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ABSTRACT
We present a robust method to generate mesh surfaces from
unoriented noisy points in this paper. The whole proce-
dure consists of three steps. Firstly, the normal vectors
at points are evaluated by a highly robust estimator which
can fit surface corresponding to less than half of the data
points and fit data with multi-structures. This benefits
us with the ability to well reconstruct the normal vectors
around sharp edges and corners. Meanwhile, clean point
cloud equipped with piecewise normal is obtained by pro-
jecting points according to the robust fitting. Secondly, an
error-minimized subsampling is applied to generate a well-
sampled point cloud. Thirdly, a combinatorial approach is
employed to reconstruct a triangular mesh connecting the
down-sampled points, and a polygonal mesh which preserves
sharp features is constructed by the dual-graph of triangu-
lar mesh. Parallelization method of the algorithm on a con-
sumer PC using the architecture of GPU is also given.

Categories and Subject Descriptors
I.3.5 [Computational Geometry and Object Model-
ing]: Boundary representations – Curve, surface, solid, and
object representations

Keywords
Surface reconstruction, robust approach, noisy points, par-
allel computing, GPU

1. INTRODUCTION
The surface reconstruction from unoriented noisy point clouds
has been problematic for more than decades in applications
of computer graphics, virtual reality and CAD/CAM. At
present, there are many 3D surface scanning devices avail-
able (using different sorts of methods like structured light,
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stereo vision based scanners). These devices always gener-
ate unstructured clouds of measurement points in ℜ3. With
no surprise, measurement noises embedded in these points
cannot be avoided, which make the downstream mesh re-
construction very troublesome.

The existing work in literature can be classified into two
major groups: 1) computational geometry approaches and
2) volumetric reconstruction techniques. The computational
geometry approaches are usually based on the Voronoi dia-
gram of a given point cloud and reconstruct a mesh surface
directly linking the input samples. Normal information is
not required. However, it is generally difficult to avoid in-
cluding noises in the final reconstructed surface. Moreover,
as both the memory and the time cost to compute Voronoi
diagram are expensive, these approaches are always applied
to small or medium size of cloudy points (e.g., input with
less than 30K points).

The volumetric reconstruction techniques attempt to build
a signed implicit function that interpolates or approximates
the point cloud samples, and then reconstruct its isosurface
using, e.g., the Marching Cubes algorithm [28]. Neverthe-
less, the computation of such a signed implicit function re-
quires the point cloud samples to be equipped with normal
vectors, which can hardly be obtained directly from scanning
devices. The estimation of normals on given cloudy points is
actually one of the most critical steps in the reconstruction
pipeline – especially when the points are in the presence of
noise, sharp features, or thin structure. Although the input
samples can be denoised slightly by applying the approxima-
tion scheme of implicit function reconstruction (e.g., [34]),
the sharp features are always blurred together with noise.
Furthermore, the approximation techniques like least-square
fitting in general cannot satisfactorily handle the outliers.

We present a robust mesh reconstruction method from noisy
point in this paper. In contrast to existing approaches, we
evaluate normal vectors on noisy point cloud by a highly ro-
bust estimator which allows us to reconstruct normals that
well preserve sharp features. The points are projected to
the robustly fitted surface. The resultant clean massive
points are further down-sampled into user specified number
of points. The subsampling is based on an iterative cluster-
ing algorithm and with the shape-approximation-error min-
imized. Note that, as only the position and the plane at
a sample are required in the subsampling, the direction of
normals determined in the first step is unnecessary to be con-



Figure 1: Overview of our robust mesh reconstruction pipeline: (leftmost) the given fandisk model with 18%
Gaussian noises randomly distributed in the range of 0.5% of the bounding box’s diagonal length, (left) the
fandisk model with normals estimated and outliers removed, (middle) the clustering result of subsampling
and the points in different colors belong to different clusters, (right) the triangulation result on down-sampled
points, and (rightmost) the final resultant mesh model with sharp features reserved.

sistently pointing outwards (or inwards). Lastly, a combi-
natorial approach is employed to connect the down-sampled
points into a triangular mesh and its dual-graph, a polyg-
onal mesh preserving sharp features, is computed. Figure
1 gives an overview of the steps in our approach. In order
to borrow the advanced computational power available on
consumer PCs, the time-consuming steps of robust normal
estimation and subsampling have been parallelized using the
architecture of GPU.

Main results The main results of this paper fall in the
following aspects:

• A highly robust and parallel normal estimation and
point projection method for noisy point cloud, which
preserves the shape of sharp features;

• A parallel subsampling method of points with shape-
approximation-error minimized;

• A new efficient mesh reconstruction pipeline based on
the above two techniques.

