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Abstract

We present an efficient algorithm to perform approximate offsetting operations on geometric models using GPUs. Our approach
approximates the boundary of an object with point samples and computes the offset by merging the balls centered at these points.
The underlying approach uses Layered Depth Images (LDI) to organize the samples into structured points and performs parallel
computations using multiple cores. We use spatial hashing to accelerate intersection queries and balance the workload among
various cores. Furthermore, the problem of offsetting with a large distance is decomposed into successive offsetting using smaller
distances. We derive bounds on the accuracy of offset computation as a function of the sampling rate of LDI and offset distance.
In practice, our GPU-based algorithm can accurately compute offsets of models represented using hundreds of thousands of points
in a few seconds on GeForce GTX 580 GPU. We observe more than 100 times speedup over prior serial CPU-based approximate
offset computation algorithms.
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1. Introduction

Offsetting is a fundamental and important geometric op-
eration in a variety of applications (ref. [1–4]), such as
model smoothing and simplification, tolerance and clear-
ance analysis for assembly, rapid prototyping and coordi-
nate measuring machines (CMM), tool path generation for
3D numerically controlled (NC) machining, and robot path
planning. An offset surface of a solid H is the set of points
having the same offset distance r from the boundary ∂H
of H. Offsetting a solid H can be performed on one side of
its boundary surface ∂H. The exterior offsetting H+

r cor-
responds to a set of points outside H, while the result of
interior offsetting H−

r is a set of points inside H. Although
the offsetting operation is mathematically well defined, off-
setting a solid model exactly has proven to be difficult [5].
In recent years, approximation offsetting methods based
on volumetric representations [6–8] and point-based algo-
rithms [9, 10] have been proposed. These algorithms first
generate volumetric grids (or sampling points) to approxi-
mate the offset model and then use a distance field (or col-
lision checking) to calculate the implicit surface (or sample
points). The distance field computation and collision de-
tection can be computationally expensive. Moreover, it is
hard to parallelize the existing mesh offsetting approaches
to exploit the computational power of commodity many-
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core GPUs (Graphics Processing Units). In this paper, we
develop an efficient algorithm to compute approximate off-
setting of point-sampled geometric models using GPUs.

Problem Definition: Given a solid model H with its
boundary surface ∂H approximated by the set PH of sam-
ple points, we compute the boundary surface of exterior
offset H+

r (or interior offset H−
r ) and represent that using

a point set PH+
r
(or PH−

r
for interior offset).

In order to use the power of highly parallel computa-
tion in graphics hardware, we use Layered Depth Images
(LDI) [11] to sample the boundary into structured points
and compute their offsets [12–14]). The points of a solid
represented by LDI are sampled and stored on the set of
parallel rays passing through the centers of LDI pixels along
the viewing direction. To compute the offset of a solid H,
the offsetting balls (with radius r) centered at the sample
points of PH are merged together by a ‘super’ union algo-
rithm, which is computed in parallel on the rays of LDI.
The resultant point set PH+

r
(or PH−

r
) in LDI representa-

tion can be converted back into triangular meshes by dual-
contouring method running on GPUs [14].
The main contributions of our work include:

– A highly parallel algorithm based on structured point
representation that is used to accelerate intersection
computations between LDI rays and spheres centered at
the sample points of LDI.

– An efficient load balancing algorithm that can distribute
the merging operations on various GPU cores.
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Fig. 1. A filleting operation (ref. [4]) on a scaffold model can be completed in a few seconds by our approach on GeForce GTX580: (from left
to right) polygonal mesh of the scaffold model H, the sampled LDI model PH with 480k points (taking 80ms), the exterior offsetting result

P
H

+
r

(obtained in 3.2 sec. with r being 1/8 diagonal length of H’s bounding box), the interior offsetting with the same distance r (completed

in 2.4 sec.), and the resultant polygonal mesh of filleting (the mesh generation time is 103ms including the steps of normal evaluation and

dual contouring).

– The shape error of approximate offsetting on structured
points is analyzed, and we show that the bound on shape
approximation error converges as a monotonic function
of the sampling rate.

In contrast to previous approximate offsetting algorithms,
our approach maps well to GPU architectures. As a re-
sult, we are able to compute approximate offsets of complex
models in a few seconds (see Fig.1). With similar accuracy
of approximation, more than 100 times speedup is observed
over prior CPU-based approximate offset computation al-
gorithms [7,15] on the same benchmark (as shown in Fig.8).
Our GPU-based algorithm has lower memory overhead as
compared to prior GPU-based techniques, which makes it
possible to compute more accurate offset approximations
using our algorithm.
The rest of the paper is organized as follows: we review

related work in Section 2 and give an overview of our ap-
proach in Section 3. We present the many-core offset com-
putation algorithm in Section 4 and describe its perfor-
mance in Section 5.

