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ABSTRACT
We present a volume and complexity bounded solid sim-
plification of models represented by Binary Space Partition

(BSP). Depending on the compact and robust representa-
tion of a solid model in BSP-tree, the boundary surface of a
simplified model is guaranteed to be two-manifold and self-
intersection free. Two techniques are investigated in this
paper. The volume bounded convex simplification can col-
lapse parts with small volumes on the model into a simple
convex volume enclosing the volumetric cells on the input
model. The selection of which region to simplify is based
on a volume-difference metric, with the help of which the
volume difference between the given model and the simpli-
fied one is minimized. Another technique is a plane collapse
method which reduces the depth of the BSP-tree while still
preserving volume bounding. These two techniques are in-
tegrated into our solid simplification algorithm to give sat-
isfactory results. Related applications are given at the end
of this paper to demonstrate the function of our algorithm.

Categories and Subject Descriptors
I.3.5 [Computational Geometry and Object Model-
ing]: Boundary representations – Curve, surface, solid, and
object representations

Keywords
Simplification, Volume Bounded, Complexity Bounded, Bi-
nary Space Partition, Solid Model

1. INTRODUCTION
Binary Space Partition (BSP) tree is a binary tree which
represents a d-space partitioning by hyper-planes for dimen-
sion d, and it can provide an exact representation of arbi-
trary polyhedral objects in d-dimensional space. A balanced
BSP representation of a model allows fast point classifica-
tion [5,20], collision detection [13,17], visible surface detec-
tion [9] and Boolean operations [4, 20, 25]. It also generates
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a natural convex decomposition of a model. However, many
applications suffer from the huge data size of a BSP tree
when they have to transfer the BSP tree data through net-
work or to perform geometric operations like Boolean opera-
tion. Moreover, there are applications that do not necessar-
ily need the exact representation of a model but only require
a BSP tree to represent a space partition that bounds the
volume of the model loosely (e.g., robot path planning [26],
acceleration for collision detection [8,15] and tool path plan-
ning for rough machining [29]). Our algorithm aims at re-
ducing the total number of nodes on a BSP tree while pre-
serving the bounds on volume (i.e., ensuring the given model
is enclosed by the space partition represented by a simpli-
fied BSP tree) and complexity (i.e., retaining or reducing the
maximum depth of the tree). We explore a progressive sim-
plification strategy to reduce the size of BSP tree by making
use of the natural property of convex decomposition of BSP
tree to fulfill the concave features with material. Figure 1
gives a simplification example of a spine model represented
by a BSP tree with 530,975 nodes, and Fig.2 shows the mesh
simplification results of the same spine model by the algo-
rithm in [10]. The results generated by mesh simplification
do not bound the volume of the given model.

1.1 Problem definition
BSP tree provides a compact and robust representation of
a solid model, and the boundary surface of a solid repre-
sented by BSP tree is guaranteed to be two-manifold and
self-intersection free. The data structure of Binary Space

Partition (BSP) tree is a binary tree, where each non-leaf-
node stores a linear equation to specify a hyper-plane to par-
tition the space into two half-spaces. A leaf-node presents
a convex region as the intersection of all half-spaces on the
path from the tree’s root to this leaf node. Every leaf-node
is labeled as either solid (in black) or empty (in white) ac-
cording to whether or not its corresponding convex region
is part of the solid to be represented. Figure 3 shows an
example of the BSP tree of a simple polygon.

