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Figure 1: The ellipsoid-tree constructed by our method (left) vs. the sphere-tree generated by the Adaptive Medial Axis Approximation
(AMAA) (right) for a human model: (a) the given mesh model of a human body, and the comparisons in (b) level 1, (c) level 2, and (d) level 3
– the ellipsoid-tree gives tighter volume bound and higher shape fidelity. The primitives in level 1 are displayed in different colors, and their
children and children’s children shown in the refined levels follow these colors.

Abstract

As ellipsoids have been employed in the collision handling of
many applications in physical simulation and robotics systems, we
present a novel algorithm for generating a bounding volume hierar-
chy (BVH) from a given model with ellipsoids as primitives. Our
algorithm approximates the given model by a hierarchical set of op-
timized bounding ellipsoids. The ellipsoid-tree is constructed by a
top-down splitting. Starting from the root of hierarchy, the volume
occupied by a given model is divided into k sub-volumes where
each is approximated by a volume bounding ellipsoid. Recursively,
each sub-volume is then subdivided into ellipsoids for the next level
in the hierarchy. The k ellipsoids at each hierarchy level for a sub-
volume bounding is generated by a bottom-up algorithm – simply,
the sub-volume is initially approximated by m spheres (m À k),
which will be iteratively merged into k volume bounding ellipsoids
and globally optimized to minimize the approximation error. Ben-
efited from the anisotropic shape of primitives, the ellipsoid-tree
constructed in our approach gives tighter volume bound and higher
shape fidelity than another widely used BVH, sphere-tree.
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1 Introduction

Collision handling is a very important issue in many applications of
physics-based modelling and simulation, which is computationally
expensive (especially in a large scale virtual environment). The
start-of-the-art virtual reality approaches require the collision de-
tection to be finished in a fixed time, so that many time-critical
collision detection algorithms employ Bounding Volume Hierar-
chies (BVH) to effectively reduce the number of potentially col-
liding pairs by eliminating objects that are obviously too far away
from each other. On the other hand, the hierarchy allows a time-
critical algorithm to progressively refine the accuracy of its colli-
sion detection and stop as needed to maintain the real-time perfor-
mance. Usually, the node of a BVH is a simple geometric prim-
itive that bounds parts of the model. Many different primitives
have been employed, including Spheres [Bradshaw and O’Sullivan
2004; Bradshaw and O’Sullivan 2002; Hubbard 1996; Hubbard
1995; Palmer and Grimsdale 1995; Quinlan 1994], Axis Aligned
Bounding Boxes (AABB) [van den Bergen 1997], Oriented Bound-
ing Boxes (OBB) [Gottschalk et al. 1996], Spherical Shells [Krish-
nan et al. 1998], Rectangle Swept Spheres [Larsen et al. 2000], etc.
However, no research is found in literature using ellipsoids as prim-
itives in a BVH approach although there are some approaches for
the collision detection between ellipsoids (e.g., [Choi et al. 2006;
Wang et al. 2004]).



This paper introduces two contributions: a novel BVH representa-
tion, ellipsoid-tree, and a global method that minimizes the tight-
ness of volume bounding of the ellipsoid-tree for a given model.
In our approach, the tightness of volume bounding is measured
by a hybrid error that integrates both the shape and the solid ap-
proximations. Compared with a closely relevant BVH, sphere-tree,
generated by the state-of-the-art approach (i.e., the adaptive medial
axis approximation – AMAA [Bradshaw and O’Sullivan 2004]),
the ellipsoid-tree bounds the volume of given models more tightly
when using the same number of primitives.

2 Ellipsoid-Tree Construction Algorithm

The ellipsoid-tree is constructed by a top-down recursive splitting
algorithm. Starting from the root of hierarchy, the volume occupied
by a given model M is divided into k sub-volumes where each is
approximated and fully covered by a volume bounding ellipsoid.
k is named as the degree of the ellipsoid-tree, and can be freely
specified by users. These k ellipsoids are the primitives in level 1.
Recursively, each sub-volume is then subdivided into k ellipsoids
for the next level in the hierarchy.