Thanks to the most advanced parallel computation power
which is available on consumer PCs, the efficiency of our
approach becomes much outstanding.

2. RELATED WORK
The related works in the aspects of volumetric reconstruc-
tion, combinatorial approaches, robust statistics in surface
reconstruction, down-sampling of massive points, and stream-
ing and parallel computing are reviewed.

Volumetric reconstruction: Pioneered by the work of
Hoppe et al. [17], the approaches in this category always
start from estimating normals by a local principal compo-
nent analysis (PCA), followed by a graph search to unify
their inside/outside direction. Then, the samples equipped
with normals are used to construct an implicit function in

the forms of signed distance field [17, 16], piecewise algebraic
surfaces combined with α-shape [6], globally supported ra-
dial basis functions (RBF) [44, 9], compactly supported RBF
[36], blended quadratic functions [33, 34, 47], or 3D indica-
tor functions [22, 23, 7, 2]. Afterwards, a marching cubes
algorithm [28] is employed to reconstruct the surface at the
zero level-set of the implicit function. All these approaches
rely on the input of oriented points, which is however dif-
ficult to obtain from scanning devices. Recently, Hornung
and Kobbelt developed a method in [18] to reconstruct wa-
tertight 3D models from point clouds without normal in-
formation. They converted the surface reconstruction into
a minimum cut problem of a weighted spatial graph struc-
ture. A mesh template fitting based method was proposed
in [38] to realize a similar function. However, there is no
direct extension of these methods to generate mesh surface
preserving sharp features.

combinatorial approaches: The problem of mesh recon-
struction was also approached from the computational geo-
metric point of view. Amenta et al. in [3, 5] gave a provable
guarantee of reconstructing a correct model given a mini-
mum sampling density dependent on the local feature size.
Recently, the approach was extended to be able to handle
noisy input in [30]. However, as they did not remove outliers,
the quality of resultant meshes was not good. Several varia-
tions of [3] are available in [4, 12, 13]. Recently, Kuo and Yau
in [24] proposed a combinatorial algorithm to triangulate a
given point cloud with sharp features. When applying their
algorithm to practical data sets, there are two difficulties:
1) similar to other combinatorial approaches, it is sensitive
to noise and 2) the measured points rarely locate along the
sharp features. Furthermore, it is uneasy to apply this sort
of method to massive points.

Robust statistics in surface reconstruction: The com-
puter graphics community pays more attention to the ro-
bust statistics based methods recently. Ivrissimtzis et al.
[19] employed neural network as a triangular mesh to con-



nect sample points and updated the mesh respectively. A
method to quantify uncertainty in point cloud data by an-
alyzing how far a point agrees with locally weighted planes
has been proposed in [29]. The authors in [42] used support
vector machine for reconstruction, hole filling and morphing
between data sets. Schall et al. in [37] employed locally de-
fined kernels to analyze the point neighborhood, and then
computed a global surface probability distribution. How-
ever, all these approaches did not solve reconstruction prob-
lems of a surface fitting corresponding to less than 50% of
the data points or a surface fitting to multi-structure. Such
problem was first addressed in [15] by a forward search ap-
proach, but they projected points onto moving least squares
(MLS) surfaces instead of reconstructing explicit meshes.
Another projection operator, Locally Optimal Projection
operator (LOP), is introduced by Lipman et al. in [26].
The LOP shows high robustness to noise and outliers, but
the problem of preserving sharp features is not considered.
The techniques employed in [14] and [20] are quite simi-
lar, where both used a Gaussian error model in conjunction
with surface priors and performed numerical optimization to
maximize the posterior probability of the model. The work
in [14] focuses on a given triangular mesh, and Jenke et al.
in [20] processed point clouds into well-sampled ones with
noise removed. Nevertheless, since they are based on re-
gion growing, their computations are very time-consuming
and can hardly be parallelized. Unlike [15] and ours, the
method in [14] relies on the sharp edge identification and
it may fail if the noise is less than the selected curvature
threshold. Moreover, as shown in Fig.3, ours outperforms
the method of [15] on the point set with a very low signal-
to-noise ratio.

