface with a
correct topology, and the Cons+RBF method gives a bad
shape at the tip. To further evaluate the oriented normal
vectors constructed by our approach, we apply them to
another volumetric reconstruction approach – Poisson
surface reconstruction [18]. Comparison of results for
the scissor model using oriented normals generated by
different approaches can be found in Fig.14. Moreover,
points equipped with the oriented normal vectors gen-
erated by our approach have the capability to present
complex geometry details on the reconstructed surfaces
(see the example shown in Fig.15).

Another interesting study is about the efficiency of
our algorithm presented in this paper compared with
the minimal spanning tree based conventional approach
and the recently presented consolidation approach in [7].
In fact, the speed of our local search based scheme
compared with the global method using SSVH [22] is
also given. The computational statistics are shown in
Table 1. From them, it is easy to find that our orienting
approach is much faster than the conventional approach
using minimal spanning tree on those large models. Ours

Fig. 10. Surface reconstruction results on the pelvis model(50.7k
points) by different approaches. Left column displays the points with
oriented normal vectors – incorrect normal may disable somepoints
from being displayed. The MST+RBF approach generates a surface
with an incorrect topology, and the Cons+RBF (withh = 13.8,
µ = 0.45 and Iter = 50) produces an extra enclosure which is
not suggested by the input data (circled by the red dash line). All
these are led by the incorrectly oriented normals generatedby their
approaches.

is also more efficient than the consolidation approach.
Benefited by the already constructed ASC structure, the
local search based normal orienting is about three to
four times faster than the global search using SSVH.

A major limitation of our approach is that we will
also process the outliers in the given points as we
do not modify the points (e.g., the incomplete model
shown in Fig.16 with outliers and structured noises).
However, after checking all other approaches, it seems
none approach can generate satisfactory results when
using RBF-based surface reconstruction. When apply-
ing the Poisson surface reconstruction approach, only
the oriented normal vectors generated by our approach
(ORT) can give satisfactory result (see the bottom row
of Fig.16).
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TABLE 1
COMPUTATIONAL STATISTICS

Time of Consolidation Time of Our Approach (sec.) Time of
Model Figure Points Num. MST (sec.) Particles Num. Time† (sec.) Modified ASC Local Search SSVH

Venus 1 72.5k 38.5 7,255 36.9 + 7.0 4.6 0.6 2.4
Human-body I 8 170k 93.0 8,518 23.1 + 10.0 4.7 0.7 2.2
Human-body II 9 85.8k 24.8 17,151 32.7 + 32.0 2.6 0.3 1.2

Pelvis 10 50.7k 17.7 10,137 13.0 + 17.0 3.3 0.4 1.3
Vase-lion 11 182k 166.4 Failed∗ Failed∗ 6.0 0.7 4.3

Blade 12 25k 3.7 5,000 6.8 + 5.5 1.5 0.2 0.6
Scissor 13 212k 248.6 10,616 34.7 + 14.0 10.0 1.0 3.5

Fish 15 217k 247.5 21,698 44.6 + 19.3 5.2 0.6 2.6
Filigree 15 250k 330.3 25,000 39.4 + 50.5 13.8 1.6 4.5

†The time for the consolidation approach has two components:weighted LOP (former) and normal estimation (latter).
∗The test of vase-lion model is failed in the executable program provided by the authors of the consolidation approach [7].

Fig. 11. Surface reconstruction results on the vase-lion model (182k points) by MST+RBF versus ORT+RBF. Many small features are damaged
by the MTS+RBF approach (circled by red dash lines).

6. CONCLUSION AND DISCUSSION

In this paper, we have presented a robust and efficient
method to assign consistently oriented normal vectors to
unorganized points with noises, non-uniformities, and
thin sharp features as a pre-processing step to surface
reconstruction. The conventional method for this normal
assignment step is through the minimal spanning tree
based normal propagation, which however is not robust
on the unorganized points with noises, non-uniformities,
and thin sharp features. The newly developed point
consolidation approach [7] tries to overcome such dif-
ficulties. Different from [7], our approach does not
modify (i.e., down-sample) the given point cloud so
that it can reconstruct more surface details than the
consolidation approach in the regions with very few
points. Our orienting approach consists of three steps: 1)
modified ASC generation, 2) meshing and cleaning, and
3) local search based normal orienting. Experimental
results prove that our approach can successfully orient
the unorganized point clouds for various models, which
benefits the downstream surface reconstructions.

A possible future work is to process the points by
the robust statistics based method presented in a recent
work (ref. [23]). Of course, this does not agree with
the spirit of our approach as the points are modified,
which may also destroy the geometry details on the
underlying surfaces. To solve this problem will be one

Fig. 14. Surface reconstruction results on the scissor model (212k
points) by Poisson surface reconstruction [18] using different ap-
proaches to generate oriented normal vectors.

of our major future work. Another challenging problem
is how to handle the structural noises, which will also
be considered in our future work.
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Fig. 12. Surface reconstruction results on the blade model (25k points) by different approaches. A surface with an incorrect topology is output
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