For a given solid H represented by a BSP tree Γ0 with |Γ0|
nodes, we are going to compute a simplified BSP tree Γ with
|Γ| < |Γ0|. Here, | · · · | denotes the number of nodes on a
BSP tree. However, this is ill-posed as there are many pos-
sible such BSP trees. Considering the applications where
the simplified tree is employed, we expect that the tree Γ
bounds the volume of Γ0 as tightly as possible. Moreover,
the complexity should also be bounded, which means that
τmax(Γ) ≤ τmax(Γ0) with τmax(· · · ) returning the maxi-



Figure 1: The solid simplification of a spine model. From the left: the input spine solid (with 530k nodes on
a BSP tree and the maximum depth, τmax, of the tree is 124), a slightly simplified solid (with 70% of nodes
retained and τmax = 112), a simplified solid (with 30% of nodes and τmax = 113), a further simplified solid (with
5% of nodes and τmax = 114), and a coarser solid (with only 0.5% of nodes and τmax = 114) – regions in different
convex hulls are displayed in different colors. The relative volume errors of the simplified solids are 1.83%,
23.5%, 77.9% and 148.2% of the original model respectively.

Figure 2: The mesh simplification results of the
spine model using the quadric error metrics in [10]:
(left) about 5% of vertices are retained, and (right)
only 0.5% of vertices of the original model are re-
tained. The simplified models do not bound the
volume of the original spine.

mum depth of a tree. The tightness of volume bounding is
measured by the volume difference between the solids rep-
resented by the simplified and the original trees as

M(Γ) = |V (Γ) − V (Γ0)|, (1)

where V (Γ) =
∑

si
V (si) is evaluated by summing up the

volumes of all solid leaf-nodes si ∈ Γ.

1.2 Related work
We briefly review the work closely related to the conversion
between B-rep and BSP tree, the volume simplification, BSP
tree based solid modeling and other applications.

At present, the most popular representation for free-form
objects is piecewise linear B-rep – polygonal meshes, which
is convenient for local manipulation and rendering. How-
ever, it inherits the common drawback of B-rep – difficult
for space evaluation (e.g., point membership classification
and volume computation). The most conventional method
to convert polyhedra from B-rep to BSP tree is the approach

Figure 3: A polygon can be decomposed to be rep-
resented by a BSP tree, where non-leaf-nodes are in
grey and leaf-nodes are in black or white according
to whether its convex region is solid or empty.

presented by Thibault and Naylor in [25]. The algorithm is
based on repeatedly selecting a planar polygon on the sur-
face of a given model as a clipping plane (i.e., the non-leaf-
node on BSP tree) to separate other polygons into its left
and right half-spaces. Although the constructed BSP tree
can present the boundary surface of a given model exactly,
the tree itself is not well balanced. Bajaj et al. introduced a
progressive conversion from B-rep to BSP tree for streaming
geometric modeling in [1]. They used eigen decomposition
of the Euler tensor which represents surface inertia to cut
the model in order to get relatively balanced BSP tree. For
the BSP trees constructed by different strategies, the simpli-
fied solids generated by our method are quite different (see
the illustration shown in Fig.4). In our tests, the simplified
models obtained from a balanced BSP tree by [1] generally
give better visual appearance than the results of the BSP



Figure 4: The simplified hand models on different BSP trees: (a) the given solid model with 34,743 nodes,
(b) the result of simply truncating the BSP tree at depth 20 – there are 10,986 nodes above this level, (c) the
simplified model with 10,317 nodes obtained using a BSP tree constructed by the approach of Thibault and
Naylor [25], and (d) the simplified model with 10,403 nodes resulted using a balanced BSP tree generated
by [1].

tree generated by [25]. The resultant BSP tree is converted
back into a polygonal mesh for some downstream applica-
tions (e.g., rendering, FEM and BEM analysis). A widely
used strategy which is based on polygon/convex clipping
(ref. [2,20]) is problematic to generate two-manifold bound-
ary surface when using fixed precision arithmetics on the
BSP tree models with many nearly co-planar nodes. There-
fore, we employ the recently developed algorithm in [27] to
compute two-manifold boundary surface from a BSP tree.
All results presented in this paper are displayed by mesh
surfaces generated by this method. Another B-rep genera-
tion method in [7] is based on extending a BSP tree into
a topological BSP tree, which however requires much more
memory and is impractical to be applied to huge models.

