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Abstract

The Hermite radial basis functions (HRBFs) implicits have been used to reconstruct surfaces from scattered Hermite data points. In
this work, we propose a closed-form formulation to construct HRBF-based implicits by a quasi-solution to approximate the exact
one. A scheme is developed to automatically adjust the support sizes of basis functions to hold the error bound of a quasi-solution.
Our method can generate an implicit function from positions and normals of scattered points without taking any global operation.
Robust and efficient reconstructions are observed in our experimental tests on real data captured from a variety of scenes.
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1. Introduction

Reconstructing surface from a set of unorganized points
equipped with normal vectors is an important topic in various
fields such as computer graphics, reverse engineering, image
processing, mathematics, robotics, computer-aided design and
manufacturing. A lot of research approaches have been de-
voted to developing surface reconstruction methods, in which
implicit surface fitting based on Radial Basis Functions (RBF)
is successful in dealing with noisy and incomplete data (e.g.,
[1, 2, 3]).

Recently, implicits based on Hermite Radial Basis Functions
(HRBF) were presented to interpolate data points to the first or-
der in [4]. It is robust and effective to deal with coarse and non-
uniformly sampled points, close surface sheets, and able to pro-
duce surface reconstruction with details. However, interpolat-
ing both positions and normals of points leads to the computa-
tion of solving a 4n×4n linear system for an input with n points.
It is impractical due to the expensive computation. The system
becomes sparse when the Compactly Supported Radial Basis
Functions (CSRBF) are used as the kernel functions. However,
this attempt on improving the efficiency can also bring in a more
challenging problem of numerical stability. A closed-form for-
mulation is presented in this paper to solve the computational
problem of HRBF-based reconstruction by quasi-interpolation.
Our formulation results in a kind of approximate interpolants
that fit implicits by weighted averages of the values at given
points. The most attractive property of this approach is able to
robustly construct a surface from a set of points without solv-

ing linear systems – i.e., with a closed-form formulation (see
Section 3.1). This can make the computation of HRBF-based
surface reconstruction stable and efficient. As shown in Fig.1,
a mesh surface with 331k triangles can be efficiently recon-
structed from an input set with 922k points by our method in
5.5 seconds. Comparing to the recent Floating Scale Surface
Reconstruction (FSSR) [5] that also avoids applying global op-
erations, our method is more than 17.9× faster. Moreover, we
have analyzed the error-bound between our closed-form solu-
tion and the solution obtained by solving linear systems (see
Section 3.2). Specifically, the error-bound exists when the num-
ber of points covered by every support of all CSRBFs is capped
by a fixed number, m. Experimental tests have been conducted
to verify the efficiency and robustness of our approach.

1.1. Contributions

In this paper, we propose a closed-form formulation for com-
puting the approximate solution of HRBF-based surface recon-
struction from scattered data points.

• Our method can construct a signed scalar function by di-
rectly blending the positions and normals of points without
any global operation. The computation based on compact
support is local and numerically stable.

• Errors between the quasi-solution and the exact one are
bounded when applying an automatic scheme to adjust the
support sizes of basis functions.
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Figure 1: The method proposed in this paper can efficiently reconstruct a sur-
face from a set of noisy and incomplete points – e.g., the indoor scene shown
here with 922k points. Our reconstruction takes only 5.5 seconds to gener-
ate a mesh surface with 313k triangles have the similar quality as the state-of-
the-art [5] but our approach is 17.9x faster. Note that the scale factor used in
FSSR [5] is generated as 3× of support size used in our approach so that similar
number of triangles are generated, and other default parameters are used for
FSSR.

• Our formulation to find the approximate solution of
HRBF-based surface reconstruction is robust. When com-
pared with other approaches, this method can still suc-
cessfully reconstruct a satisfactory surface on highly noisy
points with up to 60% Gaussian noise.

• As a local approach, our method is efficient and scalable.
This is well-suited for highly parallel implementation as
well as distributed/progressive reconstruction.