2. Related Work

The problem of offset computations has been studied in
CAD/CAM, robotics and related areas for more than three
decades. Earlier approaches like [3, 16] first compute a su-
perset of boundary features of offset surfaces by offsetting
faces, edges and vertices into parallel faces, cylinders and
spheres, respectively. Next, these methods trim this super-
set by subdividing its elements at their common intersec-
tions and clipping away pieces that do not belong to the
boundary of the offset. These approaches are difficult to
implement robustly because of the computational complex-
ity of trimming operations, as well as numerical issues with
intersection computations [5]. In order to avoid the com-
putational issues with clipping and surface trimming, some
approximate algorithms have been investigated. Qu and
Stucker [17] offset a model by moving triangle vertices while
maintaining the topology of original model. However, their
method is limited to offset distances that are sufficiently

small and assumes that the offset has the same topology as
the original model.
Many previous approaches are based on distance field

computation. Breen and Mouch [18] presented an offset
method for Constructive Solid Geometry (CSG) models us-
ing distance volumes and the fast marching method. The
resulting approach calculates the shortest distance to the
CSG model from a set of points within a narrow band
around the surfaces. It then propagates the information
about the shortest distance and the closest points out to
the remaining voxels in the volume. Frisken et al. [19] pro-
posed adaptively sampled distance-fields (ADF) as a unify-
ing representation of shape for a broad range of processing
operations, including surface offsetting. The structure of
this representation is simple and direct, and is effective for
quality reconstruction of complex shapes. Varadhan and
Manocha [6] presented a distance field-based algorithm to
approximate the 3DMinkowski sum of a polyhedral model.
The union of pairwise convex Minkowski sums is computed
by generating a voxel grid, computing signed distances on
the grid points, and performing isosurface extraction from
the distance field. Adaptive sampling strategies [7, 8] have
also been used to compute the offset of polygonal mod-
els. The major problem with these approaches is that they
can have a high memory overhead in order to guarantee
tight bounds on accuracy, especially for uniform sampling
(e.g., [6, 18]). On the other hand, it is hard to parallelize
adaptive methods (e.g., [19]) on current GPU architectures.
There have been a few offsetting algorithms based on the

point (or ray) representation. Lien [9] proposed a point-
based Minkowski sum computation algorithm. This algo-
rithm uses a normal filter and collision detection algorithms
to remove points, which do not belong on their boundaries,
from the resultant models [20]. A ray-based representation
(ray-rep) was employed by Hartquist et al. in [21] to per-
form offset, sweep, and Minkowski operations. A ray-rep of
a solid model is a set of line segments that lie inside the
solid and are generated by clipping a regular grid of lines
against the model. The method of Chen andWang [10] uses
LDI representations to compute the uniform offsetting of
polygonal mesh models. The self-intersections are removed
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on the rays. However, it is difficult to directly map these
approaches on GPUs.
There is considerable work on exploiting the computa-

tional power of GPUs for similar operations. The work of
Yin et al. [22] computes adaptive distance-fields onGPUs at
interactive rates for resolutions up to 5123. However, their
approach only computes accurate distance values near the
surface of input models. Their refinement algorithm per-
forms voxel/triangle overlap tests; it is hard to perform this
test accurately for primitives that are away from the input
surface. Li and McMains [23] have presented an efficient
GPU-based Minkowski sum computation algorithm which
can be used for offset computation; however, they use flood-
ing algorithms to determine the exterior boundary of the
resultant models, which misses inner voids. Our ball-union
based offsetting algorithm does not have this limitation.
Cao et al. [24] can compute the exact Euclidean distance
transform for a binary image in 2D and higher dimensions
at interactive rates on current GPUs (for resolution up to
512), but the memory overhead of these distance-field com-
putation approaches increases as a cubic function of the
resolution.

3. Offsetting by Super-Union of Balls

In this section, we present our offsetting algorithm. Both
the input and the output of offsetting are represented by
LDIs, which can be efficiently obtained from a B-rep and
converted back to a B-rep on the GPUs (see [12, 14] for
details of the conversion method). The idea of our offsetting
algorithm is based on computing the union operation of
many spheres in a highly parallel manner on the GPU with
the help of LDI representation – called super-union below.

3.1. Structured points in LDI

The input/output solid model of our approach is repre-
sented by the sample points of LDI coupled with surface
normal vectors (ref. [12]). Given a sampling parameter m,
the sample points of LDI are obtained by intersecting the
boundary surface of a solid model with m ×m rays along
the x-, y- and z-directions such that these rays intersect at
m×m×m nodes of uniform grids in ℜ3. Since the sample
points of LDI are exactly located on rays, they are consid-
ered as well organized, and are called structured points. To
store the LDI-based solids in the limited memory of graph-
ics processors, the structured points of LDI sampled in one
direction are stored in two arrays: an index array I and
a float data array D. The index array I corresponds to a
m×m matrix, where the (i, j)-th entry indicates the index
of the first sample on the (i, j)-th ray in the data array D.
The data array D saves depth values and normal vectors
of sample points in an ascending order keyed by the index
of rays and the depth values. Specifically, the first sample
on a ray, (i, j), is D[I[i, j]], and the number of samples on
(i, j) can be obtained by the difference between I[i, j] and

Fig. 2. The shell solid (computed approximately) according to the
offsetting can be obtained by the super-union of spheres centered at
the sample points of LDI representation, where the samples in red
are obtained by the rays in x-direction and the yellow ones are on
the rays in y-direction (i.e., the set of sample points PH). The black

line segments illustrate the 1D solids of PS .

the index of the first sample on its next ray, I[i, j +1]. De-
tails of this compact representation of a LDI solid can be
found in [14].
Boolean operations on two LDI solids,HA andHB , which

have coincident rays can be easily computed. Briefly, the
Boolean operations on 3D models are converted into com-
putations on rays (i.e., 1D solids). A ray is subdivided into
small segments by samples from bothHA andHB . Whether
each segment should be retained on the resultant 1D solid
generated by a Boolean operation is based on the logic op-
erations of ‘inside’ status of this segment on HA and HB :
‘union’ is defined by the logic ‘OR’, ‘intersection’ is defined
by the logic ‘AND’, and ‘subtraction’ can be converted into
‘intersecting a complement. Details can be found in [12].