Down-sampling of massive points: Given a point set,
the decimation process in [1] repeatedly removes the point
that contributes the smallest amount of information to the
shape. Kalaiah and Varshney [21] represented surfaces by
a sampled collection of differential points and offered a novel
point-based simplification technique that factored in the com-
plexity of local geometry. Song and Feng [41] studied the
problem of point cloud simplification by searching for a sub-
set of the original input data set according to a user-specified
number of points. The time cost of computing in these ap-
proaches however is very expensive, and they are difficult to
be parallelized. A technique very similar to ours was [45]
where Valette et al. proposed a local update scheme, but
not K-means or Lloyd relaxation [27, 11], to compute Con-
strained Voronoi Diagram (CVD) on a given mesh surface,
and then remeshed the given surface according to CVD. The
most important difference between theirs and our work is
that they tried to locate the seeds of Voronoi diagram along
sharp features, which however in general cannot be guar-
anteed (e.g., the result in the last figure of [45]). Here, we
approximate the given cloud points with a set of proxies (i.e.,
Voronoi diagram). No matter the seeds of Voronoi diagram
are along the sharp features or not, we can still reconstruct
sharp features by using the points coupled with the normals.

Streaming and parallel computing: The Streaming tech-
nique has been employed in surface reconstruction from mas-
sive points for a long time, where the most recent work was
[7]. Recently, Buchart et al. [8] proposed a GPU imple-
mentation of reconstruction by local Delaunay triangulation.

Figure 2: A single outlier can greatly distort a least
squares fit: (left) no outlier and (right) one outlier
only. Increasing the order of fitted model does not
help either.

However, the noisy input has not been considered. In [48], a
GPU-based implementation of [23] has been developed us-
ing NVIDIA’s CUDA. Nevertheless, the reconstruction with
sharp features and the reconstruction on noisy input have
not been addressed.

3. ROBUST NORMAL ESTIMATION AND

PROJECTION
In our work we deal with fitting a surface to the local shape
at a sample point in ℜ3. Then the point is projected onto
the fitted surface and the normal vector of the projected
point is estimated. The most classical method for fitting a
model to data is linear regression using least-squares. How-
ever, as carefully discussed in [15], a single sample with a
large error, an outlier, can change the fitted model arbitrar-
ily. More specifically, as shown in Fig.2, a single outlier
can fail a least-squares fit. Robust estimation techniques
try to fit a model to data that contain outliers. Here, we
choose a very robust one – Maximum Density Power Esti-
mator (MDPE) and adopt it in a highly parallel algorithm
of normal estimation and projection.

3.1 Robust Estimator
A robust estimator of local shape is very useful and impor-
tant when the given point sets are in the presence of noises.
Generally speaking, when a model is correctly fitted, the
following two criteria should be satisfied:

• There are as many as possible data points on or near
the model;

• The residuals of inliers should be as small as possible.

The least squares method uses the second criterion as its
objective function to minimize the residuals without distin-
guishing the inliers from outliers. MUSE [31], the technique
employed in [15] tries to minimize the scale estimate pro-
vided by the kth ordered absolute residual instead of mini-
mizing the residual of inliers. Wang and Suter presented an
estimator, MDPE, in [46] which considers both of these two
criteria in its objective function. In comparison, it outper-
forms other estimators (RESC, ALKS, LMedS, RANSAC
and Hough Transform) by tolerating more than 85% of out-
liers. MDPE is based on the strategy of random sampling to
choose p points (called a p-subset) and then determine the
parameters of a model for this p-subset, where for example
p = 2 for a line, p = 3 for a circle or plane, and p = 6 for



a quadratic curve. It finally outputs the parameters deter-
mined by a p-subset with the minimum or maximum of the
respective objective function.

Briefly, if the model to fit has been correctly estimated in
MDPE, the data points on or near the fitted structure should
have high score in the following probability density power
function

DP =

∑

Xi∈Wc
f̂(Xi)

exp(|Xc|)
(1)

where Xc is the center of the converged window Wc obtained
by applying the mean-shift procedure, and f̂(Xi) is the mul-
tivariate kernel density estimator defined on a set of points
{Xi}i=1,...,n in a d-dimensional Euclidean space ℜd as

f̂(x) =
1

nhd

n
∑

i=1

K(
x−Xi

h
) (2)

with the window band-width h and the Epanechnikov ker-
nel K yielding minimum-mean integrated square-error. The
kernel is defined as

K(X) =

{

1
2
c−1

d (d + 2)(1−XT X) XT X < 1
0 else

(3)

where cd is the volume of a unit d-dimensional sphere, e.g.
c1 = 2, c2 = π, and c3 = 4π/3. d = 1 is employed in our fol-
lowing normal estimation and outlier removal. The method
used to compute the center Xc of a converged window Wc

via mean-shift has been listed in Appendix A.