Note that, the compactly-supported basis functions results in
open meshes and leaves holes if the region does not have
enough number of points, which actually fits the application of
reconstructing outdoor scenes very well. Such holes also pro-
vide cues for the reliability of a reconstruction that can be used
to supervise the active scanning and reconstruction (ref. [6]).

1.2. Related work

The problem of surface reconstruction from point cloud has
been studied in literature for more than two decades. After us-
ing signed distance field in [7] to reconstruct mesh surface from
point clouds, implicit functions have gained a lot of attention
in surface reconstruction because of its ability to handle topo-
logical change and filling holes. Example approaches include
RBF-based methods [4, 1, 2, 8, 9, 10, 11, 12, 13, 14, 15, 16],
Poisson surface reconstructions [17, 18], smooth signed dis-
tance method [19], and Partition-Of-Unity (POU) based meth-
ods [20, 21]. A comprehensive review of all these works has
beyond the scope of this paper. More discussion and compar-
ison on different surface reconstruction methods can be found

in [22] and the recent survey paper [23]. Here we only review
methods that are closely related to our approach.

The methods based on RBF implicits are popular for their ca-
pability of handling sparse point clouds. Generally, RBF-based
methods transform the reconstruction into a multi-variable opti-
mization problem, where enforcing the interpolation constraints
results in a linear system. Solving the linear system is an im-
portant but time-consuming step for the RBF-based reconstruc-
tion. To obtain a non-trivial solution, RBF-based methods usu-
ally require the provision of extra offset-points (ref. [1, 2]) that
can be obtained by shifting data points along their normal di-
rections. However, it is not easy to find an optimal offset dis-
tance. The positions of these offset points is also difficult to
determine (especially when the scanned model has small fea-
tures). To avoid generating offset-points, Ohtake et al. [9, 13]
used a signed function which includes basic approximations
and local details. Some prior works [10, 15], deduced from the
statistical-learning perspective, avoid generating offset-points
in surface reconstruction, where normals were directly used in
a variational formulation. Recently, Macedo et al. [4] derive an
implicit function from the Hermite-Birkhoff interpolation with
RBFs. They enhance the flexibility of HRBF reconstruction
by ensuring well-posedness of an interesting approach combin-
ing regularization. However, given a set with n Hermite points,
these methods result in a 4n × 4n linear system to be solved,
which limits the number of points in reconstruction.

Quasi-interpolation is a simple, efficient, and computational
stable method in the field of function approximation. In the
early work of quasi-interpolation [24], a function approximat-
ing a given data set is defined by a weighted average of the
values at the data points. The quasi-interpolation with RBF ker-
nels has been studied in [25, 26], which is later employed for
surface reconstruction [27, 28]. However, when the problem
extended to HRBF based surface reconstruction, these quasi-
interpolation techniques cannot be directly applied as the im-
plicit function of HRBF does not follow the required form of
quasi-interpolation. Our work presented in this paper overcome
this difficulty. To the best of our knowledge, this is the first ap-
proach that provides a closed-form solution for HRBF-based
surface reconstruction.

General speaking, Moving Least-Squares (MLS) based meth-
ods [29, 30, 31, 32, 33, 34], also construct a semi-implicit func-
tion by weighted sum of data points. Normal constraints are en-
forced by either approximation or interpolation in a few MLS
approaches (ref. [32, 30, 34]). The method of Shen et al. [32]
is mainly for polygonal meshes. Therefore, we only compare
our results with Algebraic Point Set Surfaces (APSS) [30] and
Hermite Point Set Surfaces [34] in the experimental tests and
find that our method is more robust on noisy input. In the recent
work named as FSSR [5], weighted average is also employed to
fit implicit functions to the input set of points. The final implicit
functions are formed by locally supported basis functions sat-
isfying the property of POU. However, FSSR is 8.5× to 36.4×
slower than our method when generating a reconstruction with
similar number of triangles. More details can be found in Sec-
tion 5.
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2. HRBF Implicits

The HRBF implicits [4] are built upon the theory of Hermite-
Birkhoff interpolation with radial basis functions [3]. In this
section, we briefly describe how to use HRBF implicits to solve
the problem of surface reconstruction from scattered points.