3.2. Union of balls on LDI

The basic idea of our approach is to first compute a shell
solidOH (defined between the boundary surfaces of exterior
offsetting solid H+

r and interior offsetting solid H−
r ) by

merging the spheres with radius r centered at all the surface
points of H. To simplify the union of an infinite number
of balls, we only consider the set of H’s surface sampling
points, PH . A sphere Sp centered at a sample p ∈ PH

located on the (i, j)-th ray in the τ -direction is converted
into several 1D solids on the rays in τ -, (τ + 1)- and (τ +
2)-directions, respectively (see Fig.2 for an illustration).
Here, the indices of directions are cycled along x, y and
z according to the definition of LDI solids (ref. [12]). The
intersections between Sp and the rays in τ -direction can
be easily checked by searching the rays in the range of (i±
⌈r/w⌉, j±⌈r/w⌉), where w is the sampling distance of LDI
(i.e, the distance between the (i, j)-th ray and the (i, j+1)-
th ray). The value of w can be determined by the width of a
model’s bounding box divided by the sampling parameter
m. For a ray (k, l) in this range, the intersection between Sp
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and the ray is converted into a line segment (i.e., 1D solid)
on the ray if (k − i)2 + (l − j)2 < (r/w)2. A more critical
issue is how to efficiently find the rays in the other two
directions intersecting Sp. The searching method presented
in [25] checks all samples lying on the rays in the other
two directions whose distance to the (i, j)-th ray in the τ -
direction is not greater than r. As a result, 2m× ⌈ 2r

w ⌉ rays
must be checked in total. This method contains too much
redundancy, which is solved by our method proposed in
Section 4.2.
Intersecting the spheres by the rays of LDI actually con-

verts the spheres into 1D solids. The 1D solids on a ray (i, j)
obtained by ray-sphere intersections are merged into the fi-
nal 1D solid by the union operation. This turns out to be
an approximation of OH in LDI representation, PS (as il-
lustrated in Fig.2). The final exterior and interior offsetting
results can be obtained by taking ‘PH ∪ PS ’ or ‘PH \ PS ’,
and these set operations corresponding to union or differ-
ence can be efficiently computed on GPUs. The approxima-
tion error of the offsetting result in the LDI representation
is analyzed below.

3.3. Approximation error in offset computation

We analyze the approximation error based on the formu-
lation of ǫ-covering of point-sampled geometry (ref. [9]).

Definition 1 (d-regular) A solid H ⊂ ℜ3 is called d-
regular if, for each point p ∈ ∂H, there exist two osculating
open balls of radius d at p such that one lies entirely inside
H and the other lies entirely out of H (ref. [26]).

From [26], it is known that the topology-bounded B-rep of
a d-regular solid sampled by the rays of LDI representa-
tion with w < d/

√
3 can be reconstructed by the topology-

preserved method. In CAD and manufacturing applica-
tions, the value of d relates to the smallest feature size of
models that can be fabricated by machines. Without loss
of generality, all the analysis below is based on the assump-
tion that the input model H is d-regular. Generally, all
polygonal models are not exactly d-regular; however, they
are widely used in CAD systems to approximate d-regular
solids which are smooth. For example, Guthe et al. [27] pre-
sented an efficient tessellation algorithm with error bounds
for smooth surfaces.

Definition 2 (ǫ-covering) A set of points P is an ǫ-
covering of a surfaceM if, for any point q ∈ M , there exists
a point in P whose distance to q is less than ǫ.

Remark 1 (ǫ-covering of LDI) For a d-regular solid H
sampled from a B-rep into LDI representation, PH , with w
as the sampling distance (w < d/

√
3), PH is a ǫ-covering

point set of the boundary surface, ∂H, ofH where ǫ =
√
3w

(ref. [13]).

Moreover, as the sample points of the LDI solid are all lo-

Fig. 3. Error in offset computation: The red curve corresponds to
the exact boundary ∂H of the primitive H, the red and blue circles

correspond to spheres with radius r centered at q and p, respectively.
Moreover, the grey region corresponds to the error or deviation
between the exact and approximate offset computation. Similarly,
the green and yellow circles correspond to spheres with radius ǫ
centered at q and p, respectively.

cated on the edges of cubes formed by the rays that inter-
sect the boundary surface ∂H, we can compute the density
of LDI in the following form.

Remark 2 (density of LDI) For a d-regular solid H sam-
pled from B-rep into LDI representation, PH , with w as
the sampling distance, ∀p ∈ PH , there exists another point
q ∈ PH that ‖p− q‖ ≤

√
3w = ǫ.

This is because when any ray of a cube intersects with
the boundary surface of a solid model, it must have another
intersection point on the edges of this cube. By the conser-
vative sampling method presented in [28], when the model
tangentially contacts with a ray, the contact point will be
counted as two samples on the ray. The maximal distance
between two points on the edges of a cube with width w is√
3w.
The boundary surface of the offset solid OH can also be

defined as a point set, ∂OH = {p|dist(p, ∂H) = r}, by the
distance function

dist(p, S) = inf
∀q∈S

‖p− q‖. (1)

This distance function is also used to derive the distance-
bound of ball-union.

Proposition 1 (distance-bound of ball-union) If r > ǫ,
the union of spheres with radius r centered at the points
in PH results in a solid BH such that its boundary surface
∂BH gives the error bound: ∀s ∈ ∂BH , |dist(s, ∂H)− r| ≤
ǫ.