3.2 Normal Estimation and Projection
The above estimator is conducted to find a quadratic surface
best fitting the local shape around a sample x. The basic
idea is that, p points are randomly selected from the neigh-
bors N(x) of the given sample x to fit a quadratic surface
S, and then the probability density power DP according to
this fit S is evaluated by the residuals of points in N(x) to S.
The estimation will be repeated for m times, and among the
m fits, the surface with the maximal score in DP is utilized
as the robust fitting result.

More specifically, the robust estimation starts from choos-
ing a search window radius h for MDPE and a repetition
count m. The value of h greatly affects the robustness, the
smaller h is used, the more sensitive to noises the estimator
is. However, some inliers may be ignored if h is too small.
By experiences, we choose h = 2L̄ in all our examples (ex-
cept the model with nonuniform point density), where L̄ is
the average of point distances on the given model. Theo-
retically, the value of m relates to the probability P that at
least one clean p-subset is chosen from m p-subsets as

m =
log(1− P )

log[1− (1− ε)p]
, (4)

where ε is the fraction of outliers.

After randomly selecting p-subset, the points are used to
form a quadratic surface S. Here, we first compute the cen-
troid of the p points, and employ the principal component
analysis (PCA) to form a local coordinate-frame at the av-
erage position (ref. [35]). Then, the surface S

S(s, t) = as2 + bt2 + cst + ds + et (5)

(a)

(b)

(c)

Figure 3: Robust estimator. (left column) The point
set with 240K samples of a cube model embedding
(a) 6% of noises, (b) 25% of noises and (c) 70%
of noises. (middle column) RMLS starts to fail at
25% of noises. (right column) Our approach with
the points successfully projected even at 70% noises.
Points are displayed with color-coded normals.

is fitted by the mapped coordinates of these p points at this
local coordinate-frame. Fleishman et al. in [15] suggested to
let p equal the number of parameters in a quadratic surface
to fit. Here we do not let p = 5 although there are only
five parameters (a, b, c, d, e) to be determined in Eq.(5). In-
stead, we use p = 6 and then determine S(s, t) by computing
the least-square solution with singular value decomposition
(SVD), which makes the model fitting numerically more sta-
ble.

By a fit, the residuals of all points in N(x) to the determined
surface S(s, t) are used as input to the mean-shift procedure
to compute a converged window. Note that, the mean shift is
conducted in one-dimensional space – signed residual space.
Lastly, the value of the probability density power function,
DP in Eq.(1), is scored for this fit, S. The surface fitting
will be applied for m times. Among all m fits, the fitted
surface with maximum DP is regarded as the best surface
S∗. Then the projected position x, of x is the closest point
xc ∈ S∗ to x which is searched by Newton’s method. The
normal of surface S∗ at xc is employed as the normal vector
to equip x,.

Using the value of m defined in Eq.(4) as the number of
repetition is impractical. There are two reasons for this.
Firstly, we do not know the value of ε, the fraction of out-
liers. Secondly, using a value of m computed by Eq.(4) can-
not guarantee to find a good fit among random selections,
and it can be much higher as discussed in [43]. Therefore,



Figure 4: Performance comparison of different es-
timators at a highly noisy corner region: (a) the
forward search misclassifies the regions as LMS fails
to obtain a good initial fit, (b) the kth order esti-
mator over classifies the regions, thus a surface re-
gion is mistakenly recognized on outliers, and (c) our
MDPE based estimator does not have these prob-
lems – only the best fitted surface is estimated.

we use a more practical solution in our algorithm. After as-
signing a fixed number for m (e.g., m = 300), we can obtain
a relatively clean point cloud with singular normal on very
few isolated samples. Taking the cloudy points of the cubes
in Fig.3 with different percentages of noises as an example,
we can successfully project the points onto the cubes while
[15]’s RMLS starts to fail at 25% of noise. The ability to fit
surface corresponding to less than 50% of the data points is
very important to the correct normal estimation on samples
near sharp features where there are multi-structures.

