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Figure 1: A design automation application — after modelling the compatible meshes by our duplicate-skins algorithm on three human models
given in various representations (whereH1 is a two-manifold mesh,H2 is a polygon soup with many holes, and the shape ofH3 is represented
by a point cloud), the clothes designed aroundH1 can be automatically ”graded” to fit the body shape ofH2 andH3.

Abstract

As compatible meshes play important roles in many computer-
aided design applications, we present a new approach for mod-
elling compatible meshes. Our compatible mesh modelling method
is derived from the skin algorithm [Markosian et al. 1999] which
conducts an active particle-based mesh surface to approximate the
given models serving as skeletons. To construct compatible meshes,
we developed a duplicate-skins algorithm to simultaneously grow
two skins with identical connectivity over two skeleton models;
therefore, the resultant skin meshes are compatible. Our duplicate-
skins algorithm has less topological constraints on the input mod-
els: multiple polygonal models, models with ill-topology meshes,
or even point clouds could all be employed as skeletons to model
compatible meshes. Based on the results of our duplicate-skins al-
gorithm, the modelling method ofn-Ary compatible meshes is also
developed in this paper.
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1 Introduction

Representing the models in compatible meshes is a fundamental
problem for a large class of applications, such as mesh metamor-
phosis [Alexa 2002; Kanai et al. 2000; Lee et al. 1999],n-way
shape blending/editing [Biermann et al. 2002; Kraevoy and Sheffer
2004; Praun et al. 2001], detail and texture transferring [Kraevoy
and Sheffer 2004], parametric design of free-form models [Wang
2005; Seo and Magnenat-Thalmann 2004; Allen et al. 2003; Praun
et al. 2001; Marschner et al. 2000], and design automation [Wang
et al. 2005]. Compatible meshes, i.e. meshes with an identical con-
nectivity, support bijective mapping between two or more models
which establish immediate point correspondences between models.
Therefore, each vertex in one mesh has a unique corresponding ver-
tex in every other mesh. The research presented in this paper devel-
ops a new algorithm to construct compatible meshes between given
models. For two given modelsM1 andM2, our duplicate-skins algo-
rithm manipulates two skin meshes with consistent connectivity to
approximate the geometry ofM1 andM2. Note that the model here
means the geometry represented by various representations (e.g., a
polygonal mesh or a point cloud — seeH1, H2 andH3 in Fig.1).
The correspondences of semantic features on the given modelsM1



andM2 are specified by users or by a feature recognition algorithm.
Our duplicate-skins algorithm can construct identical entities on the
resultant meshes for corresponding pairs of position markers.

Compatible meshes are usually requested on the models with sim-
ilar features (i.e., we seldom have the need to build a compatible
mesh between a tori and a cube); also, we assumed that the corre-
sponding features have been correctly specified. It is meaningless
to map the leg of a humanH1 to the head of another human body
H2 and correlate the bellybutton ofH1 to the shoulder ofH2 at the
same moment.

1.1 Related work

The work presented in this paper is closely related to the so-
called cross-parameterization technique, which established bijec-
tive maps between models. Alexa gave a good review of cross-
parameterization and compatible remeshing techniques developed
for morphing in [Alexa 2002]. The general ways are to parame-
terize the different models to a common domain. Classifying these
techniques according to the types of parameterization domain, there
are three categories commonly used: planar, spherical and simpli-
cial parameterization.

The traditional surface parameterization problem considers the case
where the domain is a planer region. Kraevoy et al. [Kraevoy et al.
2003] introduced a Matchmaker scheme for satisfying correspond-
ing feature point constraints in both the planer domain and the
model’s surface. When cross-parameterization is used for geom-
etry processing, it is sometimes possible to limit the computation to
disk-like parts of the surfaces [Biermann et al. 2002; Desbrun et al.
2002]. After the entire surface is cut to disk-like parts, each part
is parameterized independently. In some techniques, the surface is
cut into a single chart [Sheffer and Hart 2002; Sorkine et al. 2002],
while in others, it is cut into an atlas of parts (e.g., [Julius et al.
2005; Sander et al. 2003; Levy et al. 2002; Sander et al. 2002]). In
either case, the cuts break the continuity of the parameterization,
and make it difficult to use a planar parameterization approach to
construct a low distortion bijective mapping between two different
models.

Another popular choice is spherical parameterization, which uses
a sphere as the base domain [Alexa 2002; Gotsman et al. 2003;
Praun and Hoppe 2003]. An important limitation of spherical pa-
rameterization is that it can only deal with a closed and genus zero
surface. One more general approach is to let the domain be a coarse
base mesh, called simplicial parameterization. The surface is parti-
tioned into matching patches with a consistent inter-patch connec-
tivity [Praun et al. 2001; Kraevoy and Sheffer 2004; Schreiner et al.
2004]. The challenge in this way is that it is difficult to globally
optimize the parameterization. In addition, all of these techniques
requires the meshes on given models are valid and two-manifold.
Our duplicate-skins algorithm does not have this constraint so that
the range of models to be processed is broadened. Although, sev-
eral researches in literature (e.g., [Nguyen et al. 2005; Ju 2004])
mentioned techniques that can repair the meshes with ill-topology,
an operation with less constraints is always welcome.

Avoiding explicit parameterization, [Allen et al. 2003] employed a
mesh surface as a template and the connectivity of this template is
fixed to approximate the geometry of the input point cloud. They
formulated an optimization problem in which the degrees of free-
dom are an affine transformation at each template vertex. However,
their solution is limited to very specified inputs and this can in-
troduce severe approximation errors when the input models have a
significantly different geometry.