Proof. Assuming that we can compute the union of
spheres, all remaining points on the sphere Sp centered at
the point p must be outside or on other spheres Sq (∀q ∈
PH , q 6= p). As the point set PH is an ǫ-covering of the
surface ∂H, the continuous surface ∂H must lie in the re-
gion formed by merging all spheres with radius ǫ centered
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Fig. 4. The error bound (illustrated by the gray circles) between the
surfaces of OH and Oǫ

H
varies when the sharpness at the discontin-

uous regions on OH changes. The sharpness can be measured by the
angle α as illustrated – a smaller angle implies a higher measure of

sharpness. When we decrease the value of α from the case on the
left to the case on the right, the Hausdorff distance between OH and
Oǫ

H
increases, as indicated by the radii of gray circles.

at the points in PH (e.g., the region formed by yellow and
green circles in Fig.3) – called ǫ-spheres below.

For a point s on the sphere Sp, when p ∈ ∂H,
r − ǫ ≤ dist(s, ∂H) ≤ r.

Since ‖s − p‖ = r, the maximal value of dist(s, ∂H) is
bounded by r. If the intersection point h between the line
sp and the ǫ-sphere centered at p lies on ∂H, h is the closest
point to s which gives dist(s, ∂H) = r − ǫ (see Fig.3).
When p is not on ∂H but the dist(p, ∂H) ≤ ǫ (i.e., from

an ǫ-covering point set of ∂H), the distance from s to ∂H
satisfies this bound:

r − ǫ ≤ dist(s, ∂H) ≤ r + ǫ.
Again, the minimal value of dist(s, ∂H) is given at the point
h. The maximal value of dist(s, ∂H) is given at the intersec-
tion point between the line sp (see the illustration in Fig.3)
and the ǫ-sphere on the other side (i.e., the point h′). 2

By Eq.(1) and Proposition 1, it is known that points on
∂BH fall in the region bounded by ∂O+ǫ

H = {p|dist(p, ∂H) =
r + ǫ} and ∂O−ǫ

H = {p|dist(p, ∂H) = r − ǫ}. The region is
denoted by Oǫ

H . When the surfaces of OH are not smooth,
some sharp curves will be formed at the places having
discontinuous normals. The two-side Hausdorff distance
between the surfaces of OH and Oǫ

H depends on the sharp-
ness of these discontinuous regions. As shown in Fig.4,
when the crease becomes sharper (i.e., the angle α becomes
smaller), the Hausdorff distance between OH and Oǫ

H in-
creases. Generally, there is no bound on the sharpness of
a resultant offset surface (i.e., the value of α varies from
case to case). The point set PS is sampled from ∂BH ; thus,
that Hausdorff distance between PS and ∂OH is also not
bounded. However, according to definition of the offsetting
operator and its relationship to the Minkowski sum of balls
(ref. [3]), we know the relationship explained in Remark 3.

Remark 3 (Convergency to Exact Offset) When w → 0,
the result of the ball-union converges to exact offset.

Moreover, when the exact offset surfaces do not have
very sharp regions, the Hausdorff distance between ∂BH

and ∂OH could be bounded by a value δ. In these cases,
the error bound of ball-union in LDI representation can be

derived (see Appendix).

4. GPU-based Parallel Offset Computation

This section presents the GPU-based algorithms for com-
puting the approximate offset of solids with the help of LDI
representation.

4.1. Primary scheme

LDI samples resulting from ball-union can be computed
on rays in parallel. The whole algorithm consists of three
major steps.

Step 1) For each ray (i, j) in the τ -direction, we search its
neighboring rays in the same direction – i.e., the rays with
indices (i ± ⌈r/w⌉, j ± ⌈r/w⌉) also in the τ -direction. If
a sphere centered at a sample on the ray (k, l) intersects
the ray (i, j), two intersection points with depth values dl
and du will be obtained. These two samples are merged
into the existing samples on the ray (i, j) in an efficient
way. Firstly, as the existing samples on (i, j) are placed
in an ascending order based on their depth values, the
locations for the insertion of dl and du on the ray can be
computed by using a binary search. Next, the computa-
tion corresponding to removing the existing samples and
adding new samples to generate the merging result can
be performed based on different configurations. We per-
form the search and compute the ball-union on different
rays in parallel usingmultiple cores on aGPU.During the
search and ball-union computation, merging results on
rays are stored in a local temporary array. After that, the
merging results are added into a global data buffer array
Π. In order to avoid read-modify-write (RMW) hazards
in graphics global memory, the atomicInc operation [29]
is used to determine the starting index of resultant sam-
ples on different rays. Meanwhile, the number of samples
on a ray (i, j) and the starting index of the ray (i, j)’s
samples in Π are stored in other two 2D arrays at the
(i, j)-th element.

Step 2) This step searches the rays in other directions to
check if the samples on those rays will intersect the ray
(i, j). If so, the intersections will be merged into existing
samples on (i, j) by the same method described above.
For rays in the (τ + 1)-direction, only rays in the range
(1 · · ·m, i±⌈r/w⌉) need to be searched. Similarly, for rays
in the (τ+2)-direction, we check sphere-ray intersections
for rays in the range (j ± ⌈r/w⌉, 1 · · ·m).

Step 3) In this step, the scan primitive [30] is employed
to count the required size of elements before allocating
the resultant data array D; information for the resultant
index array I can be obtained during the scan. At last,
a kernel is used to copy the samples from Π into D.