3.3 Comparison with RMLS
The approach in [15] requires a robust initial estimator to
start the forward search algorithm. It is essential for the
initial estimator to fit an outlier-free surface as the for-
ward search is carried out based on this initial guess. They
adopted kth ordered-statistics [31] to grade the fitted sur-
faces instead of using least median of squares (LMS). In
Fig.4, we compare the influence of LMS and kth order to
the forward search with the MDPE at a corner of noisy re-
gion. We can clearly notice from Fig.4(a) that the forward
search misclassifies the region as LMS fails to obtain a good
initial fit. With kth order statistics, a good initial fit can be
obtained but the region is over classified to four surfaces at a
corner which actually contains three surfaces only as shown
in Fig.4(b). This is because one forward search is conducted
on outliers. It is however difficult to determine whether the
regions classified by forward search belong to outliers or real
surfaces. Hence, the point would be projected to a wrong
position. In contrast, our approach only estimate the best
fitted surface among the noisy region with MDPE as demon-
strated in Fig.4(c). This ensures that the point is projected
to the correct surface. Note that if the point is outside of
the actual model, there is a chance for the point to be pro-

Figure 5: A miss-projected point outside the model
(left) can be eliminated by the clustering (middle)
and the subsequent subsampling (right).

jected on an invalid position. Nevertheless, such points are
eliminated in the following subsampling step as illustrated
in Fig.5.

3.4 Highly Parallel Implementation
Similar to all other random sampling techniques, the com-
putation of robust estimators is very costly in time. Run-
ning the above algorithm on an advanced PC with 250K
points takes about one and a half hours. Different from
the techniques employed in [15, 14, 20], the proposed esti-
mation method in this paper can be parallelized using the
single-instruction-multiple-data (SIMD) parallelism and the
architecture that is available on the consumer graphics hard-
ware with the graphics processing unit (GPU). We first pass
and store all samples in the given point cloud to the tex-
ture memory of graphics card. Then, the ANN KD-tree [32]
is adopted to find k nearest neighborhoods of every sam-
ple. Following the suggestion of [15] using k = 6p neighbors
gives good results in our tests. Since the KD-tree does not
allow multiple accesses at the same time, we store the query
result in a neighborhood information table for later usage.
Afterwards, records of the table are passed to the Algo-
rithm Normal Estimation and Point Projection to evaluate
the normal vectors and identify outliers in a streaming man-
ner. Because of the texture memory limitation on a graphics
card, we process 2048 samples in each pass. The parallelism
is easy to implement using NVIDIA’s CUDA library.

Algorithm 1 Normal Outlier Estimation

1: Initialize DPmax of a given sample x by zero;
2: for i = 1 to m do
3: Randomly choose p points to form a p-subset, Pi;
4: Fit a quadratic surface S to Pi;
5: Compute the signed residuals for all neighbors of x;
6: Use the mean shift procedure to determine the center

Xc of converged window on the residuals;
7: Evaluate DPi by Eq.(1);
8: if DPi > DPmax then
9: DPmax ⇐ DPi and Pmax ⇐ Pi;

10: end if
11: end for
12: Fit a quadratic surface S∗ to Pmax;
13: Find the closest point xc on S∗ to x;
14: x, ⇐ xc;
15: Let the surface normal of S∗ at xc be the normal of x,;

4. SUBSAMPLING
It is impractical to generate a mesh connecting the cleaned
massive points as the number is huge. Therefore, we down-
sample the point set into user specified number of points



Figure 6: Using the shape error measurement ob-
tained by the proxy plane passing site point cannot
avoid moving site point away from the surface near
sharp features; however, this can be avoided using
our shape prior energy term Eshape(x) which gives
larger error. The samples in different colors belong
to different clusters.

to be further triangulated. In order to control the quality
of subsampling, we develop an energy minimization based
method that groups the given massive points into clusters.
The shape of points in a cluster is then approximated by
a proxy represented by a site point, which is the average
position of all points in this cluster.

4.1 Energy Function
The formulation of energy function in clustering is based on
two criteria:

• The distribution of clusters should enable their proxy
best approximate the shape of the given model.

• Clusters should maintain a disk-like shape.

To satisfy them, we define two energy terms to score clusters.

Distance Energy To control the disk-like shape of clus-
ters, we introduce an energy term based on distance accord-
ing to the site point pi of a cluster Ci as

Edist(x) = ‖x− pi‖
2. (6)

Shape Prior Energy Our shape prior energy is

Eshape(x) = ‖(x− pi) · nx‖
2. (7)

Note that, different from [11, 41], we employ the normal
vector nx at a sample x but not using the normal vector of a
proxy as EP

S (x) = ‖(x−pi)·npi
‖2 with npi

being the average
normal of all samples in the proxy. This is because using a
metric with the proxy normal does not sensitively reflect
the shape-approximation-error when the cluster is crossing
a sharp edge. For example, in Fig.6, the site point is far from
the original surface but shows zero energy by EP

S . Locating
a site point far from the original surface will introduce large
shape error on later generated mesh surfaces. Such error can
hardly be recovered and should be prevented. Differently,
using Eshape defined in Eq.(7) will draw the site points of
optimization result near the given point cloud, which will
generate mesh surfaces with small shape errors.