Suppose Moi denotes part of M whose volume is covered by an el-
lipsoid oi, Moi should be fully occupied by the children ellipsoids
oi+1

j ( j = 1, ...,k) of oi, where i denotes the index of level in the
hierarchy. The root node of an ellipsoid-tree is the smallest bound-
ing ellipsoid of the whole model M, which can be computed by
[Weltz 1991] once M has been sampled into points. When approx-
imating the sub-volume of the given model M, not only the surface
approximation error but also the volume approximation error (more
specifically, the volume enclosed by ellipsoids but outside M) are
considered. In order to efficiently and effectively measure these er-
rors, M will be sampled into surface points and voxels. Note that
not only voxels inside M but also voxels outside M are constructed
as they will be adopted to evaluate the volume approximation error
of ellipsoids. The center points of voxels inside M are considered as
volume sampling points of M. Pseudo-code of the Ellipsoid-Tree-
Construction algorithm is listed below.

Algorithm 1 Ellipsoid-Tree-Construction
1: Sample the surface of the given model M into a point set PS;
2: Voxelize the space around M;
3: Compute the minimal bounding ellipsoid of PS as the root of

ellipsoid-tree;
4: repeat
5: for each ellipsoid oi in the current level i of hierarchy do
6: k ellipsoids oi+1

j ( j = 1, ...,k) are constructed for approxi-
mating the corresponding part Moi of oi in M;

7: Optimize the shape and position of these k ellipsoids so
that its approximation to Moi is tighter;

8: end for
9: Move to the level (i+1) of hierarchy;

10: until the approximation tolerance has been arrived;

In this algorithm, the most important steps are steps 6 and 7, which
are the major contributions of our work. Although the ellipsoids
will be optimized in step 7 (the details are given in section 4), a
good initial value however can always speed up the convergence
of optimization. Therefore, an error controlled merging algorithm
will be introduced in section 3 to generate the initial ellipsoids by a
bottom-up algorithm.

3 Error-Controlled Merging for Ellipsoids
Construction

Before detailing the merging algorithm for generating k ellipsoids
oi+1

j ( j = 1, ...,k) bounding the corresponding volume Moi of their
parent ellipsoid oi, we will present the metrics for ellipsoid approx-
imation first.

3.1 Metrics for ellipsoid approximation

Surface Approximation In [Cohen-Steiner et al. 2004], the ap-
proximation error between an original surface X and its approxima-
tion Y is defined as the distance

Lp(X ,Y ) = ( 1
|X |

∫ ∫
x∈X ‖d(x,Y )‖pdx)

1
p

where d(x,Y ) = infy∈Y ‖x− y‖, ‖ · ‖ is Euclidean distance, and | · |
is surface area. However, we find that it needs to solve a non-linear
equation to determine d(x,Y ) for an ellipsoid, which is impractical.
Therefore, we define the surface approximation error between an
ellipsoid o and its corresponding surface region ∂Mo on M as

Esur(o) = max{‖pi−do(pi)‖,∀pi ∈ Po} (1)

where do(pi) denotes the radial projection of pi on o, and Po ⊂ PS
is the set of surface sampling points on ∂Mo. Our Esur(o) simulates
L∞ error between ∂Mo and o.

Solid Approximation However, the error term Esur(o) only
works for surface but not volume. Therefore, we introduce the fol-
lowing volume approximation error

Evol(o) =
∫ ∫ ∫

x∈o(1−δ (x,M))dV

where for a point x ∈ ℜ3 in o, δ (x,M) = 1 is defined if x is inside
the solid M; otherwise, δ (x,M) = 0 is given. The approximation
error measured in this way is also called solid approximation error.
We evaluate the solid approximation error by its discrete form

Evol(o) = Nout(o,M)Vvox (2)

with Nout denotes the number of voxels whose centers are inside o
but outside M. Vvox is the volume of each voxel.