Definition 1 Given a set of data P = {p1,p2, · · · ,pn} with
unit normals N = {n1,n2, · · · ,nn}, the HRBF implicits give a
function f interpolating both the points and the normal vectors
as

f (x) =

n∑
j=1

{a jϕ(x − p j) − 〈b j,∇ϕ(x − p j)〉}, (1)

where ϕ : <3 7→ < is defined by a radial basis function ϕ(x) =

φρ(‖x‖), 〈·, ·〉 denotes the dot-product of two vectors, and ∇ is
the gradient operator.

Both the scalar coefficients, a j ∈ <, and the vector coeffi-
cients, b j ∈ <

3, can be computed by the constraints of interpo-
lation as

f (pi) = 0 and ∇ f (pi) = ni, (i = 1, 2, · · · , n). (2)

Applying these constraints to Eq.(1), we obtain a linear system
with equations∑n

j=1 {a jϕ(pi − p j) − 〈b j,∇ϕ(pi − p j)〉} = c,∑n
j=1 {a j∇ϕ(pi − p j) − b jHϕ(pi − p j)} = ni,

(3)

where i = 1, 2, · · · , n and H is the Hessian operator applied on
ϕ(·). The linear system can be rewritten in a matrix form as

Aλ = y, (4)

where λ and y are 4n vectors with the i-th blocks being [ai,bi]T

and [c,ni]T respectively. Here, A is a 4n×4n coefficients matrix
which are assembled from n×n blocks. Each block Ai, j is a 4×4
sub-matrix corresponding to a pair of RBF centers (pi,p j).

A = (Ai, j)n×n,

Ai, j =

(
ϕ(pi − p j) −(∇ϕ(pi − p j))T

∇ϕ(pi − p j) −Hϕ(pi − p j)

)
∈ <4×4.

(5)

In this paper, we use a Wendland’s CSRBF [35] as the kernel
function because its nice properties in numerical stability and
easy-to-implementation.

φρ(r) = φ(r/ρ)

φ(t) =

(1 − t)4(4t + 1), t ∈ [0, 1],
0, otherwise,

(6)

where ρ is the support size, and r is the Euclidean distance be-
tween a query point and the center of a RBF. Note that different
support sizes can be used at different centers. Solving Eq.(4), an
implicit function f (x) can be determined at the space spanned
by the supports of centers {pi}. To make the system matrix of
RBF interpolation better conditioned, a regularization term with

Figure 2: Surface reconstructions by the HRBF implicits without (left) and with
(right) the regularization term (η = 1923.1). Artifacts will be produced without
the regularization.

coefficient η is usually added when using RBF interpolants to
solve the surface reconstruction problem. That is,

(A + ηI)λ = y. (7)

An example is shown in Fig.2 to demonstrate the effectiveness
of regularization. Benefit about how and why a large value of η
can improve the reconstruction can be found in [36].

3. Formulation

This section provides a closed-form formulation for solving
the problem of HRBF-based surface reconstruction via quasi-
solution. Error-bound of the approximation in quasi-solution is
also derived.

3.1. Quasi-solution in closed-form

When increasing the number of centers HRBF-based surface
reconstruction, both the numerical instability and the compu-
tational cost become intensively remarkable when solving the
linear system in Eq.(7). Here, we investigate a closed-form for-
mulation inspired by the theory of quasi-interpolation. Differ-
ent from the classical quasi-interpolation technique, our method
is based on the pattern analysis of matrices. With the help of our
formulation, surfaces can be reconstructed in a more stable and
efficient way.