He et al. presented one of the earliest voxel based object
simplification algorithms in [12]. They accomplished this
by sampling and low-pass filtering the object into multi-
resolution volume buffers and using marching cube to gener-
ate a triangle-mesh hierarchy. Shekhar et al. [24] proposed a
cube-based simplification. This kind of simplification always
samples the volume data into an octree and performs adap-
tive reconstruction using marching cube. However, cube-
based algorithms always need a crack patching process to
deal with the problem of void space which is not shown on
the given models. Wood et al. [28] swept models and con-
structed a Reeb graph to remove topological errors in isosur-
face in the form of tiny handles. A skeleton based method
was presented in [30] for repairing solid models with the help
of octree, and a variant of this was also presented in [14].
Recently, a mesh repair method using BSP tree is presented
in [5] to address the problem of removing self-intersection,
which is different from our problem. Although many volume
simplification approaches exist in literature, they rarely ad-
dress the tightness of volume bounding. Recently, a topol-
ogy simplification frame considering both shape and volume
errors has been published in [11]. It adopts Constrained De-

launay Tetrahedralization (CDT) to fill the concave features
on B-rep models. Similar to it, our method also simplifies
the given model by filling the concave features, but we do
so directly on Binary Space Partition (BSP) trees instead.

Employing BSP tree in solid modeling has a very long his-
tory (ref. [20, 21, 25]). Recently, fast Boolean operations on
solid models represented in BSP tree have been considered
in [4] and [18]. However, after repeatedly applying Boolean
operations on a model, the resultant BSP tree has many re-
dundancies. The removal of them has not been considered.
In addition, a simplified BSP tree with volume and complex-
ity bounded can speed up the computations in applications
using BSP trees (e.g., [8, 13,15,17,26,29]).

1.3 Main results
We present a progressive simplification method for BSP tree,
where the priority of simplification is controlled by the vol-
ume difference between the given model and the solid repre-
sented by the simplified BSP tree (i.e., the metric in Eq.(1)).
Starting from Γ0, we progressively compute a sequence of
simplified BSP trees Γi (i = 1, 2, . . . , l) with |Γi| > |Γi+1|
and M(Γi) ≤ M(Γi+1). Not only the number of nodes and
the volume but also the spaces Ω(· · · ) occupied by Γi are
embedded, i.e.,

Ω(Γ0) ⊆ Ω(Γ1) ⊆ · · ·Ω(Γi) ⊆ Ω(Γi+1) ⊆ · · ·Ω(Γl).

The complexities of trees are also bounded by preserving
τmax(Γ

i) ≤ τmax(Γ
0).

Two techniques are investigated in this paper. The volume
bounded convex simplification introduced in section 3 can
merge parts with small volumes on the model into a simple
convex volume enclosing the volumetric cells on the input
model. The plane collapse technique presented in section
4 can reduce the depth of a BSP tree while still preserving
volume bounding.

2. ALGORITHM OVERVIEW
The overall algorithm of our solid simplification is intro-
duced in this section. We adopt a bottom-up incremental
strategy here.

Starting from every solid leaf-node on the given BSP tree
Γm for a solid H , we walk up k levels and reach a node,
the sub-tree under which is named as granule. Here, k is
a parameter that can be assigned by users to specify the



granularity of simplification in each step; k = 6 is selected
in all our examples in this paper. We wish to approximate
the solid inside a granule γ by a simplified BSP sub-tree ĉγ

that holds fewer nodes (i.e., half-spaces). Also, the depth of
ĉγ should satisfy τmax(ĉγ) ≤ τmax(γ). Details about how to
obtain ĉγ are presented in sections 3 and 4.

When replacing γ by the half-spaces in ĉγ , the volume error
added to the new tree is (V (ĉγ) − V (γ)). Therefore, in our
algorithm, all candidate granules are inserted into a prior-
ity queue keyed by this volume error, which can guarantee
that the granule with the minimal volume error is always
simplified first. After a simplification step, a new granule is
identified and inserted into the queue.