The energy on a cluster Ci is

E(Ci) = w1

∑

x∈Ci

Edist(x) + w2

∑

x∈Ci

Eshape(x), (8)

and the global energy of a clustering is defined by adding
the energy terms of all clusters together as

Eglobal =
∑

i

E(Ci). (9)

We choose w1 = 0.1 and w2 = 0.9ς with

ς =
avg{Edist(x)}

avg{Eshape(x)}
(10)

defined according to the initial clustering to balance the
weight between Edist and Eshape in Eq.(8).

4.2 Clustering Optimization and Subsampling
Firstly, an initial clustering is performed to partition the
cleaned point cloud into n, a user specified number, clusters.
n points are randomly selected from the point cloud as site
points of clusters and are inserted into a KD-tree. Then, the
cluster ID of every rest point is assigned by querying the
closest site point through the KD-tree. This initialization
step in general can be completed very fast.

Secondly, the clustering is optimized by minimizing the global
energy in Eq.(9) with an iterative algorithm. A clustering
can be optimized just according to the tests on the bound-
ary points between different clusters. Given a boundary
point xb ∈ Ci adjacent to another cluster Cj (i 6= j), shift-
ing p from the cluster Ci to the cluster Cj will change the
energy locally on E(Ci) and E(Cj). Therefore, the clus-
ter ID of xb is changed from i to j if such shifting reduces
the global energy. Due to the local manner of clustering up-
date, the optimization step can be parallelized to employ the
computing power of GPU. The k-nearest neighbors of each
sample are pre-computed by the spatial partition techniques
(e.g., KD-tree) and stored in a neighboring information ta-
ble. Choosing k = 10 balances both the quality and the
speed. Through this table, we can detect every sample if it
is on the boundary in parallel by comparing its cluster ID
with the cluster IDs of its neighbors. The cluster shifting
of a boundary point by comparing the local energy change
can also be performed in parallel. We have implemented the
Algorithm Clustering Optimization on GPU.

Algorithm 2 Clustering Optimization

1: repeat
2: for each cluster Ci in parallel do
3: Update the site point to the average position of all

points in Ci;
4: Find the boundary points in Ci;
5: end for
6: for each cluster Ci in parallel do
7: for each boundary point xb ∈ Ci do
8: for neighbors xj ∈ Cj of xb do
9: if moving xb to Cj reduces the energy then

10: Update the cluster ID of xb;
11: end if
12: end for
13: end for
14: end for
15: until the change of Eglobal is less than 1%;

Lastly, we take the site points equipped with the normals at
their closest points as the subsampling result.



Figure 7: Reconstruction of sharp features: (left)
sharp features are destroyed on the mesh surface
generated by Tight-CoCone, (middle) the vertices
(i.e., down-sampled points) are equipped with ro-
bustly estimated piecewise – planes are displayed
for showing the normal directions at vertices, and
(right) the sharp feature can be reconstructed by
the vertices on the dual graph mesh whose positions
are determined by minimizing QEF using SVD.

5. MESH GENERATION
We first triangulate the down-sampled points into a surface
M by the Tight-CoCone algorithm [13]; however, the sharp
features are chamfered (as seen in the left of Fig.7). To re-

cover sharp features, we generate a dual-graph M̃ of M by
converting each vertex in M to a polygon and each triangle
Ti ∈ M into a vertex vi ∈ M̃ . As every vertex in M gen-
erated from the down-sampled point cloud is equipped with
a piecewise normal vector, we locate vertex vi ∈ M̃ by the
position which minimizes the Quadratic Energy Function
(QEF) defined by the three vertices in Ti and their normals.
To be robust, the position is computed using the Singular
Value Decomposition (SVD). The resultant polygonal mesh

M̃ thus preserves sharp features quite well.

5.1 Initial Surface Reconstruction
Our task here is to reconstruct an initial surface by connect-
ing the down-sampled points. Based on the clustering result,
we can form triangular faces using the connectivity of clus-
ters which can be easily obtained by comparing the cluster
ID of neighboring points. Although such triangulation can
be performed locally resulting in very fast processing time,
the reconstructed mesh cannot be avoided from containing
holes and non-manifold parts. Hence, we adopt the Tight-
CoCone algorithm which can guarantee the two-manifold
topology on resultant triangular meshes.

5.2 Computing Dual-Graph
Locating vertex vi ∈ M̃ actually is a task to find the opti-
mal position in collapsing the triangles Ti ∈ M . The ideal
vertex position should minimize the deviation from all the
planes defined on vi ∈ Ti that are equipped with normals ni.
Here, the normal at each vertex is computed by the robust
estimation method described in section 3. In other words,
such position must have the minimum distance to the planes
(x− vi) · ni = 0.