To explicitly and rapidly construct compatible meshes with differ-
ent geometries, the skin algorithm presented in [Markosian et al.
1999] is adopted to develop our duplicate-skins algorithm. The
original purpose of Markosian et al. is to rapidly design a rough
free-form shape via direct interactivities. A user could interactively
sculpt a free-from surface (skin) that approximates the underlying
given models. The mesh connectivity of skin is updated in the it-
erations of skin evolution. Inspired by their work, we developed
a new algorithm,duplicate-skins, to grow over various geometries
and obtain compatible meshes.

When updating the conductivity of a mesh, three mesh optimization
operators in [Welch and Witkin 1994; Hoppe et al. 1993] are itera-
tively used:edge swap, edge split, andedge collapse. In the sense
of mesh optimization, our approach is related to many remeshing
approaches in literature, which reconstruct high-quality meshes for
given surfaces. A complete review of the remeshing techniques for
surfaces can be found in [Alliez et al. 2005]. As the dynamic opti-
mization manner is adopted in our duplicate-skins algorithm, some
of our ideas are borrowed from [Surazhsky and Gotsman 2003;
Kartasheva et al. 2003; Ohtake et al. 2003; Vorsatz et al. 2003;
Ohtake and Belyaev 2002; Botsch and Kobbelt 2001; Ohtake and
Belyaev 2001; Vorsatz et al. 2001] — particularly when the topo-
logical changes neighboring to mesh entities are associated with
sharp features on the given model. However, all the above ap-
proaches consider single meshes while our approach extends the
strategies to duplicate meshes.

The same as other dynamic optimization approaches, a good start-
ing point is usually helpful to the convergency. Therefore, in our al-
gorithm, theradial basis function(RBF) based shape interpolation
techniques are employed to create desirable initial skin meshes to
fit the underlying skeleton models. An RBF offers a compact func-
tional description of a set of surface data. Interpolation and extrap-
olation are inherent in the functional representation. The benefits of
modeling surfaces with RBFs have been recognized in [Yngve and
Turk 2002; Cohen-Or et al. 1998; Carr et al. 1997; Savchenko et al.
1995]. The radial basis functions associated with a surface can be
evaluated at any location to produce a mesh at the desired resolu-
tion. [Carr et al. 2001] suggested a RBF-based approach, which
can be used for reconstructing the incomplete scan data. Similar
to [Cohen-Or et al. 1998], we adopted the global RBF in our ap-
proach to deform initial skin meshes into desirable shapes and ori-
entations.

1.2 Definition of Terms

Surface representation based on polygonal meshes has become a
standard in many geometric modelling applications. The mesh
representation is flexible and general with respect to shape and
topology as well as conducive to efficient algorithm processing
on meshes. We use the now widespread terminology of mesh
from [Spanier 1966]. A triangular mesh is described by a pair
(K,V), whereV = (v1, . . . ,vn) describes the geometric position of
the vertices inℜd (typically d = 3) andK is a simplicial complex
representing the connectivity of vertices, edges, and faces. The ab-
stract complexK describes vertices, edges and faces as0,1,2 sim-
plicies, that is, edges are pairs{i, j}, and faces are triples{i, j,k}
of vertices. The neighborhood ring of a vertex{i} is the set of adja-
cent verticesN(i) = { j|{i, j} ∈ K} and itsstar is the set of incident
simplicesstar(i) =

⋃
i∈ς ,ς∈K ς .

Skeletonsare the given models and regarded as a geometric refer-
ence, they may be closed mesh surfaces, surfaces with boundaries,
non-manifold surfaces, polylines or even isolated points, as shown
in Fig.2. In the duplicate-skins algorithm, a pair of skeletons are



assigned assourceand target skeletons respectively. Our method
does not require these two skeletons share the same number of ver-
tices or triangles, or have identical connectivity.Sharp edgeson the
given skeletons are edges with relatively large curvatures.

Skin is the mesh growing over a skeleton. We refer to the vertices
of the skin asparticles. For a skin, atarget edge lengthis defined
which is the expected skin edge length. We take the target edge
length as the criterion of skin connectivity modification. The tar-
get edge length is measured in terms of the average edge length of
skeletons, i.e.Ltag = ratio×Lavg. Each particlep should track to
one position locally closest top on the relative skeleton. This po-
sition is called thetracking position. We refer to the face contain-
ing the tracking position as thetracking face. Our duplicate-skins
algorithm simultaneously constructs two skins respectively for the
sourceandtargetskeletons. These two skins should be guaranteed
compatible and we call these two skins asduplicate-skins.

Like most of the technologies used to build the correspondence
between meshes [Allen et al. 2003; Sumner and Popović 2004;
Kraevoy and Sheffer 2004; Schreiner et al. 2004], a small set of
position markersare necessary to be specified on the source and tar-
get skeletons. These markers are enforced as mapping constraints,
taking two head models as an example, the markers constrains the
correspondence of ear, nose and eyes as well as other facial ele-
ments/features.

1.3 Contribution

We propose a new method for compatible mesh modelling — a
duplicate-skins algorithm, which simultaneously grows two skins
with identical connectivity over two skeleton models while satis-
fying the feature correspondences. Compared to other recent ap-
proaches for the same purpose, the method presented in this paper
shows almost no topological constraint on the models to be approx-
imated (i.e., the input models can be in various geometry represen-
tations).

Based on the results of our duplicate-skins algorithm,n-Ary com-
patible meshes also can be easily determined. As the feature ver-
tices (i.e., position markers) are correlated to particles on the skin
meshes, the feature correspondences among alln skeleton models
are satisfied.