The simplification procedure keeps running until the volume
difference M(Γn) of the current new tree Γn or the reduced
number of nodes exceeds the given thresholds. The tree Γ is
then reported as the simplification result. The pseudo-code
is presented in Algorithm BSPSolidSimplification.

Algorithm 1 BSPSolidSimplification

1: Verr = 0 and nred = 0;
2: Duplicate a BSP tree Γ from the input Γ0;
3: Initialize the priority queue Θ;
4: Find all granules starting from the left deepest solid leaf-

nodes; {We visit the tree in the LMR order}
5: for all granules γ do
6: Compute the simplified BSP sub-tree ĉγ ;
7: Insert γ into Θ by the weight (V (ĉγ) − V (γ));
8: end for
9: while Θ 6= φ do

10: Remove the granule γcur from the top of Θ;
11: On the BSP tree Γ, replace γcur by ĉγcur ;
12: Verr = Verr + (V (ĉγcur ) − V (γcur));
13: nred = nred + ∆γcur ;

{ ∆γcur reporting the number of nodes reduced}
14: Update the queue Θ by adding the new granule;

{Note that the new granule is determined by the new

solid leaf-node on γcur}
15: if (Verr > threshold) OR (nred > threshold) then
16: break;
17: end if
18: end while
19: return Γn;

3. VOLUME BOUNDED CONVEX SIMPLI-
FICATION

The method for computing a volume bounded simplification
from a given BSP tree Γm is presented in this section. For a
given granule represented by a BSP sub-tree γ, we wish to
approximate the solid inside it by a simplified BSP tree with
fewer nodes (i.e., half-spaces). A BSP tree representation
provides a natural convex decomposition for a model. The
number of solid convex hulls equals to the number of black
nodes. For example in Fig.3, the granule of node B contains
two convex hulls, where the one below D is surrounded by
A+, B+, C− and D−, and the one below E is formed by
A+, B− and E−. Here the signs specify the portion of their
corresponding half-spaces.

Proposition 1 For a set of convex hulls {ci} ∈ ℜ3, if the

Figure 5: Illustration of the volume bounded solid
simplification on a sub-tree: (a) the sub-tree γ under
the granule to be simplified, (b) the convex hull Cc is
computed from the vertices of the convex regions for
every solid leaf-nodes, and (c) the replaced sub-tree
spans the convex hull Cc of the granule.

vertices of these convex hulls are {vi}, the convex hull of
these vertices Cv is coincident with the convex hull Cc of
these convex regions.

Proposition 2 For a set of non-intersected convex hulls
{ci} ∈ ℜ3 where each is bounded by n

p
i planes, the number

of planes forming the the convex hull Cc of {ci}, n
p
C , has the

property of n
p
C ≤

∑
i
n

p
i .

The proofs of these two propositions are given in Appendix.

By these propositions, we can make the following conclusion.
For the solid regions {H(dj)} represented by the solid leaf-
nodes dj on the BSP sub-tree γ of a granule, the convex
hull of {H(dj)}, denoted by cγ , can be represented by fewer
half-spaces than the number of nodes in γ plus the nodes on
the way from the granule to the root of the given BSP tree
Γm. Meanwhile, the space occupied by cγ bounds the solid
regions {H(dj)}.

To compute the convex cell Cc of the solid leaf-nodes on the
sub-tree γ, we first compute the vertices of the convex hull
ci for each of such node. The convex region ci defined by a
solid leaf-node here is the intersection of all half-spaces on



Figure 6: An example of finding candidate gran-
ules: (a) the given BSP tree, (b) a granule (no.1) is
found by the search starting from the left deepest
solid leaf-node, (c) other solid leaf-nodes lower than
granule 1 are excluded, and (d) granule 2 is found
by another solid leaf-node.