More specifically, consider one vertex vi ∈ Ti, the quadratic
distance of an arbitrary point x from the supporting plane
of that vertex is defined as

(nT
i x− di)

2 (11)

where ni is the normal vector of vi and

di = (vi − v̄) · ni (12)

Figure 8: Reconstruction of the Octa-flower model:
(top) input points with 18% of noises added, (mid-
dle) reconstruction using RMLS for normal estima-
tion and point projection. and (bottom) our ap-
proach can successfully reconstruct the sharp fea-
tures that are damaged when using RMLS to esti-
mate normals and project points.

where v̄ is the average of vi ∈ Ti. Thus, the objective func-
tion for minimization is given by

E(x) =
∑

i

(nT
i x− di)

2 (13)

The iso-contours of this error function are ellipsoids and
hence this function is called the Quadratic Energy Function
(QEF). The minimized position is given by the solution of

(
∑

i

nin
T
i )x = (

∑

i

nidi) (14)

The above system of equations can be solved directly if the
matrix has full rank, i.e. the normal vectors ni are not
parallel to each other. In order to make the solution robust
and avoid handling of special cases, the SVD is used here.
As illustrated in the middle of Fig.7, two normals are almost
parallel; the sharp corner however can still be reconstructed
on M̃ .

6. RESULTS AND DISCUSSION
We have implemented the proposed algorithms into a pro-
totype system by C++. NVIDIA’s CUDA library is utilized
to implement the parallel algorithms on GPU. Our test plat-
form is a PC with two Intel Xeon 2.8GHz quad-core CPU
and 4GB main memory. The PC also has a graphics card
with NVIDIA GeForce 9800 GTX GPU and 512MB mem-
ory, and runs Windows Vista operating system.

To test the robustness of our approach in handling the noises
and sharp features, we added noises (see Appendix B for de-



Figure 9: Reconstruction of the Gear model: (top)
input points with 11% of noises added, (middle) re-
construction using RMLS for normal estimation and
point projection, and (bottom) our approach can
successfully reconstruct the surface with sharp fea-
tures from large amount of points.

tails of noises generation) to the original point cloud with
specified percentage of amount. In addition, we compare
our results with RMLS [15] by embedding RMLS into our
mesh reconstruction pipeline for the estimation of normals
and projection of points. The first example we tested is the
Octa-flower with 18% of noises as shown in Fig.8. The thin
and sharp features have been successfully reconstructed by
our approach but damaged by RMLS. A mechanical model
Gear which contains huge number of points is distorted with
11% of noises and the reconstructed surfaces using RMLS
and our approach are given in Fig.9. A much more compli-
cated mechanical model Hub is distorted with large amount
of noises and the results are demonstrated in Fig.10. In
order to test the performance of our method on sculpture
objects, we choose the Dragon model in Fig.11 with 18%
of noises. The computational statistics of all these exam-
ples are listed in Table 1. Benefited from the parallelization
of our algorithms, the speed of our surface reconstruction
outperforms other methods using robust estimators. Model
of half a million points only needs about five minutes to
process. Another interesting study is to measure the shape
error of reconstructed models to original models. We adopt
the publicly available Metro tool [10] to measure the rela-
tive Emean and Emax errors w.r.t. the diagonal lengths of
bounding boxes. To visualize these errors, we use another

Figure 10: Reconstruction of the Hub model: (top)
input points with 21% of noises added, (middle) re-
construction using RMLS for normal estimation and
point projection, and (bottom) our approach can re-
construct the mesh surface from the input with high
amount of noises.

mesh comparison tool, PolyMeCo [40], to illustrate the ge-
ometric differences between the reconstructed meshes and
the original ones. Figure 12 shows the comparison results
of the corresponding models using a common color scale. It
can be concluded from the statistics in Table 1 and the vi-
sualizations that our method generates very small errors on
reconstructed models.

In Fig.13, we further compare the performance of normal
estimation and point projection between our approach and
RMLS on an example of edge. When the noise level is in-
creasing, our approach can still project the points onto the
surface and estimate the normals correctly. Contrary, RMLS
starts to produce errors at 10% noise and totally fails at 60%
noise as demonstrated by the points that are color-coded
with normals in Fig.13(b). In short, our approach is much
more robust with the use of MDPE.