Quasi-interpolation techniques can reconstruct a function
approximately interpolating a given data set by computing
weighted averages of the values at the data points [24]. Specif-
ically, considering an interpolant

g(x) =
∑

i λiψi(x)

with constraints on the function values as

g(xi) = fi,

the function g(x) can be well approximated by letting λi ≡ fi,
where fi is the function value to be interpolated at xi. This
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Figure 3: Study on the errors between the coefficient matrix A of HRBF implicit and its degenerate diagonal matrix D: (top row) the patterns of absolute differences
between A and D when increasing the support sizes – ρ̄ = 0.08 and only the element with absolute value greater than 10−3 are displayed as black dots, (middle row)
the results of surface reconstruction by directly solving Eq.(7) with exact A and η = 50, and (bottom row) the reconstruction error by using approximate solution
with λ̃ (i.e., Eq.(9)). Note that, the reconstruction results generated by our method are visually similar to the results shown in the middle row. Therefore, color
maps are employed in the bottom row to illustrate the geometric errors between the exact solution and the approximate solution on the models. The average shape
approximation errors are also reported as Eavg, which is evaluated by the publicly available Metro tool [37].

is called quasi-interpolation, which can lead to accurate ap-
proximation when the trial functions ψi(x) satisfy the proper-
ties of non-negativity, partition-of-unity and locality/sparsity
(ref. [28]). An approximation g̃(x) of g(x) can be obtained as

g̃(x) =
∑

i fiψi(x).

More details of approximate date interpolation can be found
in prior work (ref. [24, 25, 26, 27, 28]). However, the quasi-
interpolation technique cannot be directly applied here as our
interpolation constraints consist of both the values and the gra-
dients of functions (see Eq.(2)).

Basically, we need a closed-form formulation to approximate
the solution of Eq.(7). Considering from the aspect of ma-
trix computation, the quasi-interpolant with λi ≡ fi is actually
a solution when the coefficient matrix is approximated by an

identity matrix I. Inspired by this observation, we further ana-
lyze the pattern of matrices generated by the HRBF implicits.
Specifically, we study the similarity of the coefficient matrix A
and its degenerate diagonal matrix. For a CSRBF ϕi(· · · ), when
there is no other center falling into the space spanned by its
support ρi, the coefficient matrix is degenerated from the gen-
eral form Ai, j of Eq.(5) into

Di, j =

 diag(1, 20
ρ2

i
, 20
ρ2

i
, 20
ρ2

i
), (i = j)

0. (i , j)
(8)

If the scenario of not containing other centers happens at all
CSRBF kernels, the linear system in Eq.(7) degenerates into
(D + ηI)λ = y with D = (Di, j)n×n. As the coefficient matrix
becoming a diagonal matrix, this results in a direct solution of
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Eq.(7)
λ̃ = (D + ηI)−1y

= { c
1+η

,
ρ2

1n1

20+ηρ2
1
, · · · , c

1+η
,

ρ2
nnn

20+ηρ2
n
}.

(9)

The criterion of not containing other centers happens at all
CSRBF kernels is easy to be satisfied by using a very small
support size on all kernels (i.e., ρi = 1

2 ρ̄). However, as the sup-
ports of kernels are separated from each other in such a case,
the implicit surface represented by f (x) = 0 consists of many
isolated fragments. In practice, we need to enlarge support sizes
at kernels to make them connected so that continuous surfaces
can be reconstructed.

When enlarging the support sizes of kernels, the difference
between A and D increases progressively. However, as shown
in Fig. 3, approximating A by D can still generate good recon-
structions. We also study the patterns of absolute difference
between A and D in Fig. 3. The errors increase in very small
values – see both the reported average error Eavg and the color
maps that reflect the distribution of geometric errors. Basically,
no visual difference can be found between the exact and the
approximate solutions. And the average value of shape approx-
imation error, Eavg, is also very small. Moreover, when a larger
regularization coefficient is employed, the geometric approxi-
mation error can be further reduced as the difference between
A and D becomes more trivial in this case. For example, the
values of Eavg on all cases shown in Fig. 3 drop below 10−6

when the value of η is changed from 50 to 1000. The error of
λ caused by using D to replace A will be analyzed in the sec-
tion below. The approximate error can be bounded as long as
the number of centers falling in the support of each kernel is
bounded.