the path from the root of the BSP tree to this leaf-node.
The vertices of a convex hull represented by a sequence of
half-spaces are computed by the intersection algorithm in-
troduced in [22]. The intersection algorithm requires an in-
terior point in the convex region to compute the coordinates
of vertices. To obtain an interior point of the convex hull
ci represented by a set of half-spaces, we first use the lin-
ear programming method [23] to compute a point pmax with
the maximum coordinate in x−, y− or z−axis. Then, a ray
not on the boundary of ci, passing pmax and intersecting ci

with two distinct points, is searched. The middle point of
these two distinct intersection points is served as the inte-
rior point to compute the vertices of ci (ref. [22]). With a
given interior point pint, the algorithm translates the half-
spaces by (−pint) to make pint as the origin. After that,
the dual polyhedron, which is the convex hull of the points
dual to the original planes of the half-spaces, is generated.
Finally, the resultant polyhedron for the convex hull that is
dual to the dual polyhedron is computed and translated by
the vector pint.

After getting the vertices {vi} of the convex regions ci de-
fined by the solid leaf-nodes on γ, the convex hull Cc of {ci}
can be obtained from {vi} by the quick-hull algorithm [3].
We then build a new BSP sub-tree γc by the planes of faces
on Cc to replace the sub-tree γ of a granule. Note that
those planes on Cc but coplanar to the planes defined by
nodes above the granule in the given BSP tree Γ0 must be
neglected. Figure 5 gives an illustration for the operations
in solid convex simplification.

At the beginning of our algorithm, we start searching the
granule from the left deepest solid leaf-node. However, in-
serting the granules from all the solid leaf-nodes into the

Figure 7: An example of applying the PlaneCol-

lapse algorithm to a sphere model (left) with 800
facet planes. By using the threshold t = 0.04, we ob-
tain a resultant model with 108 facet planes (right).
The resultant model bounds the volume of the given
sphere.

priority queue is inefficient. Therefore, we conduct a study
to find a way to reduce the length of the priority queue but
while not affecting the computing results.

Observation 1 For two solid leaf-nodes di and dj located
at different levels i and j of a BSP tree Γ0 with i > j and
dj is on the sub-tree γdi

of di’s granule, the convex hulls of
their granules satisfy cγ(di) ⊆ cγ(dj ). Therefore, the volume
error introduced by cγ(dj) should not be smaller than that
of cγ(di).

To shorten the length of the priority queue, once a granule
is found, all solid leaf-nodes under the sub-tree γ of this
granule are excluded from the further search of granules.
Figure 6 gives an example of such an exclusion.

4. COMPLEXITY SIMPLIFICATION
The convex hull cγ of the solid regions under the granule’s
sub-tree γ can be represented by a number of half-spaces
which does not exceed the number of nodes below the gran-
ule (including the granule itself), and cγ gives a good shape
approximation of these solid regions. However, when intrin-
sically presenting cγ by a sequence of half-planes on the sub-
tree below γ, the maximum depth τmax of the new tree may
be greater than that of the given BSP tree Γ0 (i.e., the com-
plexity is not bounded). A collapse technique is exploited
in this section to approximate cγ by a similar convex hull
ĉγ but with fewer half-spaces. The number of half-spaces in
ĉγ must be ensured so that τmax on the updated tree is not
greater than τmax(Γ

0).

After obtaining the convex hull cγ , we check whether the
number of half-spaces on it makes the new BSP tree’s max-
imum depth exceed τmax(Γ

0). If it does, the Algorithm
PlaneCollapse is conducted to merge the planes on cγ that
are similar to each other. Here, as the planes are a convex
hull, their similarity can simply be measured by the differ-
ence between normal vectors. A threshold t is assigned for
detecting similar planes. If the merging procedure generates
more planes than the maximum number of planes allowed
to bound τmax on the new tree, we increase the threshold t
to further merge the planes until τmax is bounded. Each of
these new planes generated by merging is translated to the
position that all vertices of the convex hull cγ are not above
the plane; therefore, volume bounding can still be preserved.



More than that, only the planes which do not belong to the
nodes above the granule on the BSP tree Γm are processed
by the collapse algorithm to be merged. Pseudo-code of Al-
gorithm PlaneCollapse is listed below. Figure 7 shows the
result of applying this algorithm to a sphere.