Hybrid Approximation Esur(o) controls the shape approxima-
tion of ellipsoids to the given model, and Evol(o) controls the vol-
ume bounding error – both are important to ellipsoid construction.
Thus, in the procedure of ellipsoids generation, we integrate these
two error terms into a hybrid one by taking a weighted sum

Ehyb(o) = α(Esur(o))3 +βEvox(o). (3)

The cubic power on the term Esur(o) is adopted to unify the di-
mension of two terms. The values of α and β indicate the rela-
tive importance that we place on the errors. We can simply choose
α = β = 0.5 to show the same importance on the shape and the
solid approximation, or choose α = 0.8 and β = 0.2 to add more
weight on the shape approximation error.

3.2 Ellipsoids merge algorithm

k children ellipsoids oi+1
j ( j = 1, ...,k) will be generated for bound-

ing the volume Moi ⊂M. As aforementioned, a bottom-up merging
algorithm is adopted. Briefly, Moi is first divided into m uniform
sub-regions where the sampling points falling in each sub-region



Figure 2: The minimal volume bounding ellipsoid (MVE) in gen-
eral is not a minimal error bounding ellipsoid (MEE) in terms of
the shape and solid approximations. To construct the bounding el-
lipsoid for the gray region, the MVE yields both the greater shape
approximation error and the greater volume approximation error to
the given model M consists of 3 regions. MEE gives a better ap-
proximation to M although its approximation to region 1 is not as
good as MVE.

will be enclosed by a minimal volume bounding sphere (ref. [Weltz
1991]). Note that both the surface and the volume sampling points
are considered. The neighboring relationship between ellipsoids (or
spheres) can be very efficiently searched via the voxel structures.
For two ellipsoids, they are defined as being linked if they have
some sample points falling in neighboring voxels. Therefore, all
the m primitives ρi can be presented in a graph G = (V,E), where
E = {ξ1, ...,ξn} is the collection of neighboring linking pairs and
V = {ρ1, ...,ρm} is the set of primitives. After that, the ellipsoids
are greedily merged into k final ellipsoids. Every time the pair of
ellipsoids, whose merging introduces the least hybrid approxima-
tion error, will be chosen. Pseudo-code of the Ellipsoids-Merge
algorithm is as follows.

Algorithm 2 Ellipsoids-Merge
1: Moi is uniformly divided into sub-regions;
2: Construct m spheres by computing the minimal volume bound-

ing sphere for the sampling points in each sub-region;
3: Build the graph G = (V,E);
4: Insert every pair ξ = (ρα ,ρβ ) into a minimal heap H keyed by

the error E(ρnew) of the merged ellipsoid ρnew from ρα and ρβ ;
5: while |V |> k do
6: Remove the top node ξtop = (ρ j,ρk) from H;
7: Merge the two ellipsoids ρ j and ρk into a new one ρnew;
8: Replace ρ j and ρk by ρnew in V ;
9: Update all relevant pairs (linking to ρ j and ρk) in E into pairs

linking to ρnew, and adjust their positions in H;
10: end while

The algorithm starts from generating m minimal volume bound-
ing spheres, where m is adaptively determined. Suppose that there
are n sampling points (including both the surface and the volume
ones) in Moi , the bounding space of Moi is uniformly subdivided
into (n/10) sub-regions. The minimal volume bounding sphere (by
[Weltz 1991]) is constructed by the sampling points in each sub-
region. If no sample point is found in a sub-region, no sphere needs
to be generated for this sub-region.