After obtaining the ball-union result in LDI representa-
tion (i.e., PS), a Boolean operation [12,14] is performed on
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Fig. 5. A rectangular bar (with dimension:mw×w×w) is constructed
around a ray (displayed in red) along the x-axis, which defines the

bin of spatial hashing.

PS and PH to generate the final offsetting result. Normal
vectors of samples can be obtained from the spherical sur-
faces that these samples belong to. However, normal vec-
tors obtained in this way must be stored during the entire
ball-union computation procedure, which has a high cost
in terms of running time and memory overhead. A more
efficient way is to reconstruct normal vectors in parallel by
using an orientation-aware Principle Component Analysis

(PCA) based on the neighborhoods of a sample (ref. [8]),
which can be efficiently computed by searching the rays
around a sample point. Note that the orientation of a sam-
ple can be obtained by its location on a ray (i.e., whether
it is a point entering a 1D solid or leaving the solid).

4.2. Spatial hashing by LDI

By the primary scheme described in Section 4.1, ball-
union computation running on the GPU results in 15-30
times speedup as compared to a CPU based single-core
implementation [25]. The second of the three steps of ball-
union corresponds to a bottleneck – searching intersections
between a ray and the spheres centered at the points on
rays in other directions. For the example shown in Fig.1,
the second step takes more than 80% of the total time in
the grown offsetting and more than 85% of the total time
in the shrunk offsetting. During this step, for each ray (i, j)
in the τ -direction, all samples on around 2m × ⌈ 2r

w ⌉ rays
in (τ + 1)- and (τ + 2)-directions are searched. However,
spheres centered at most of these samples do not intersect
the ray (i, j). A spatial hashing method is used to remove
the redundant searches on these rays.
Rectangular bars (in total of m×m) are constructed by

locating their centers at the rays along the a-direction. Each
bar has the widthmw×w×w in the τ -, (τ+1)- and (τ+2)-
directions, respectively (see Fig.5 for an illustration). The
bar along the (i, j) ray is labelled with the index (im+ j).
The samples on rays in (τ + 1)- and (τ + 2)-directions are
stored in a sorted array Θ keyed by the indices of bars con-

taining these samples. The sorted array can be computed
by the highly parallel sort primitive (ref. [30]). The index
table Υ of spatial hashing, which stores the location of the
first sample of a rectangular bar in Θ, can be generated in
parallel by checking all the elements in Θ to compute the
element whose index of the containing bar is different from
its previous element. By this index table Υ and the sorted
array Θ, the samples close to the ray (i, j) are stored in Θ
from Θ[Υ[i, j]] to Θ[Υ[i, j + 1]− 1].

Therefore, in the second step of ball-union, we only check
the samples contained by the bars in the range of (i ±
⌈r/w⌉, j±⌈r/w⌉) to generate spheres that intersect the ray
(i, j). Specifically, the bars with index (k, l) are excluded
if (k − i)2 + (l − j)2 > (r/w +

√
2)2 because the spheres

centered at points in these bars will not intersect the ray
(i, j). This spatial hashing technique can reduce the search
time in the second step by up to 80%.

4.3. Balancing workload on rays

According to our empirical results, we observe that the
number of merging operators taken in the second step of
ball-union could be quite different on neighboring rays. As
a result, if we run the ray-based search and merging in par-
allel on many-cores of the GPU, the workload in different
threads could be considerably different – and the perfor-
mance will be governed by the slowest thread.
To solve this problem, we add a workload estimation

step before the search and merging steps. The number of
merging operations to be performed on each ray is first es-
timated by checking the number of spheres that intersect
that specific ray. Next, the rays are sorted according to the
number of intersections, which indicates the workload on
each ray during the ball-union computation. The search
and merging on the rays with zero intersecting spheres is
discarded. Starting from the first ray with non-zero inter-
secting spheres, sorted rays are packaged into bins, where
each has around nr rays.

nr = c×#block per grid×#thread per block (2)

We use c = 10. The rays classified into the same bin will
have similar workloads, and the search and merging on
them are conducted in parallel in the multiple threads of
the GPU. This ray-packaging technique is similar to the
workload balancing strategy used in [31] and can reduce
computing time by up to 60% in our parallel ball-union ap-
proach.
The pseudo-code of our parallel ball-union approach is

listed in Algorithm ParallelBallUnionOnLDI, which can
be implemented easily with the help of the scan, sort, and
compact primitives [30].

4.4. Successive offsetting

Both the search range of sphere-ray intersections and the
number of spheres intersecting a ray depend on the off-
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Algorithm 1: ParallelBallUnionOnLDI

Input: the LDI solid PH and the offsetting distance r
Output: the ball-union result PS in LDI-rep

1 Construct an empty LDI solid PS ;
2 foreach axis τ in {x, y, z} do
3 foreach ray (i, j) of PH in τ -direction in parallel

do
4 foreach ray (k, l) in the same direction with

(k, l) ∈ (i± ⌈r/w⌉, j ± ⌈r/w⌉) do
5 Compute the intersections between the ray

(i, j) and the sphere centered at each
sample on the ray (k, l);

6 Merge the points of intersected 1D solids
into the existing samples on the ray (i, j);

7 end

8 end
9 Initialize the index table Υ and the data array Θ

for spatial hashing;
10 Insert the samples of rays of PH in the (τ + 1)- and

(τ + 2)-directions into the data array Θ, each
sample is keyed with the index of the rectangular
bar containing the sample;

11 Sort the samples of Θ in an ascending order;
12 Use the scan primitive to build the index table Υ;
13 foreach ray (i, j) of PH in τ -direction in parallel

do
14 Search the samples contained by the bars in

the range of (i± ⌈r/w⌉, j ± ⌈r/w⌉), and count
the number of intersection points;