Algorithm 2 PlaneCollapse

Require: the threshold t, the list of planes to be collapsed
LI , and the convex hull cγ

Ensure: the output list of planes LO

1: while LI is NOT empty do
2: Randomly remove a plane ̺ from LI ;
3: Insert ̺ into Lt;
4: for all ̟ ∈ LI do
5: if the normals have ‖n̟ − n̺‖

2 < t then
6: Remove ̟ from LI and insert it into Lt;
7: end if
8: end for
9: Calculate the average normal navg of all planes in Lt;

10: Clear up Lt;
11: Find a vertex v ∈ cγ that maximizes (v · navg);
12: Determine a new plane ̺new by navg and v;
13: Insert ̺new into LO;
14: end while
15: return LO ;

5. RESULTS
We have already implemented the proposed algorithm in
a C++ program. The examples shown in this paper are all
tested on a PC with Intel Core 2 Quad CPU Q6600 2.4GHz.

5.1 Experimental tests and discussion
The results of experimental tests on our algorithm are en-
couraging. The first example is a spine model with more
than 530k nodes on a BSP tree, which is shown in Fig.1. Our
solid simplification algorithm can significantly reduce the
number of nodes on the BSP tree. The original spine model
is guaranteed to be enclosed by the simplified solids, and the
maximum depth of the simplified BSP tree is bounded by
the maximum depth of the given tree.

The second example is a chair model in Fig.8. Together with
the bump model shown in Fig.9, we study the performance
of our solid simplification algorithm with and without the
plane collapse step. An interesting result we observed is
that, when stopping with a similar number of retained nodes,
the simplification procedure without the plane collapse step
fills up more void spaces. This is because more nodes are
reduced after consolidating a granule if the plane collapse
step is taken. Therefore, when reaching a similar number of
reduced nodes, fewer granules are consolidated, which means
that less void volume is filled if the plane collapse step is
taken. However, the shape of convex hull cγ without taking
the plane collapse bounds the shape of the given model more
tightly than ĉγ , the one with fewer nodes on the sub-tree.

Two more examples from biomedical applications are shown
in Fig.10 and 11. The computational statistics of our algo-
rithm are listed in Table 1. It shows that our algorithm is
very fast when being applied to models with a moderate size.
The thresholds chosen in the Algorithm BSPSolidSimplifi-

cation are specified by users according to their applications.

Table 1: Computational Statistics

Given BSP Tree Resultant BSP Tree*
Model Fig. Nodes τmax Nodes τmax Time

Spine 1 530,975 124 3,787 114 7.31 min.
Chair 8 247,979 140 3,331 129 2.27 min.
Bump 9 202,621 308 4,293 301 2.25 min.
Donna 10 1,520,949 188 6,831 163 39.7 min.

Hand 11 38,535 46 723 43 12.5 sec.
Twirl 14 23,461 35 481 31 5.38 sec.
Venus 15 11,673 79 389 43 3.28 sec.

*Note that we report the full simplification with both the
volume and the complexity bounded.

Figure 10: The simplification results of the donna
model (the BSP tree has 1,520,949 nodes and τmax =
188) obtained by retaining different numbers of
nodes.

Choosing thresholds with very few nodes and very large al-
lowed volume error eventually makes the results of our al-
gorithm converge to a loose convex hull1 of the given model
(see Fig.12). Our algorithm proposed in this paper can be
employed in many applications. Several are demonstrated
below.

5.2 Application I: post-processing for Boolean
operation

The first application is the post-processing of the BSP tree
generated by repeatedly applying Boolean operations to a
model. For the BSP tree obtained in such a scenario, there
are lots of redundancies retained. For example, the model
shown in Fig.13 is produced by simulating shaping opera-
tion (using Boolean operation) on a piece of stock material.
Although the shape of the resultant model is simple, its cor-
responding BSP tree generated by the approach in [18] con-
tains 787,683 nodes. To remove the redundancy, we apply
our solid simplification approach to this BSP tree with an
extremely small volume threshold (e.g., 10−8). The number

1When neglecting the plane collapse step, the algorithm con-
verges to the tight convex hull.