Sharp edges are well preserved on the resultant compatible meshes
from our algorithm, which is important for many applications. A
new sharp feature tracking method is developed to guarantee that
the sharpness-preserved results can be given on the compatible
meshes.

Thanks to the connectivity optimization in the duplicate-skins al-
gorithm, the resultant compatible meshes are relatively regular, so
that they can serve as good inputs for the downstream geometry
processing applications where the irregularity usually leads to un-
satisfactory results.

The rest of the paper is organized as follows. Section 2 gives a more
detailed description of the original skin algorithm [Markosian et al.
1999]. Section 3 details our duplicate-skins algorithm. Section 4
presents the method to constructn-Ary compatible meshes. In sec-
tion 5, several applications of the compatible meshes are demon-
strated — the applications fall into two categories: free-form mod-
elling and design automation for customized free-form products.
Finally, section 6 discusses the limitations of our algorithm and sug-
gests future research directions.

2 Skin Algorithm

We give a more detailed description of the original skin algo-
rithm [Markosian et al. 1999] as below which works as the basis
of our duplicate-skins algorithm. With a skeleton meshM as the
input, the skin algorithm governs a skin meshS growing overM
to approximate its shape with a smooth mesh whose connectivity
is more regular. The algorithm consists of five steps: 1) the con-
struction of the first skinS; 2) search for the tracking position and
face for each particle onS; 3) reposition particles; 4) modify the
connectivity ofS; 5) update the tracking position and face for parti-
cles onS. The 3rd to 5th steps are iteratively applied onSuntil the
movement of all particles onS is less than a small valueε and no
further modification of mesh connectivity is needed.

There is no limitation to the topology of the first skinS. The only
requirement is thatS should show the shape that can vary into the
source/target model by an elastic deformation. For example, for
genus-0 models, a mesh with a box shape or a spherical shape
bounding them is a good initial skin. However, for genus-1 models,
we must introduce tori-like initial skins.

Before entering the iteration of skin evolution, the closest point and
face of each particle on the skeletonSmust be found to serve as the
tracking point and face. The global searching strategy is applied to
accurately obtain the first tracking. In the later iteration steps, to
speed up, a local search strategy replaces the global one.

To gradually attract skin toward the skeleton, the movement of each
particle is measured from its tracking position, its current position
and its neighbors on the skin. The new locationvnew(p) of the
particlep is computed by

vnew(p) = αv0(p)+βvc(p)+ γvt(p) (1)

wherev0(p) is the current location of the particle,vc(p) is the center
of p’s 1-ring neighbors, andvt(p) is the target position that com-
puted by

vt(p) = v0(p)+wm(ds− rs)vtrk(p) (2)

wherevtrk(p) is the unit tracing direction to the closest point on
skeleton. ds is the distance fromp to its tracking position,rs is
the user specified offset between the skeleton model and the final
skin, andwm is the moving ration in the range[0,1] which controls
the amount of movement.α, β andγ are positive coefficients, and
α +β +γ = 1. β controls the smoothness of the skin. The trade-off
for selectingβ determines the behavior of the skin, e.g. a largeβ
leads to the over smoothed skin; on the other hand, if a very smallβ
is adopted, uneven particle distribution and sliver triangles could be
produced.γ is calculated byγ = 1−α−β . From our experiments,
we chooseα = 0.3. A non-linear and attenuating function is used
to evaluate the value ofβ where the iteration step is the function
variable.

In the connectivity modification step of the skin algorithm, three
operators:edge swap, edge split, andedge collapsefrom [Welch
and Witkin 1994; Hoppe et al. 1993] are iteratively applied to re-
move extreme long and short edges, and at the same time increase
the minimal angle in triangles. Through this, the shape quality of
the triangles on the skin mesh is optimized.

As claimed by [Markosian et al. 1999], the skin algorithm can work
with the skeleton models in the form of closed mesh surfaces, sur-
faces with boundaries (more generally saying - non-manifold mod-
els), polylines or even isolated points. Examples are given in Fig.2.
Benefitting from this characteristic of the basic skin algorithm, our
duplicate-skins algorithm can model compatible meshes approxi-
mating various skeleton models. Details are addressed below.



Figure 2: Various models could be employed as skeletons: (a) a
closed mesh surface, (b) a wire-frame, (c) a non-manifold structure
assembled from several mesh patches, and (d) isolated points.

3 Duplicate-Skins

To seek a method to construct compatible meshes for various free-
form models, we propose a new technique and name itduplicate-
skinswhich is derived from the original skin algorithm. The most
important difference is that we can now simultaneously manipulate
two skins in various geometries but with identical mesh connectiv-
ity. Benefitting from the desirable high-quality of skin meshes, the
resultant compatible meshes give a bijective mapping between them
that is guaranteed to be smooth and continuous. The following ad-
dresses the details of our duplicate-skins algorithm for generating
compatible meshes between a pair of skeletons.

3.1 Algorithm overview

The input to the algorithm consists of two skeletonsM0 = (K0,V0)
(source) andM1 = (K1,V1) (target) and two sets of position markers
(includingP0 = {(xi ,yi ,zi), i = 1, . . . ,n} defined onM0 and its cor-
respondenceP1 = {(x′i ,y′i ,z′i), i = 1, . . . ,n} defined onM1). A point
(xi ,yi ,zi) ∈ P0 should be mapped to the point(x′i ,y

′
i ,z
′
i) ∈ P1. The

duplicate-skins algorithm is then outlined as below, after which the
key phases of the algorithm are detailed successively.