15 end
16 Sort rays in τ -direction by the number of

intersection points, which indicate the workload
for ball-union on a ray;

17 Package the sorted rays into bins;
18 foreach bin of rays in τ -direction do
19 foreach ray (i, j) of PH in the same bin in

parallel do
20 Compute the intersections between the ray

(i, j) and the spheres centered at samples
contained by the bars in the range of
(i± ⌈r/w⌉, j ± ⌈r/w⌉);

21 Merge the points of intersected 1D solids
into the existing samples on the ray (i, j);

22 end

23 end
24 Fill the ball-union result on rays in the τ -direction

into the LDI solid PS ;

25 end
26 return

setting distance r. Obviously, having an extremely large
r (e.g., the diagonal length of the model’s bounding box)
will make the computation of point-based offsetting very
slow. The order of computational complexity is around
O(⌈r/w⌉2). Based on the general bounds for solid offset

Table 1
Statistics of Computing Time (ms) on a GeForce GTX 580 GPU

LDI resolution: 256× 256

Input Relative Offset Distance†: r/Ld

Models Point # −0.05 0.025 0.05 0.1

Octa-flower 136,454 452 343 749 1,747

Vase-lion 180,730 811 483 874 2,215

Filigree 107,308 266 281 618 1,482

Buddha 106,950 453 297 681 1,607

LDI resolution: 512× 512

Input Relative Offset Distance†: r/Ld

Models Point # −0.025 0.0125 0.025 0.05

Octa-flower 553,648 1,389 952 1,840 3,947

Vase-lion 731,052 2,246 1,404 2,543 5,101

Filigree 438,590 1,373 1,466 2,344 4,540

Buddha 432,078 1,357 967 1,794 3,635

† The offset distances are specified as relative values w.r.t. the
diagonal length of the enclosed bounding box of the model, Ld.

computation [3], it is known that offsetting of a solid with
distance r can be decomposed into n successive offsetting
operations with distance r1, r2, . . . , rn if the offsetting dis-
tances satisfy: 1) r =

∑n
i=1

ri and 2) all ris and r have
the same sign. Without loss of generality, if ri = r/n,
the complexity of computation becomes O(n⌈r/nw⌉2) ≈
O( 1n⌈r/w⌉2).

In this paper, our point-based method computes the ap-
proximate offsetting. As analyzed in Section 3.3, the com-
puted shell solidOH in LDI representation slightly enlarges
the shape approximation error of the input LDI solid from

ǫ to
√

δ2 + (1 + δ
r )

ǫ2

4
. Therefore, performing the offset too

many times in succession will generate a result with a large
approximation error. According to our experiences, the fol-
lowing decomposition

n = ⌈r/(5w)⌉, ri = r/n, (3)

gives a good trade-off between speed and error in approxi-
mate offset computation.

5. Results and Discussion

In this section, we highlight the performance of our al-
gorithm on different benchmarks. All the timings reported
here were recorded on a machine using an Intel Core i5
2.67GHz CPU and 4GBmemory.We implemented our ball-
union algorithm using CUDA on a GeForce GTX 580 GPU
with 1GB of video memory.
Figures 6, 7 and 8 show the four benchmarks used in our

experimental tests and the results of both grown and shrunk
offsetting. The statistics of computing time have been listed
in Table 1. It is easy to conclude that offsetting on all these
benchmarks can be computed at almost interactive rates.

7



Table 2
Offset Computation Time§ (sec.) on GPU vs. CPU

Relative Offsetting Distance†: r = −0.025Ld

Methods Vase-lion Filigree Buddha

CPU (1-core) 639 448 462

CPU (4-cores) 207 (×3.1) 146 (×3.1) 129 (×3.6)

GPU Primary 20.8 (×31) 15.9 (×28) 16.3 (×28)

GPU SH 9.03 (×71) 7.24 (×62) 5.40 (×86)

GPU SH+P 5.71 (×112) 2.39 (×187) 3.40 (×136)

GPU SH+P+Succ 2.25 (×284) 1.37 (×327) 1.36 (×340)

Relative Offsetting Distance†: r = 0.0125Ld

Methods Vase-lion Filigree Buddha

CPU (1-core) 216 188 187

CPU (4-cores) 69.6 (×3.1) 58.5 (×3.2) 58.0 (×3.2)

GPU Primary 12.0 (×18) 9.38 (×20) 9.22 (×20)

GPU SH 2.82 (×77) 3.60 (×52) 2.01 (×93)

GPU SH+P 1.62 (×133) 1.39 (×135) 1.19 (×157)

GPU SH+P+Succ 1.40 (×154) 1.47 (×128) .967 (×193)

Relative Offsetting Distance†: r = 0.025Ld

Methods Vase-lion Filigree Buddha

CPU (1-core) 446 368 374

CPU (4-cores) 151 (×3.0) 122 (×3.0) 123 (×3.0)

GPU Primary 25.8 (×17) 18.3 (×20) 18.5 (×20)

GPU SH 5.37 (×83) 3.06 (×120) 2.76 (×136)

GPU SH+P 5.15 (×87) 2.93 (×126) 3.15 (×119)

GPU SH+P+Succ 2.54 (×176) 2.34 (×157) 1.79 (×209)

§ The numbers in parenthesis are the speedups compared to a

single-core CPU implementation.
† The offset distances are specified as relative values w.r.t. the
diagonal length of the enclosed bounding box of the model, Ld.
‡ The input LDI models have resolution 512× 512.