For real raw data, noises usually are not present everywhere.
It is therefore impractical to perform the robust estimation
for all points. It would waste a lot of time as the results of
our projection and conventional Levin’s projection [25] are
nearly the same for inliers. Hence, we can first check the re-
gion around the point as described in [15]. If it is identified
as smooth, we simply project the point by Levin’s projec-



Figure 11: Reconstruction of the Dragon model:
(top) input points with 18% of noises added, (mid-
dle) reconstruction using RMLS for normal estima-
tion and point projection, and (bottom) our ap-
proach can successfully reconstruct the sculpture
model.

tion. Otherwise, the point is projected using our proposed
approach.

One of the difficulties in dealing with the real scanned data
is the presence of structural noises which exist in a larger
amount and distributes uniformly as shown in Fig.14(a).
Surface will be generated from the structural noises since
they behave the same as the real data point in local space.
To deal with this, we increase the neighborhood size and pro-
cess iteratively such that the signal-to-noise ratio is large
enough for our robust estimation. Figure 14(c) shows the
process dealing with structural noise in three iterations.

Lastly, to check whether the clustering based subsampling
algorithm converges, we draw the bar chart of shape ap-
proximation error energy, Eglobal, and study its variation
during the optimization. From Fig.15, we can easily observe

Figure 12: Illustration of the geometric differences
between the reconstructed meshes and the original
meshes: (left column) reconstructions using RMLS
for normal estimation and point projection, and
(right column) our approach shows much smaller er-
rors at the sharp features.

that the energy, Eglobal, drops very fast using our local up-
date based clustering algorithm. Usually, the iteration stops
within ten steps.

The major limitation of our approach is to deal with the
structural noises. As our approach is performed in a local
manner, it is hard to distinguish between such kind of noise
and the real surface. [39] introduced a new approach for
removing non-isolated surface outlier clusters. In our future
work, we will consider this as a preprocessing step followed
by the method proposed in this paper to achieve the desired
result in dealing with all the measurement errors generated
from scanning devices.

7. CONCLUSION
In this paper, we have presented a robust and parallel tech-
nique to reconstruct mesh surfaces from unoriented noisy
points. To solve the most difficult problem of surface re-
construction – preserving sharp features, we adopt a highly
robust estimator which can fit surface corresponding to less
than half of the data points. Therefore, the sharp features,
which is in the form of data with multi-structures, can be
reconstructed. After projecting the points and equipping
the normals to them, an energy minimized subsampling is
applied to result in a well-sampled point cloud. Lastly, a
combinatorial approach is employed to reconstruct a tri-
angular mesh connecting the down-sampled points and its
dual-graph polygonal mesh is computed to recover sharp
features. Parallelization method of our algorithms has also
been given in the paper. The approach has been applied



(a)

(b)

(c)

Figure 13: Projection test of RMLS versus our ap-
proach on an edge: (left column) original points,
(middle column) RMLS result and (right column)
our approach by MDPE. (a) Clean data. (b) Dis-
torted with 10% Gaussian noises in range of 1% of
diagonal. (c) Distorted with 60% Gaussian noises in
range of 1% of diagonal.

to reconstruct several piecewise-smooth surfaces with sharp
features from noisy cloud points in this paper, which demon-
strates the functionality of our robust mesh reconstruction
pipeline.
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APPENDIX

A. MEAN-SHIFT METHOD
To compute the center Xc of the converged window Wc on
a given set of n data points {Xi}i=1,...,n, the mean-shift
update vector can be derived from the gradient of the kernel
density estimated in Eq.(2). In short, the mean-shift update

vector is defined as

Mh(x) =
1

nx

∑

Xi∈Sh(x)

Xi − x (15)

where the region Sh(x) is a hypersphere with radius h and
contains nx data points. The mean-shift procedure is as
follows.

Algorithm 3 Mesh Shift

1: Choose the radius h of the search window;
2: Initialize the location Xc of the window with zero;
3: repeat
4: Compute the mean shift vector Mh(x) by Eq.(15);
5: Xc ⇐ Xc + Mh(x);
6: until reach the terminal condition

We stop the iteration when either |(‖M last
h (x)‖−‖Mh(x)‖)| <

0.01‖M last
h (x)‖ or the loop has run more than 300 times.

B. NOISES GENERATION
The noises added to the models are generated by first com-
puting distortion magnitudes of each data point. The dis-
tortion magnitudes are distributed with zero mean Gaussian
in the range of 0.5% of the bounding box’s diagonal. After
that, we randomly select specified percentage of points and
shift those points with corresponding distortion magnitudes
in a random direction. This ensures our noises generated
are totally in unpredicted positions.