1: Construct the first skinS0 for M0;
2: Construct the first skinS1 for M1 by copyingS0 to S1 and de-

form S1 to be aroundM1 by the markersP0 andP1;
3: Initialize the tracking position to every particle globally;
4: Determine the particles that should track to the position mark-

ers;
5: repeat
6: Reposition the particles in tandem withS0 andS1;
7: Modify the mesh connectivity;
8: Update the tracking position of a particle if it does not track

to a marker;
9: until no change occurs;

10: if M0 or M1 has sharp featuresthen
11: Find corresponding sharp-tracking-edges on skinsS0 andS1;
12: repeat
13: Reposition the particles in tandem withS0 andS1;
14: Modify the mesh connectivity;
15: Update the tracking position of a particle if it tracks nei-

ther a position marker nor a sharp edge;
16: until no change occurs;
17: end if

To let the resultant meshes have the correct correspondence on the
position markers, if a particle onS0 tracks to a position marker

τ = (xm,ym,zm) ∈ P0, the identical particles (in terms of topol-
ogy) on S1 should track to its corresponding marker (i.e.,τ ′ =
(x′m,y′m,z′m) ∈ P1). For searching the tracking positions at the very
beginning, space subdivision techniques (e.g., Octree orkD-tree)
could be used to speed up the algorithm. We employ an Octree
with a fixed depth in our implementation. Different from the par-
ticles tracking to markers, the other particles can freely track to ei-
ther a vertex or a surface point (i.e., an interior point on a triangle)
on skeletons. However, even if the space partition strategy is em-
ployed, it is still inefficient to conduct a global closest point search
in every iteration step. In [Markosian et al. 1999], a local update
strategy is conducted: for a particlep, the new tracking point is
only searched on a limited number of faces – the set of entities to
be searched,Γ, includes the current tracking facef of p and the
faces containing any vertex off on the skeleton; and in order to
get out of a local minimum, for any particlep′ ∈N(p), the tracking
face f ′ of p′ and the facesfi ∈ star( j) for j ∈ f ′ are all added into
Γ. The above strategy relies on the local connectivity on skeletons,
thus fails on models with ill-meshes or point cloud models. To
overcome the limitation, we change the strategic rules for locally
updating tracking points to the follows:

• for a particle p, if an Octree nodeϒd contains the current
tracking point ofp, its new tracking point is searched among
the faces/vertices held byϒd and the spatial neighboring
nodes ofϒd;

• for the purpose of jumping out of the local minimum, again
the Octree nodes containing the tracking points of the particles
p′ ∈ N(p) are added into the range of searching.

Figure 3: Illustration to explain why the RBF-deformation is
needed for constructing initial skins. On the source skin and skele-
ton (right), the green particlep is the point on the skinS0 closest to
the marker at heel onM0 (they are linked by the tracking vector in
blue); however, the corresponding particle ofp, p′ ∈ S1, is not the
closest point to the corresponding marker onM1, so that the disper-
sion of tracking directions occurs aroundp′ since the particles near
to p′ all track to their closest points onS1 but p′ does not. Note that
the topologies ofS0 andS1 are always identical.

3.2 Initial Skins

To describe how we generate the initial skins in more detail, let us
use the example shown in Fig.3. For two feet models, as the source
and target skeletons (i.e.,M0 andM1 respectively), are placed in
different positions and orientations. As explained previously, the
easiest way to generate initial skins for genus-0 models is to con-
struct skin meshes as the bounding boxes orthogonal tox,y,z-axes.



However, problems may be encountered when position markers are
specified on skeletons. For example, see Fig.3, after searching
through the skin for the source skeleton, the green particlep on
skin S0 is closest to the marker point (in red) at the heel. Since
the particles tracking the markers on the source and target skeletons
should be identical, the corresponding particle ofp on the target
skin - p′ ∈ S1 is not the closest point to the heel marker. Figure 3
gives the tracking directions ofp andp′ in blue color. However, all
the particles aroundp′ will still track to their closest points onM1;
in other words, the tracking directions are dispersed, which easily
leads to poor or even invalid meshes (e.g., face flipped). Therefore,
to eliminate the occurrence of the above situation, the construction
problem ofS1 after obtainingS0 is reformulated as follows.

Problem: Given a set of position markersP0 defined onM0 and
P1 with respect toM1 and a surfaceS0, find a surfaceS1 which is
transformed fromS0 and the deformation fromS0 toS1 is equivalent
to the deformation fromP0 to P1.

The above problem is solved by defining a deformation function
Ψ(. . .) lettingP1 = Ψ(P0) so thatS1 = Ψ(S0) is easily obtained. The
radial basis function (RBF) is the most suitable candidate for this
deformation function [Botsch and Kobbelt 2005; Turk and O’Brien
2002]. In general, a RBF is represented in the piecewise form

Ψ(x) = p(x)+
n

∑
i

λiφ(‖x− τi‖) (3)

wherep(x) is a linear polynomial that accounts for the rigid trans-
formation, the coefficientsλi are real numbers to be determined and
‖ · ‖ is the Euclidean norm onℜ3. To achieve a global deforma-
tion, the basis functionφ(t) is chosen asφ(t) = t3 (the triharmonic
spline as [Yngve and Turk 2002]). The coefficientsλi and the co-
efficients ofp(x) can be easily determined by lettingΨ(τi)≡ τ ′i for
all pairs of τi ∈ P0 and τ ′i ∈ P1 plus the compatibility conditions
∑n

i λi = ∑n
i λiτi = 0. The formulated linear equation system has

been proven to be positive definite unless all the points inP0 andP1
are coplanar.