The merge of two primitives to form a new ellipsoid is repeat-
edly computed in the algorithm Ellipsoids-Merge. Therefore, an
effective and efficient method to compute the bounding ellipsoid
is needed. Our first try is the minimal volume bounding ellip-
soid computation method presented in [Weltz 1991]. However,
this method has two drawbacks. Firstly, the computation of min-
imal volume bounding ellipsoid is not as stable as minimal volume
bounding sphere. For example, if the points to be enclosed are less
than 9, the algorithm fails. Secondly, there is an even more se-
rious problem – minimal volume bounding ellipsoid in general is

Figure 3: An example of applying our Ellipsoids-Merge algorithm
on the horse model: (a) the model approximated by one minimal
volume ellipsoid, (b) 497 initial spheres, (c) after being merged into
26 ellipsoids, and (d) final merging result with 13 ellipsoids.

not a minimal error bounding ellipsoid. Fig.2 gives an illustration
for this. This drawback can only be solved through a global opti-
mization (i.e., the process in section 5), which deforms the shape of
ellipsoids. As the shape will be deformed later, we use a simple but
stable method to construct volume bounding ellipsoids here, which
is derived from [Lengyel 2004].

Another issue to be solved is about the sampling points classifica-
tion. After generating the initial spheres, one sample point p may be
inside several spheres. The point p is firstly classified into the point
set of a sphere whose center is closest to p. In the later merging,
all the sample points belonging to the two ellipsoids under merge
will be classified into the point set of the newly constructed ellip-
soid. Fig.3 shows an example result from our Ellipsoids-Merge al-
gorithm.

4 Variational Ellipsoids Optimization

As the ellipsoids are greedily generated by the Ellipsoids-Merge
algorithm, their approximation to the given model will be further
improved globally in a variational optimization framework.

4.1 Variational optimization algorithm

Giving k ellipsoids, Ω = oi+1
j ( j = 1, ...,k), for approximating Moi ,

a part of the given model, we are going to reduce both the shape and
the solid errors on Ω. At the meanwhile, the volume of Moi should
be fully enclosed by Ω. These requirements can be mathematically
represented as blow

argmin(α(Esur(Ω))3 +βEvox(Ω)) s.t. Eout(Ω)≡ 0 (4)

where (α(Esur(Ω))3 + βEvox(Ω)) is the hybrid approximation er-
ror of Ω to Moi (i.e., Eq.(3)), and Eout(Ω) = Moi ∩Ω denotes the
volume of Moi outside Ω. The constrained objective function will
be minimized through a variational optimization algorithm similar
to the iterative Lloyd clustering method [Lloyd 1982]. Basically,
the variational optimization algorithm has two steps: 1) region seg-
mentation and 2) proxy refitting. Here, the proxy type is ellipsoid.
The algorithm pseudo-code is listed below.



Algorithm 3 Variational-Ellipsoids-Optimization
1: Start the iteration with k ellipsoids from Ellipsoids-Merge;
2: repeat
3: Segmenting all sampling points of Moi into k regions;
4: Each region will be approximated by an optimal ellipsoid;
5: until the determination condition has been satisfied;

Similar to other variational optimization approaches, a hybrid deter-
mination condition is conducted here – once no ellipsoid is changed
or the iteration steps have been more than a user specified number
(e.g., 20 is used in our implementation), the iteration stops.

4.2 Region segmentation

The volume occupied by Moi has to be segmented into k regions
so that each can be approximated by an optimal ellipsoid. Ideally,
we wish the overlap between ellipsoids is as less as possible since
more overlapped ellipsoids will slow down the collision detection.
In our approach, the volume of Moi has been sampled into points,
so we need to segment these points into k non-overlapped regions.
Two possible methods have been investigated.

Method 1 For a point pk in the sampling point set Γ of Moi , if
pk is only enclosed by a single ellipsoid oi

j , pk is classified into the
j-th region; if pk is inside of several ellipsoids, pk belongs to the
q-th region if the center of oi

q is closest to pk.