Figure 8: A simplification example of a chair model: (top row) the results obtained from full solid simplifica-
tion algorithm, and (bottom row) the complexity simplification is neglected. Simplification stops at different
numbers of retained nodes compared with the given BSP tree: (a) 50%, (b) 30%, (c) 10%, (d) 5% and (e) 1.5%.

Figure 9: A simplification example of a bump model: (top row) the results obtained from full solid simplifica-
tion algorithm, and (bottom row) the complexity simplification is neglected. Simplification stops at different
numbers of retained nodes compared with the given BSP tree: (a) 70%, (b) 50%, (c) 30%, (d) 10% and (e) 5%.

of nodes on the tree can be reduced from 787,683 to 410,575
in 9.953 seconds.

5.3 Application II: collision detection
The BSP tree representation of solid models has been em-
ployed to accelerate collision detection in many applications
(ref. [8,15]). A common strategy to speed up collision detec-
tion algorithm is to develop some methods to fast exclude
those collision-free cases, while not missing any of those pos-
sibly collided cases. Meanwhile, there are also some appli-
cations, where physical simulation involving collision detec-
tion is only conducted on a coarser level of geometry than the
shape in visual rendering (e.g., games). Our solid simplifica-
tion algorithm presented in this paper satisfies the require-
ments of a coarse collision detection. First, the simplified
BSP tree with fewer nodes can be adopted to detect those
collision-free cases efficiently. Second, our simplification re-
sults tightly bound the volume of the given models, which

guarantees that the collided cases will never be missed. In
addition, the tight volume bounding could also have more
collision-free cases being quickly detected. Moreover, as the
complexity of the simplified BSP tree is also bounded, the
simplified BSP tree usually gives better speed performance.
See the examples of simplified models shown in Fig.14 and
15.

5.4 Application III: rough material prepara-
tion

The last application demonstrated in this paper is the gener-
ation of rough material prepared for further subtractive ma-
chining. In product manufacturing, the final part can only
be produced by subtractive machining; thus, the rough ma-
terial prepared should bound the volume of the final product
– our method can ensure this. Although the convex hull of
the designed part can always satisfy this requirement, its
shape may have a large volume difference compared with



Figure 11: The results of simplifying the hand model
(the BSP tree has 38,535 nodes and τmax = 46) to the
BSP trees with different percentages of nodes on the
given model.

Figure 12: The result of our simplification algorithm
converges to a loose convex hull of the given model.

the designed model, which leads to a long machining time.
Therefore, some coarser shapes which still bound the given
model is wanted (e.g., the model with volume simplified as
shown in Fig.16). A more practical strategy for solving this
problem may be the feature-based approach like [16]; how-
ever, our algorithm provides a general geometric tool for
implementing feature-based methods.

6. CONCLUSIONS AND DISCUSSION
In this paper, we present a general solid simplification al-
gorithm that works on solids represented by Binary Space

Partition (BSP) trees. The volume and the complexity of
given models are bounded in our simplification algorithm.
Depending on the compact and robust representation of
a solid model in BSP-tree, boundary surfaces of the sim-
plified models are guaranteed to be two-manifold and self-
intersection free. Two techniques have been investigated in
this paper. The volume bounded convex simplification can
collapse parts with small volumes on the model into a simple
convex volume enclosing the volumetric cells on the input

Figure 13: The results of repeatedly applying
Boolean operations to a box model. The redun-
dancy on the resultant BSP tree can be removed
by our solid simplification algorithm.