The use of RBF guarantees smooth geometric deformation. Thus,
the geometry of target skinS1 can be determined by smoothly
blending the positions of the vertices on the source skinS0 as

(p′ ∈ S1) = Ψ((p∈ S0)). (4)

The result of the foot example by this deformation is shown in
Fig.4(a), where the initial skinS1 follows the orientation of skele-
ton M1. Also, compared to Fig.3, the green particle onS1 is much
closer to the marker at heel. This greatly reduces the chance to gen-
erate self-overlapped skins. However, uneven triangulation could
still happen (see Fig.4(b)), since the somewhat conflicting tracking
directions still exist among the particle which are enforced to track
markers and its neighbors. Therefore, to completely eliminate the
conflicting tracking directions, an alternative way with pre-skinning
is proposed to construct the initial duplicate skins. Firstly, we per-
form several runs of the single skin algorithm for the source skele-
tons. The result skin is applied asS0 and then this skin is deformed
to fit the target skeleton by Eq.(3) and (4), so thatS1 is created.
Figure 4(c) shows the result from this change. The source and tar-
get skeletons are respectively approximated by their corresponding
skins. In this way, the green particle is almost the closest particle
to its corresponding markers through the whole skinS1. Conse-
quently, a significant feature is introduced here: our duplicate-skins
algorithm is independent of the placement of input skeletons.

The above RBF-deformation based method also enables our method
to work for those genus-k models (k 6= 0). If enough number of po-
sition markers are well defined around each handle, we can dupli-
cate a mesh from the source skeletonM0 to serve asS0 and employ

Figure 4: Illustration of the method with pre-skinning to construct
initial duplicate skins. (a) Initial duplicate skins in box shape; af-
ter S0 have been obtained, theS1 is obtained by RBF-deformation.
(b) Beginning with the initial duplicate skins in (a), the result of
the duplicate-skins algorithm is shown in very uneven triangula-
tions (see two close-up views) — this is because that some faraway
particles are enforced to track markers on the target skeleton. (c)
Construct initial duplicate skins by the method with pre-skinning,
where the shape ofS0 after several (5 to 8) runs of the single-skin
algorithm is adopted to createS1 instead of the box shape in (a).

the above RBF-deformation function to createS1 aroundM1. In
our experience, four to eight pairs of uniformly distributed mark-
ers for each handle will be enough. For instance, as the example
shown in Fig.10, red points are the position markers. The initial
skins consist of one tori mesh and another mesh deformed from tori
by RBF. Therefore, starting from the genus-1 initial skins, our du-
plicate skins are iteratively evolved to take the form of the skeleton
shape with mesh optimized.

3.3 Optimize connectivity on duplicate skins

In our duplicate-skins algorithm, two skins are adopted to approx-
imate their relative skeletons. In the course of skin evolving, the
mesh topology updating is identical on duplicate skins, even though
they interpolate different underlying geometries. That is the pri-
mary ingredient for the generation of compatible skins. Obviously,
when we apply the edge-based optimization operators, the measure-
ments on two skins should both be under consideration.

To evaluate the criteria of edge splitting, the edge lengths onS0 and
S1 are both taken into account. We perform the edge split if either
edge{i, j} ∈ S0 or its corresponding edge{i′, j ′} ∈ S1 satisfies the
splitting condition. Note that the duplicate skins share one target
edge lengthLtag. For two skeletons with sizes that differ signif-
icantly, we scaleM1 by the ratioρ = DL0/DL1 before applying
our algorithm whereDL0 andDL1 are the diagonal lengths of the
bounding boxes ofM0 and M1. After computing the compatible
meshes, we scaleM1 andS1 back to the original dimension by the



ratio ρ−1. When{i, j} and{i′, j ′} are both less than half ofLtag,
these two edges can be collapsed.

Criterion 1: A pair of edges{i, j}∈S0 and{i′, j ′}∈S1 are allowed
to be split if‖viv j‖> 1.5Ltag or ‖v′iv′j‖> 1.5Ltag.

Criterion 2: A pair of edges{i, j} ∈ S0 and {i′, j ′} ∈ S1 are
included in the edge-collapse candidates if and only if‖viv j‖ <
0.5Ltag and‖v′iv′j‖< 0.5Ltag.

To prevent over-optimization in one iteration step, the numbers of
splits and collapses are limited in each run. In fact, the avail-
able edges for either split or collapse are sorted by the ratio of
their edge length to the target length. The ratio is defined by
max(‖viv j‖,‖v′iv′j‖)/Ltag for split and(‖viv j‖+ ‖v′iv′j‖)/2Ltag for
collapse. We do the split or collapse operations on only the first
10% of edges in priority. Analogous to the basic skin algorithm,
any edge that is too long (or too short) is still guaranteed to be split
(or collapsed) eventually.

Furthermore, we propose the following scheme to estimate the
edge-swap criterion. As shown in Fig.5, if we swap the two edges
in red color, we need to compare the maximum opposite angles
shown in the triangles before and after swapping, where the op-
posite angles are respectively denoted byαi andβi (i = 1,2,3,4).
The criterion for edge-swapping on duplicate meshes is given as
follows.

Criterion 3: Defining αmax = max{αi} andβmax = max{βi}, if
and only ifαmax > βmax, the pair of edges{i, j} ∈ S0 and{i′, j ′} ∈
S1 are considered to be swapped.

Figure 5: Edge-swap for duplicate-skins: left part – the edge{i, j}
and its adjacent triangles onS0, right part – the edge{i′, j ′} and its
adjacent triangles on the target skinS1.

Figure 6: Aliasing errors are introduced by the skin algorithm: top
row, for the box skeleton given in the most left, the resultant mesh
from the skin algorithm has a high quality but degenerates in the
sharp edges and corners; bottom row, for the given cylinder with a
coarse and irregular mesh, even if a denser mesh is employed, the
original skin algorithm can hardly recover the aliased sharp curves.