Using D to approximate A amounts to letting λ ' λ̃. Then,
a closed-form function that approximates f (x) can be obtained.
Substituting λ̃ of Eq.(9) as λ into Eq.(7), the coefficients of the
i-th basis function can be approximated by

ai ≈ 0 and bi ≈
ρ2

i

20 + ηρ2
i

ni,

which give an approximate function of f (x) as

f̃ (x) = −

n∑
j=1

〈
ρ2

j

20 + ηρ2
j

n j,∇ϕ(x − p j)〉. (10)

By this implicit function, we can tessellate the isosurface
of f̃ (x) = 0 into a polygonal mesh by a variant of Dual-
Contouring (DC) algorithm [38].

3.2. Error-bound analysis
Error between the quasi-solution λ̃ and the exact solution λ

of Eq.(7) must be bounded to make the closed-form formulation
useful. The following lemmas are derived, the proofs of which
can be found in [39].

Lemma 1 Defining ∆A = (A + ηI) − D and ∆λ = λ − λ̃, the
error of approximation is bounded as

‖∆λ‖∞ ≤
‖D−1‖∞‖∆A‖∞

1 − ‖D−1‖∞‖∆A‖∞
‖D−1y‖∞ (11)

when
‖D−1‖∞‖∆A‖∞ < 1. (12)

End users may not know about how to make ‖D−1‖∞‖∆A‖∞ < 1
to achieve bounded errors. Thus, the following lemma is de-
rived. Without loss of generality, we can assume that there
are at most m other centers falling in the support region for
each kernel. Then, the error-bound of our quasi-solution can
be achieved on the Wendland’s CSRBFs when the values of
minimal support size ρmin, m and η satisfy the condition given
below.

Lemma 2 When Wendland’s CSRBFs are used, if their sup-
port sizes ρi ∈ [ρmin,

√
20] and each support region contains at

most m centers of other CSRBFs, the value of ‖∆λ‖∞ is bounded
by a constant when

1 + η > m(
5

4ρmin
+

35
ρ2

min

). (13)

Here we also limit the value of maximal support size (i.e.,
ρi ≤

√
20) to obtain a compact formula in Eq.(13). Otherwise,

different formulas for the right part of Eq.(13) will be obtained
for ρi falling into different range of values.

Remark. The requirements of,

1. all the CSRBFs have their support sizes within the interval
[ρmin,

√
20],

2. there are at most m centers falling in the support of any
others CSRBF, and

3. the values of η, m and ρmin satisfy Eq.(13),

can be achieved by a carefully designed support size tuning al-
gorithm. After giving the weight of regularization η, the values
of ρis and m are adjusted to satisfy Eq.(13) (details can be found
in Section 4.1). By scaling all models into a bounding box of
[−1, 1]3 ∈ <3, the algorithm can also ensure max{ρi} <

√
20.

Approximation errors on different examples can be found in
Fig.4 and will also be discussed in Section 5.2.

4. Reconstruction Algorithm

By using the implicit function f̃ (x) defined in Eq.(10), sur-
face can be efficiently reconstructed from a set of points P and
their normals N . Our algorithm consists of two major steps:

1. Support size tuning – a scheme is investigated to determine
the support sizes of kernel functions according to Lemma 2
to guarantee the existence of error-bound.

2. Mesh extraction – a polygonal mesh will be extracted from
the zero isosurface as the result of surface reconstruction.