Method 2 For a point pk ∈ Γ of Moi , if pk is only inside a sin-
gle ellipsoid oi

j , pk is classified into the j-th region; if pk is in-
side several ellipsoids, pk belongs to the q-th region if the ellipsoid
oi

q shows the smallest hybrid approximation error, Ehyb(oi
q) (i.e.,

Eq.(3)).

The first segmentation method is distance-based, and the second
is error-based. For the distance-based segmentation, it essentially
approximates the Voronoi diagram in the overlapped region of el-
lipsoids. Although a Voronoi diagram segments space into convex-
hull, however this property is only limited in the overlapped region.
In general, this distance-based method still produces concave re-
gions which waste a lot of space in ellipsoid approximation (e.g.,
the bottom green region in Fig.4(b) is very concave). Our second
segmentation method is error-based. It is generated from the idea
that: we want to reduce the volume of the ellipsoid whose approx-
imation error is greater so that it can be optimized more flexibly in
the later ellipsoid refitting process. The examples shown in Fig.4
and Fig.5 illustrate the difference of these two segmentation meth-
ods. It is clear to see in Fig.4(c) that the segmented region by the
distance-based method for the most right ellipsoid prevents the fur-
ther optimization of its shape. When employing the second seg-
mentation method, the region for the most right ellipsoids (which
shows the greatest error in the initial ellipsoid approximation) is
reduced (see Fig.5(b)). Therefore, the approximation on it can be
significantly improved after the ellipsoid refitting.

4.3 Ellipsoid refitting

Giving a set of points Γ j which have been classified to the ellip-
soid o j , we need to compute the optimal shape of o j by Γ j . In Γ j ,
some of the points are surface sampling points ΓS

j and others are
the volume sampling points ΓV

j (i.e., Γ j = ΓS
j ∪ΓV

j ). As analyzed in
section 3.1, a good approximation of o j to Γ j should minimize the
shape approximation error between o j and ΓS

j in terms of Esur (i.e.,

Figure 4: The distance-based segmentation method: (a) initial
bounding ellipsoid set, (b) the region segmentation result, and (c)
the ellipsoid set after refitting.

Figure 5: The error-based segmentation method: (a) initial bound-
ing ellipsoid set, (b) the region segmentation result, and (c) the el-
lipsoid set after refitting.

Eq.(1)) and the solid approximation error between o j and M de-
fined by Evox (i.e., Eq.(2)). Meanwhile, the consecutive occupation
constraint Eout discussed in section 4.1 should also be considered.
Therefore, the ellipsoid refitting is formulated as a constrained op-
timization problem, where the solution minimize the following ob-
jective function which is derived by the penalty function method.

J(o j) = α(Esur(o j))3 +βEvox(o j)+ γEout(o j) (5)

where the value of Eout(...) is evaluated by the number of point in
Γ j but outside o j multiplying the volume of a voxel. As a penalty
term, an extremely large value should be chosen for the coefficient
γ weighting Eout(...). We choose 103 for all our examples, and the
bounding boxes of all models are scaled into unit size.

A good initial value is important for variational optimization.
Therefore, once getting the segmented point set, Γ j , we conduct
the method presented in section 4.2 to construct a new bounding
ellipsoid onew

j for Γ j . onew
j or the previous ellipsoid o j , which gives

less error on Ehyb(...) (i.e., Eq.(3)), is chosen as the initial ellipsoid
to be optimized. The objective function in Eq.(5) is minimized by
using the Downhill Simplex Method. The progressive results from
this variational ellipsoid optimization on a bunny model are given
in Fig.6.