In order to study the performance of the spatial hashing,
ray-packaging and successive offsetting techniques used in
our approach, the timing results are shown in Table 2. The
implementations on single and multi-core CPUs, by using
a GPU-based primary scheme (Section 4.1), by using spa-
tial hashing (SH), by using SH and ray-packing (SH+P),
and by successive offsetting (SH+P+Succ) are compared
on three benchmarks. We can observe up to about 6.8 times
speedup on spatial hashing as compared to the primary
scheme. The improvement by packaging rays according to
the workload estimation is significant when the offset dis-
tance is relatively small (e.g., about 70 − 200% speedup
when r is 0.0125 in Table 2). When the value of r is large,
the workloads on different rays are similar to each other. In
these cases, the workload estimation and the sorting of rays
take extra time and the overall algorithm spends more time
on SH+P than on SH only (see the cases with r = 0.025
in Table 2). After decomposing the offsetting with a large

Fig. 6. Offsetting the Octa-flower model with different distances: (a)
input model, (b) r = −0.025Ld, (c) r = 0.0125Ld, (d) r = 0.025Ld,

and (e) r = 0.05Ld. Ld is the diagonal length of bounding box.

distance into successive operations with smaller distances,
generally about 16 − 150% improvement can be observed
on various benchmarks. Note that the approximation error
can be large when taking many successive offsets with small
distances. There is one special case in which SH+P+Succ
is slower than SH+P (see the filigree model with r = 0.0125
in Table 2), which happens when the value of r is not very
big – only about two successive operations are applied.
The Buddha model shown in Fig.8 is also used in [7, 15]

to compute the offset with distance at 2% of the bounding
box’s diagonal length. The offsetting computation takes
more than 3,000 seconds by [7] and around 180 seconds by
[15], respectively. Both are computed on the distance-fields
at the 5123 resolution. By our approach, the offset can be
obtained in 1.69 seconds by 512× 512 LDI representation.
More than 100 times speedup is observed as compared to
[15].
Figure 9 shows the performance of our algorithm on dif-

ferent benchmarks. These results show that our algorithm
works well on three different GPUs. Compared to the last
generation of GPUs (i.e., GeForce GTX 295), the algorithm
achieves 4 - 11x speedups on a GeForce GTX 580 for dif-
ferent models at different resolutions.
We also study the accuracy of offsetting results in our ex-

perimental tests. The distances between all the points in PS

and the boundary surface ∂H of the given solidH are mea-
sured by the publicly available PQP separation distance
computation library [32]. Two error metrics, the average
error and the maximal error, are employed in our analysis.

Eavg =
1

n(PS)|
∑

∀p∈PS

|dist(p, ∂H)− r|, (4)

Emax = max
∀p∈PS

|dist(p, ∂H)− r|, (5)
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Fig. 7. The Vase-lion and Filigree models used in our tests of parallel offsetting: (top row) the offset of Vase-lion with distances as (−0.05),
0.025, 0.05 and 0.1 of the diagonal length Ld of the bounding box, and (bottom row) offsetting the filigree model with distances of 0.05,

0.025 and (−0.0125) of Ld. Note that the points are displayed sparsely, and the actual representation is more dense.

Fig. 8. Offsetting Buddha model with different distances. From left to right: r = −0.0125Ld; r = −0.025Ld; the hollowing model obtained by

offsetting and Boolean; the given model; r = 0.025Ld; and r = 0.05Ld. Ld denotes the diagonal length of bounding box. For the visualization
purpose, the points are displayed more sparsely than the real density.

where n(PS) denotes the number of points in PS . Fig-
ure 10 shows the charts for the accuracy analysis on three
cases. Both the average error and the maximal error are
reported with reference to the offset distance (i.e., Eavg/r
and Emax/r). Moreover, the offsetting results without vs.
with successive decomposition (‘SH+P’ vs. ‘SH+P+Succ’)
are also studied. It is not surprising to find that the results

with ‘Succ’ present larger errors in both Eavg and Emax.
The results with the same offset distance but different LDI
resolutions (i.e., different ǫ-coverings) are compared; the
value of offset distance r is chosen as 25w at the LDI resolu-
tion 500× 500 in all the cases of Fig.10. The shape approx-
imation error generated in our approach converges while
increasing the sampling rate in LDI representation.
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(a) Grown offsetting of Buddha: r = 0.0790

(b) Shrunk offsetting of Buddha: r = −0.0790

(c) Grown offsetting of Filigree: r = 0.0554

Fig. 10. Error analysis of offsetting results shows that the approximation errors are reduced when increasing the resolutions of LDI, where
the errors are reported w.r.t. the offset distance r.

The GPU-based Euclidean Distance Transform (EDT)
proposed in [24] can be used to compute the distance-field
to a set of points on uniformly sampled grid nodes. We test
their approach on the same PC equipped with a GeForce
GTX 580 graphics card, and compare its performance with
the approximate offset proposed in this paper. Different
resolutions are tested on both EDT and our ball-union ap-
proach on the Buddha model shown in Fig.8. As shown in
Table 3, when increasing the resolution of the distance field
to be greater than 512, the memory is used up very soon
by the EDT approach. We also check the performance of
our approach on different offsetting distances. It can be ob-
served that our approach is faster than EDT when comput-
ing on high resolution LDI with small offset distances. Al-
though our method becomes slower while increasing the off-
set distance, the LDI based approach can compute the off-
set surface for high sampling rates (10242 or higher), which
is important for applications that require more accuracy.