The second step takes the majority of computation time in our
algorithm. We develop an efficient method that fits well with
the architecture of parallel computing to efficiently run on com-
puters with multi-cores.
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Figure 4: Examples with (a & b) bounded reconstruction vs. (c & d) un-
bounded reconstructions, where the value of η is scaled from a value suggested
in Eq.(15), η0. The values of η/η0 are (a) 1.0, (b) 0.5, (c) 0.1 and (d) 0.01.
Color maps illustrate the geometric error between the exact and the quasi solu-
tions measured by the Metro tool [37]. Statistics can be found in Table 1. In all
cases, m = 56 and ρmin = 0.75d̄ = 0.0309 are applied.

4.1. Support size tuning
In Lemma 2, the formula of inequality consists of three pa-

rameters, where η is a user input coefficient to specify the level
of regularization. Usually, we do not modify the value of η. Ac-
cording to the properties of quadratic equation, Eq.(13) actually
gives the bound of ρmin’s value as

ρmin >
5m +

√
25m2 + 2240(1 + η)

8(1 + η)
. (14)

The formula is derived based on the assumption that
m, η, ρmin > 0. When the value of m is known, this gives the
minimal value of support size on each kernel. However, a large
support size may let a kernel cover more than m centers of other
RBFs. Basically, each support must cover enough number of
data points to generate a span of the local shape; meanwhile, it
cannot be too large.

To resolve this contradiction, we develop an iterative algo-
rithm to determine the support sizes at all CSRBF kernels are
determined by three major steps.

Table 1: Errors of Bounded vs. Unbounded Reconstruction

Right Side Geometric Error
Fig. η/η0 of Eq.(14) Maximal Average
(a) 1 0.0186 1.15 × 10−3 5.47 × 10−5

(b) 0.5 0.0265 1.77 × 10−3 7.54 × 10−5

(c) 0.1 0.0887 3.07 × 10−2 1.64 × 10−4

(d) 0.01 0.219 3.08 × 10−2 1.98 × 10−4

1. The algorithm starts from analyzing the density of points
to determine the initial value of support sizes. An octree
is constructed to split the input points into different nodes
by keeping similar number of points in each leaf-nodes.
Denoting the average diagonal length of the leaf-nodes as
d̄, the support sizes are temporally set as 3

4 sd̄ with s being
an amplifier – s = 1.0 is employed for noise-free data sets.

2. We then count the number of points covered by the sup-
porting region of each CSRBF, φρ j (‖x−p j‖). The maximal
number is assigned as m.

3. After knowing m, the temporal support size of each
CSRBF kernel is enlarged by an incremental procedure
until it covers m centers of other kernels. Among all the
support sizes determined in this way, the minimal one is
selected as the final support size applied to all kernels (i.e.,
uniform support size ρmin is adopted).

4. When the value of ρmin does not satisfy the inequality of
Eq.(14), we go back to step 3 with m = m − 1 to run the
support size tuning again.

For users have no special demand on the degree of regulariza-
tion, we suggest to use

η =
100

(0.75d̄)2
, (15)

which empirically balances the robustness and the quality of
reconstruction. According to our experimental tests, Eq.(14)
can always be satisfied when the value of η is chosen in this
way. However, if an inappropriate value is used for η – e.g., a
very small η used in Fig.4, our algorithm cannot find a value of
ρmin satisfying Eq.(14) even when m = 1. In such a scenario, we
choose m and ρmin as the values determined by the first iteration
of our algorithm. This usually leads to a reconstruction with
larger approximation error (see the color map in Fig.4).

Support sizes generated by the above method work well on
clean data but may fail in highly noisy input. In such a scenario,
we enlarge the temporal support sizes by using s > 1.0 to en-
hance the effectiveness of denoising. This results in a larger m.
More geometric details can be preserved with a smaller support
size while a larger support size leads to a smoother reconstruc-
tion. Examples using different values in the amplifier s can be
found in Fig.5.