5 Experimental Results

We have implemented the approach presented in this paper and
tested it on several models. As mentioned at the beginning of this
paper, when approximating a given model M by an ellipsoid-tree,
the approximation errors in terms of shape and solid need to be op-
timized at each level of the hierarchy. Without loss of generality,
at one particular level i of the ellipsoid-tree, M is approximated by
the union of n ellipsoids – denoted by Y i = oi

1∪ ...∪oi
n, The shape

approximation error between Y i and M is defined as the Hausdorff
distance between the surface ∂Y i of Y i and the surface ∂M of M

L∞(∂Y i,∂M) = max{ sup
x∈∂M

inf
y∈∂Y i

‖x− y‖, sup
y∈∂Y i

inf
x∈∂M

‖x− y‖}. (6)



Figure 6: Progressive results for the variational ellipsoid optimiza-
tion: (a) the initial ellipsoid set generated by Ellipsoids-Merge,
(b) the temporary ellipsoids set after one optimization step in the
Variational-Ellipsoids-Optimization algorithm, (b) the result after
3 steps, and (c) the final result (after 6 steps).

The solid approximation is defined as

V out(Y i,M) =
∫ ∫ ∫

x∈Y i
δ (x,M)dV (7)

with M representing the space outside M and

δ (x,Ω) =
{

1 ∀x ∈Ω
0 otherwise .

To evaluate L∞(∂Y i,∂M), we sample ∂M and ∂Y i into points and
compute L∞ between these two point sets. Note that every sampling
point for ∂Y i should be a point on the surface of an ellipsoid but not
inside other ellipsoids in Y i. V out(Y i,M) is evaluated by the Monte
Carlo method – randomly sampling the bounding space ϒ of Y i into
m points, if there are n points outside M but inside an ellipsoid of
Y i, we have

V out(Y i,M)' n
m

Vϒ (8)

where Vϒ is the volume of ϒ.

Three models – the human model in Fig.1, the horse model in Fig.7,
and the bunny model in Fig.7, are tested. Starting from the mini-
mal volume bounding ellipsoid, four levels of the ellipsoid-tree are
shown. The shape and the solid approximation errors in Eq.(9) and
(10) have been evaluated at each level of the hierarchy. The statis-
tics for the errors have been shown in Fig.9. It is easy to find that
with the refinement of the hierarchy, both L∞ and V out are signifi-
cantly decreasing.

As the state-of-the-art method for sphere-tree construction, the
adaptive medial axis approximation (AMAA) method [Bradshaw
and O’Sullivan 2004] is chosen as the benchmark for our ellipsoid-
tree construction method. The sphere-trees for the same three mod-
els are given in Fig.1 and Fig.8. The sphere-trees are generated with
the same number of primitives at each level as the ellipsoid-trees in
Fig.1 and Fig.7. The best strategy in [Bradshaw and O’Sullivan
2004] (i.e., the expand and select scheme) is employed to construct
the sphere-trees. The approximation errors L∞ and V out of the
sphere-trees are also shown in Fig.9. From the statistics in Fig.9,
it is not difficult to find that both the shape approximation error and
the solid approximation error of an ellipsoid-tree are much smaller
than a sphere-tree when using the same number of primitives. We
also observe that the error differences between ellipsoid-tree and
sphere-tree are decreasing during the refinement of the hierarchy.
This is because that the subdivided volumes tend to be isotropic
during the refinement. Furthermore, the ellipsoid-tree shows its
strength for approximating the human and the horse rather than the
bunny model. This is because that the shape of previous two exam-
ples are more complex.

The computation cost of the current implementation is relative ex-
pensive. For computing an ellipsoid-tree with about 260 ellipsoids
(e.g., the horse example), it takes about 500 seconds on a PC with

Figure 7: The ellipsoid-tree for two models: the horse and the
bunny — four levels are shown. The ellipsoids in level 1 are dis-
played in different colors, and their children and children’s children
shown in the later levels follow these colors. The horse example is
computed with α = 0.8 and β = 0.2, and the bunny example is with
α = 0.85 and β = 0.15.

standard configuration. The expensive computation limits it to gen-
erate ellipsoid-tree with more than a few hundred ellipsoids. Fortu-
nately, the approximation of objects with ellipsoids in such a limited
number of primitives is sufficient for many real-time applications.
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