Figure 14: The twirl model (with 23,461 nodes on
the BSP tree and τmax = 35) has been simplified into
solids represented by BSP trees with different num-
bers of nodes compared with the given BSP tree.
The convex hull contains 69 half-spaces. The resul-
tant BSP trees form several convex hulls which are
displayed in different colors. The maximum depths
of the simplified BSP trees are: 28, 28, 28, 31 and
35 respectively.

model. The selection of which region to simplify is based
on a volume-difference metric, which minimizes the volume
difference between the given model and the simplified one
is minimized. The plane collapse approach can reduce the
depth of a BSP tree while still preserving volume bounding.
The effectiveness of our approach has been proved by several
experimental tests.

Two problems of the current approach need to be solved
in our future research. First, the plane collapse approach
somewhat loose the tightness of volume bound. A zero vol-
ume error approach is planned to be developed from a com-
binatorial algorithm. Another alternative is to adopt the
Lloyd algorithm based shape approximation like [6]. Sec-
ond, the shape of a simplified solid does depend on the way
the BSP tree is constructed (see the illustration in Fig.4).
We plan to develop some feature-based approach to con-
struct BSP trees for applications like feature-based multi-



Figure 15: The results of simplifying the Venus
model (with 11,673 nodes on the BSP tree and
τmax = 79) into trees with different numbers of nodes
(50%, 30%, 10% and 5%) and convex hulls. The last
convex hull of the given model has 109 half-spaces
only. The maximum depths of the simplified BSP
trees are: 68, 41, 72, 43 and 55 respectively.

resolution solids (ref. [16]) in the near future.
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APPENDIX
A. PROOF OF PROPOSITIONS
Proposition 1 For a set of convex hulls {ci} ∈ ℜ3, the
vertices of these convex hulls are {vi}, the convex hull Cv of
these vertices is coincident with the convex hull Cc of these
convex regions.

Proof. Without loss of generality, let si represent the
point set of the convex hull ci and Mi denote the polyhedron

of ci. Cc is the convex hull of all these point sets {si}.
Here, we actually need to prove that all the vertices on Cc

come from the vertices of the polyhedra {Mi}, which can be
proved by using reduction of absurdity.

Assume that, for one of these point sets, sr, there is an
interior point p of Mr (also sr) which becomes a vertex on
the convex hull Cc. Based on the property of convex hull,
we have

p =

nr∑

k=1

αkv
r
k,

where vr
k is the k-th vertex of Mr, nr is the number of

vertices of Mr, and
∑nr

k=1 αk = 1.

For a vertex vr
k ∈ Mr, it is either a vertex on Cc or an

interior point of Cc. When it is an interior point, we have

vr
k = βmp +

m−1∑

j=1

βjv
c
j ,

where vc
j is the j-th vertex of Cc, m is the number of vertices

on Cc, and
∑m

j=1 βj = 1. Note that here p is one of the
vertices on Cc based on the assumption stated before. When
the vertex vr is a vertex on Cc, we have

vr
k = vc

j .

Based on these formulas, we could have

p = µmp +
m−1∑

j=1

µjv
c
j , ⇒ p =

m−1∑

j=1

µj

1 − µm

vc
j .

This means that p can be written as a linear combination of
the remaining m − 1 vertices of Cc. This conflicts with the
basic property of linear independency among all the vertices
of a convex hull. Therefore, the assumption we made at
the very beginning of this proof is wrong. We can thus
prove that all the vertices of Cc come from the vertices of
{Mi}.

Proposition 2 For a set of non-intersected convex hulls
{ci} ∈ ℜ3 where each is bounded by n

p
i planes, the number

of planes forming the convex hull Cc of {ci}, n
p
C , has the

property that n
p
C ≤

∑
i
n

p
i .

Proof. By the Euler-Poincaré formula (ref. [19]), for a
3D convex hull with nv

i vertices, it has n
p
i = 2nv

i faces.
From the property of convex hull, we know that the number
of vertices on the convex hull of {ci}, is smaller than the
total number of vertices on the non-intersected convex hulls
{ci} in most cases, and equals to the total number in some
extreme cases. As the relationship between the numbers of
vertices and faces n

p
i = 2nv

i is always kept on the convex
hull (the model with genus number zero), this proposition is
proved.