3.4 Sharp edge recovering

The original skin algorithm cannot give a correct construction at
sharp features of a skeleton. If a skeleton has sharp geometric
features (i.e., creases where the surface does not have continuous
tangent planes) on it, the skin always aliases the sharpness with
approximation artifacts. As pointed out in [Kobbelt et al. 2001],
increasing the sampling rate of surfaces will not cause the skin to
converge to the sharp edges and corners if no special treatment is
given. Our tests also prove this (see Fig.6). In this section, we
propose an efficient scheme that recovers sharp features on the re-
sultant skins. Note that this only works for the skins interpolating
skeletons (i.e.,rs = 0 in Eq.(2)).

On the skeleton meshes, all the endpoints of sharp edges are de-
fined assharp verticesand all the triangle faces belonging to the
stars of sharp vertices are calledsharp faces. After the sharp edges
have been identified on the skeleton meshes, several edges of the
skin, named assharp-tracking-edges, are enforced to align to these
features. Also, to prevent breaking the sharpness on the resultant
skins, the meshes around sharp tracking edges should be specially
treated during connectivity optimization. As mentioned in the algo-
rithm overview, the sharp edge recovering procedure is regarded as
a type of post-processing. When applying the algorithm, the skins
have almost interpolated the given skeletons, so only several runs
are needed and can be completed in a short time. The most impor-
tant phase is to determine the sharp-tracking-edges onS0 andS1
which can be decomposed into three steps:

• Find the sharp edges, vertices and faces on skeletons;

• Determine the particles tracking to sharp vertices;

• Compute the shortest path on the skins between each pair of
particles which track to the two endpoints of a sharp edge,
where the path passes along the skin edges.

For extracting the sharp edges on skeletons, we can either manually
pick the edges or automatically detect them by the discrete sharp
operator referring to the discrete mean curvature at the mesh edges.
For an edgeewith dihedral angleθe, He = 2‖e‖cosθe

2 (ref. [Hilde-
brandt and Polthier 2004]) is given as the mean curvature one. If
He exceeds a threshold, the edge is labelled as a sharp edge.

Next, we need to find the corresponding sharp-tracking-edges on
the skins. More specifically, a listCe of edges are enforced to track
each of the edgesewith ’sharp’ label. To successfully recover sharp
features on skeletons, the curve formed byCe must be single-wide.
Thus, the particles tracked to sharp vertices in the bijective manner
(i.e., without repeating) are found first. The shortest path linking the
two particles tracking to a pair of endpoints are then determined by
the Dijkstra’s algorithm. To speed up the searching, we filtered out
most of the edges on the skin – only the edges with their endpoint
tracking to sharp vertices/edges/faces are regarded as legal paths.
Also, the edges that have been labelled as sharp-tracking-edges in
previous searches are prevented from the searching (by assigning
their length to∞). As a result, for every list of sharp-tracking-edges,
Ce, its starting and ending particles track to the endpoints ofe, and
the interior particles ofCe are restricted to the inertia points oneby
the proportion of lengths. In other words, the particles inCes are
tracked to the sharp edges exactly. Therefore, the sharp edges are
preserved list by list. See the models in Fig.7, the red edges on a
skin are the sharp-tracking-edges on the skin while the blue ones
are sharp edges on the skeleton.

Finally, as pointed out in the algorithm overview, when we itera-
tively optimize the connectivity on a skin mesh, several configura-
tions need to be discussed if any entity related to sharp features is
under consideration.



Figure 7: Shape edge recovering: (a) given skeleton meshes, (b) the
sharp edges (in blue) on skeletons and their corresponding sharp-
tracking-edges (in red) on skins, (c) the sharp edge recovering re-
sults on individual skeletons, and (d) the result of duplicate-skins
with sharp edges recovered.

Criterion 4: If an edge on skin is a sharp-tracking-edge, this edge
is prevented from swapping.

Criterion 5: For the convenience of implementation, if an edgee
is a sharp-tracking-edge, we prevent edge-split on it; otherwise, the
list Ce holding e needs to be updated and the tracking position of
the newly inserted vertex needs to be searched.

Criterion 6: If both two particles of an edge are endpoints of sharp-
tracking-edges, collapse on this edge is not allowed.

The configuration considered by the above criterion could be either
of the two cases shown in Fig.8(a), where the first one eliminates the
sharp-tracking-edge and the second one merges two diverse sharp-
tracking-edges into one.

Criterion 7: If an edge{i, j} satisfies the collapse-length criterion
and only one of its endpoints{i} tracks to sharp features, this edge
could be collapsed.

The degenerated vertex{h} from {i, j} and the edges∈
star(i)

⋃
star( j) must be carefully processed. The position of{h}

is not located at the middle of{i, j} after collapsing, but should in-
herit the position of the particle tracking to the sharp features (i.e.,
the position of{i} in Fig.8(b)). In addition, if either{k, i} or {k, j}
is a sharp-tracking-edge, the edge{k,h} degenerated from the trian-
gle{i,k, j}must be assigned as a sharp-tracking-edge as illustrated
in Fig.8(c). Similarly, the edge{l ,h} should be a sharp-tracking-
edge, if either{l , i} or {l , j} is sharp tracking edge.

Criterion 8: For a pair of edges{i, j} ∈ S0 and {i′, j ′} ∈ S1, if
either of them satisfy one of the above four criteria, the topology
update of the edges should follow the above rules.

Criterion 9: During the iteration of sharp edge recovering, we up-
date the tracking position and tracking face of the particles, only if
they do not track to any sharp vertex/edge.