Table 3
Comparison with EDT-based method [24]

Input Time (ms) Time (ms) of Our Approach

Res. Point # of EDT r = 3w r = 5w r = 8w r = 11w

256 106,950 78 110 171 234 312

512 432,078 686 327 468 873 1,311

1024 1,740,424 n/a 936 1,747 3,806 6,318

2048 6,988,304 n/a 5,180 9,189 n/a n/a

§ ‘n/a’ stands for the case that memory is used out.
† Buddha model shown in Fig.8 is used in this test.
‡ The ‘SH+P’ scheme of our approach is tested to conduct the

comparison.

Limitation on topological error
In Section 3.3, only the geometric error bounds are given

for the ball-union algorithm presented in this paper. From
the analysis in [26], we know that for the LDI representa-
tion PH of a solid model H, ifH is d-regular with d >

√
3w
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Fig. 9. Performance comparison of our algorithm on three different

GPUs. Models are sampled into LDI with 256× 256 and 512× 512
resolutions, and the results are computed with offsetting distance

r = 5w. Note that, GTX 295 is a dual-GPUs graphics card; here,

only one GPU is used in our tests.

and w being the sampling distance between rays of LDI,
the boundary surface M of PH generated by a topology-

preserving method on cubic grids formed by the rays of
LDI is d-homeomorphic to the exact surface boundary,
∂H. However, the resultant exterior/interior offsetting
solids with different offsetting distances could have differ-
ent bound, d, for the d-regular. Specifically, for any point
p on the boundary of H+

r (or H−
r ), the maximal osculating

ball that lies entirely outside H+
r (or inside H−

r ) may have
a radius less than d. As a result, the approximate offsets
computed with a fixed sampling distance could have differ-
ent topology as compared to the results of exact offsetting.

6. Conclusion

In this paper, we present a highly parallel method to
compute the approximate offsetting on models represented
by structured points in Layered Depth Images (LDI). The
main approach is to compute the super-union of all the
balls centered at the input points, which can be conducted
in a highly parallel manner on the GPU with the help of
LDI representation. Our approximate offsetting algorithm
computes the boundary whose accuracy is governed by the
sampling rate of LDI. As compared to prior CPU-based ap-
proximation offsetting algorithms, our approach results in
more than 100 times speedups. Overall, this is the first ap-
proach that can compute the offset approximation of com-
plex solid models at almost interactive rates on current
GPUs.
In terms of future work, we would like to generalize this

approach and use it to compute non-uniform offsetting,
which has many applications including biomedical engi-
neering [33]. We would like to further improve its perfor-
mance to perform the computations at interactive rates and
also give tight bounds on the topological error.
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Appendix

The error-bound of LDI-based offsetting can be derived
on the cases that the Hausdorff distance between ∂BH and
∂OH is bounded.

Proposition 2 (error-bound of ball-union on LDI) When
the Hausdorff distance between ∂BH and ∂OH is δ, the
Hausdorff distance between ∂OH and the point set PS is

bounded by
√

δ2 + (1 + δ
r )

ǫ2

4
.

Proof. First, as PS ⊂ ∂BH , the bound δ of the Hausdorff
distance between ∂BH and ∂OH gives this bound:

∀a ∈ ∂PS , dist(a, ∂OH) ≤ δ.
The bound can also be expressed as:

∀a ∈ ∂OH , dist(a, ∂BH) ≤ δ.

Fig. 11. An illustration for Proposition 2.

For example, the gray region shown in Fig.11 is described
by this formula. However, the closest point sa (sa ∈ ∂BH)
to the point a may not be a member of PS when the ball-
union is computed on the rays of LDI representation. As
shown in Remark 1 and 2, we can know that there must
be a point s′a ∈ PS in the region such that their distance
‖sas′a‖ ≤ ǫ

2
.

If there is a point s′a that is located on the same sphere
that contains sa (i.e., Sp) with ‖sas′a‖ = d, since ‖sap‖ =
‖s′ap‖ = r, this implies that

x
‖sas′a‖

=
‖sas

′

a
‖/2

‖sap‖

which leads to x = d2

2r (see the bottom of Fig.11). Therefore,
the distance between a and s′a is

‖s′aa‖ =
√

(x+ δ)2 + (d2 − x2) =

√

δ2 + (1 +
δ

r
)d2 (6)

As d ≤ ǫ/2, it has ‖s′aa‖ ≤
√

δ2 + (1 + δ
r )

ǫ2

4
.

For the point s′′a ∈ PS that ‖sas′′a‖ = d ≤ ǫ
2
and does

not lie inside the sphere Sp, it must satisfy the relation-
ship ‖s′′ap‖ ≥ r. Otherwise, this point will not lie on the
boundary surface of the union of 1D solid obtained from
the sphere Sp. As illustrated in the bottom of Fig.11, s′′a
must be located in the right side of the dashed circular arc.
Without loss of generality, having ‖sa − a‖ = δ, we can
show that

‖s′′aa‖ =
√

(δ − d cos θ)2 + (d sin θ)2

=
√
δ2 + d2 − 2δd cos θ,

(7)

and this is an increasing function of θ when θ ∈ [0, π] with
a fixed d. Thus, a maximum is obtained if s′′a and s′a are
coincident. In other words, ‖s′′aa‖ ≤ ‖s′aa‖. Therefore,

∀a ∈ ∂OH , dist(a, ∂PS) ≤
√

δ2 + (1 + δ
r )

ǫ2

4
.

The proposition has been proved. 2
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