As mentioned in the outline of our algorithm, the loop for interpo-
lating sharp features works as a post-processing procedure; hence,
the iteration should have a small number of steps and this additional
loop does not degenerate the efficiency of our algorithm.

Figure 8: Cases that should be specially treated in the sharp-edge-
preserved mesh optimization, where red edges denote the sharp-
tracking-edges and red points are the particles tracking to sharp
features. (a) Two cases that the edge{i, j} cannot be collapsed.
(b) If the particle{i} tracks to sharp features, the degenerated parti-
cle {h} maintains the position and tracking information of{i}. (c)
The configurations for collapsing{i, j} if either{k, i} or {k, j} is a
sharp-tracking-edge.

4 n-Ary Compatible Meshes

The duplicate-skins algorithm above can successfully generate the
compatible meshesS0 andS1 to approximate the given two skeleton
modelsM0 andM1. However, for some applications (e.g.,n-way
blending, sample based parametric design of freeform models, etc.),
the compatible meshes are requested for more than two skeleton
models. Then-Ary compatible meshes can be generated through
the vertex transformations on the results from our duplicate-skins
algorithm.

Suppose that the compatible meshes are requested onn skele-
ton modelsMi (i = 0, . . . ,n− 1), the duplicate-skins algorithm is
first appliedn− 1 times on the pairs of skeletons —M0 andM j
( j = 1, . . . ,n−1). Thus,n−1 pairs of skins are obtained; for the
convenience of description they are denoted byS0( j) andS( j) respec-
tively. Letting S0 = S0(1) andS1 = S(1), we conduct the following
algorithm to determine the meshesSj ( j > 1) compatible toS0 on
M j .

1: Duplicate a skin meshSj with S0;
2: for all vertexp∈ Sj do
3: The closest pointpc of p onS0( j) is found;
4: pc must be inside a triangleT ∈ S0( j) , the barycentric coor-

dinates ofpc onT - (αc,βc,γc) is then recorded;
5: By the pair of skinsS0( j) and S( j), T could easily find its

corresponding triangleT ′ onS( j);
6: Applying the braycentric coordinate(αc,βc,γc) on T ′, the

new position ofp onS( j) can be computed;
7: Move p to the new position;
8: end for

Repeating the vertex transformation, the new shape ofSj approxi-
matingM j is easily determined. It is easy to find that all steps of the
above algorithm can be finished in a short time except the closest
point search step. For this step, the space partition strategy which
has been previously employed in the tracking point search is used
again to accelerate the process.

About the approximation error . Although easy to implement, the
above algorithm forn-Ary compatible meshes enlarge theL2 ap-
proximate error (see Fig.9a). This enlargement is led by the closest
point projection, whereS( j) is employed to approximateM j . The



Figure 9:L2 approximate error analysis: (a)L2 is enlarged on the
compatible meshes generated using vertex transformation (compar-
ing the approximation error onS( j) andSj ), and (b) the approxima-
tion error (bothS( j) andSj ) can be reduced by refiningS( j).

Table 1: Computational Statistics

Examples Fig.10 Fig.11 Fig.12
Number of Triangles (skeleton I) 3,356 3,270 4,638
Number of Vertices (skeleton I) 1,128 1,648 1,821

Number of Triangles (skeleton II) 616 2,228 8,030
Number of Vertices (skeleton II) 308 1,165 4,017

Number of Triangles (skin) 2,634 13,654 19,880
Number of Vertices (skin) 1,317 6,829 9,942

Comp. Time (in sec.) ∼10 ∼83 ∼40

error can be reduced by refiningS( j) while keeping the same con-
nectivity onSj . By the refinement, the approximation error shown
on S( j) is decreased so that the error given onSj is also reduced
(comparing the errors shown in different rows of Fig.9). We can
also apply the repositioning step of our duplicate-skins onSj for
several runs to decrease the approximation error.

5 Results and Applications

All the examples shown in this paper are tested on a standard PC
with AMD 1.6 GHz mobile CPU and 480MB RAM. For the ex-
amples shown in Fig.10, 11 and 12, the computational statistics are
listed in Table 1.

5.1 Free-form modelling

Our first example is to apply our duplicate-skins algorithm on
genus-1 models (a torus and a mechanical-part with sharp edges).
As seen in Fig.10, twelve pairs of manually specified position mark-
ers (red points) govern our algorithm and establish correct corre-
spondences on the resultant compatible meshes. Sharp edges are
well recovered. Then, the compatibility of the meshes are em-
ployed to partially deform the mechanical part into the torus. Our
duplicate-skins algorithm is applied to the design of a toy bear in
the example shown in Fig.11. The original bear model consists of 1
hemisphere, 3 spheres and 3 cylinders. Although the bear model is

not a single manifold surface, benefited from the duplicate-skins al-
gorithm, we can still generate compatible meshes on a rabbit model
and the bear model. The body of bear was selected and reshaped
to the shape of its corresponding part on the rabbit, so that the final
bear model is obtained. Figure 12 gives the original head mod-
els and the compatible meshes for two head models. The posi-
tion markers in red take the role of defining the correspondences
of semantic features. After the compatible meshes have been con-
structed, it is very easy to change the female’s nose by the shape of
the male model’s (see Fig.13). The shape variation performed in the
above three examples are all with the help of the displacement-map
technique which is widely used in computer graphics applications.
Briefly, the detail geometry of a mesh surfaceM (or part of a mesh
surface) is encoded on a low-pass filteredM of M, and then the en-
coded surface details are added onto another filtered meshM′ so
that the details ofM are shown onM′.

Figure 10: Tori-MechPart example: our duplicate-skins algorithm
can generate compatible meshes on genus-1 models with sharp-
edges well recovered.

Figure 11: Toy bear design with our duplicate-skins algorithm.



Figure 12: Compatible meshes generated on head models: (a) given
heads models and the position markers defined on it (red ones), and
(b) resultant compatible meshes.

Figure 13: Cut-and-Paste modelling for changing the nose on a
head model.

Figure 14 demonstrates the compatible meshes on 3 head models
so that the interpolation triangle among three head models could be
determined. Then-Ary compatible meshes are usually employed in
the application of the parametric design of free-form models (e.g.,
the parametric design of human models [Wang 2005]). As shown
in Fig.15, after obtaining the input parameters from users, a set of
human models are selected from the human model database, where
all human models stored in the database come with surfaces have
compatible meshes. By a numerical optimization scheme, we can
determine the synthesis weights of this set of human models so that
the result synthesized models give the user specified parameters,
where the synthesis is eventually a weighted blending procedure.

5.2 Design automation for customized products

The application of the resultant compatible meshes is not limited to
the variation of mesh surfaces themselves. The compatible meshes
are also very important to the design automation problem in sev-
eral industries (e.g., apparel industry, shoe industry, jewelling in-
dustry, eye-wear industry, etc.). In all these industries, there exists
a common quest for design automation: after carefully designing a
product’s geometry around a model in standard size and shape, it is
desired to automatically transform the geometry of the product to
other models with customized shapes while maintaining the origi-
nally spatial relationship between the product and the model (i.e.,
preserving the fitness). For example, Fig.1 shows this application
in the apparel industry. After constructing the compatible meshes
from various input models (two-manifold mesh model, a polygon
soup with holes, or a point cloud), we can apply the t-FFD or p-
FFD technique [Kobayashi and Ootsubo 2003; Wang et al. 2005] to

Figure 14: Shape interpolation among three head models.

encode the coordinate of each vertex on clothes by the compatible
meshH1. Then, based on the correspondences between triangles
amongS1, S2, andS3, we can easily fit the clothes to the shape
aroundS2 and S3. Figure 16 shows a similar design automation
application in the shoe industry, where the foot models have been
previously shown in Fig.4.

6 Limitations and Discussion

This paper presents an approach for modelling compatible meshes
on give models. Our duplicate-skins algorithm works on the models
represented by polygonal meshes, a polygon soup, or a point cloud.
The algorithm drives two active particle-based mesh surfaces (i.e.,
skins) with identical connectivity to approximate the given models
that serves as the skeleton. One major limitation of the algorithm
is the shrinking effects: when using skins with a relatively large tri-
angle size to model compatible meshes on the skeleton with com-
plex details, the shrinking effect occurs around the details since the
sampling rate on skins is low. Also, the sharp edge can hardly pre-
served if the resolution of skin mesh is lower than the resolution of
skeletons. This is in fact the problem addressed by the sampling
theory. Increasing the sampling frequency can solve this problem
to a certain degree but cannot guarantee the preservation of details
since there is no mechanism in our current approach to ensure de-
tail preservation. This is definitely an area we should consider in
the future. One possible approach for solving this problem is to
employ the compatible meshes generated by our method as the con-
trol network of subdivision surfaces, then the detail geometry could
be recovered in the later mesh refinement procedure. The approxi-
mation error of our approach also needs to be further studies, and a
curvature-based mesh refinement could be considered in our frame-
work to reduce the error.

Another limitation of this approach and also all the other cross-
parameterization algorithms (e.g., [Kraevoy and Sheffer 2004;
Schreiner et al. 2004]) is that the algorithm relies too heavily on
the position markers when modelling the genus-k models. For in-
stance in the Tori-MechPart example in Fig.10, if all the markers on
the toriM1 are mapped to the markers all being placed on the left



Figure 15: Parametric design of human models, where the human
models with compatible meshes are synthesized into a model satis-
fying the user input parameters.

part of the MechPartM2 (instead of the similar positioning of mark-
ers shown onM2 in Fig.10), compatible meshes for these genus-1
models will not be correctly constructed. Therefore, an important
area of future research is how to develop a method to add markers
to ensure correct mapping. Also, the positions of markers effect on
the quality of triangles and the result of shape approximation. For
example, if two skeletons are much different from each other, the
over-strict constraints on position markers may lead a result with
great distortion. Or if there is no marker defined in the cavity of
a U-shaped skeleton, our current method can hardly pull the skin
mesh into the cavity. All these problems are to be investigated in
our future research to improve our approach.

The last limitation in our current implementation is that the gener-
ation of n-Ary compatible meshes does not preserve sharp-edges.
However, since the sharp-edges have already been recovered in
our basic duplicate-skins algorithm, it is possible for us to find
some methods for preserving the sharp-edges when generatingn-
Ary compatible meshes. Our first idea is that after we have found
the corresponding paths of sharp-edges (similar to what we did in
section 3.4), we restrict the mapping of such paths to be along the
triangle edges (instead of triangle faces) in the mapping ofn-Ary
compatible meshes. This will be investigated in our future research.

Although there are several limitations, our approach shows an im-
portant advantage comparing to other approaches for the same pur-
pose — there is less topological constraint on input models: mul-
tiple polygonal models, models with ill-topology meshes, or even
point clouds can be employed as skeletons.
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Figure 16: Design automation of shoes: for the given two foot mod-
els with position markers (top-left), our duplicate-skins can gener-
ate a pair of compatible meshes (top-right); after designing the shoe
around the source model, we can automatically re-warp the shoe
around the target model by t-FFD using the compatible meshes.
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