4.2. Efficient mesh generation

To extract the isosurface f̃ (x) = 0 of an implicit function
f̃ (x), the most popular algorithms in literature are Marching
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Figure 5: Results with different levels of denoising can be obtained by using different amplifiers on a noisy point set: (from left to right) input noisy points and our
reconstruction results. The value of η suggested by Eq.(15), η = 2416.24, is used here.

Figure 6: Prior methods generate unsatisfactory results on the incomplete set of indoor scan: (a) MPU [21], (b) SSD [19] and (c) Screened-Poisson [18].

Cubes (MC) [40] and Dual-Contouring (DC) [38]. DC algo-
rithm in general produces fewer polygons than MC while gener-
ating surfaces with similar quality. We develop a variant of DC
algorithm to extract zero isosurfaces from the regions spanned
by the RBFs in Eq.(10).

The reconstruction with compactly supported implicit func-
tions leads to open mesh surfaces and leaves holes in regions
not covered by the supports of RBFs, where f̃ (x) returns an un-
defined value. This is very useful for reconstructing the scenes
that have not been completely captured (e.g., the scene shown in
Fig.1). Moreover, as f̃ (x) is defined in a closed-form, its evalu-
ation (therefore also the isosurface extraction) is highly scalable
and can be efficiently performed by local operations running in
parallel. Another potential benefit of our approach is that the
surface can be reconstructed in an out-of-core manner, which
is hard for a hierarchical structure. Similarly, progressive re-
construction can be developed by only updating a local region
when new points are added as centers of CSRBFs.

5. Results and Discussion

A surface reconstruction algorithm based on the closed-form
formulation of HRBF implicits has been implemented with Mi-
crosoft Visual C++ and OpenGL. We evaluate our methods
on a PC with two Intel Core i7-2600K CPUs at 3.4GHz plus
16GB RAM. Our approach has been applied to various data
with up to 14M points, where a surface with 723k triangles can

be reconstructed in 26.5 seconds. Comparisons with other ap-
proaches are given below to verify the quality and the speed of
our method. In our tests, all models have been scaled into a
bounding-box of [−1, 1]3 ∈ <3.

5.1. Raw data
In practice, data obtained from an industrial acquisition pro-

cess is usually a large point set with noise. The data-sets are
also incomplete in most cases (e.g., the indoor scan shown in
Fig.1 and the models shown in Fig.7). The results of reconstruc-
tion are unsatisfactory when using the state-of-the-art surface
reconstruction techniques developed for clean sets of complete
data points, including the Multiple Partition of Unity (MPU)
reconstruction [21], the Smooth Signed Distance (SSD) re-
construction [19] and the Screened-Poisson reconstruction [18].
See Fig.6 for an example. Large errors are generated in regions
of missing data. Similar errors can be found when applying
these methods for the data sets tested in Fig.7. In these tests, we
employ a depth 10 octree in the SSD and Screen-Poisson meth-
ods to generate results. For MPU and our method, we adjust the
resolutions of polygonization methods to extract meshes with
similar numbers of triangles as SSD and Screened-Poisson. The
parameter Max Error of MPU is set as 0.01 times of the model’s
size. Default values are used for other parameters.

The recently developed FSSR method [5] targets on fast sur-
face reconstruction from large real data sets with missing re-
gions. We compare our method with FSSR on two sets of real
scanned data in Fig.7. Fuhrmann and Goesele [5] assumed the
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Figure 7: Examples of surface reconstruction on incomplete set of points: (a) reconstruction from raw data and (b) reconstruction from data sets processed by the
consolidation method [41]. Our results are comparable with that obtained by FSSR but our method is about 30× faster.

scale of an input point set is known, which however is not the
case here. In order to make an appropriate comparison, we use
1/3 of the average support size determined by our method as
the scale used in FSSR. This is consistent with the formulation
presented in [5], where the support size is set as three times of
the input scale. The actual values of scale and sd̄ are also given
in Fig.7. It can be found that similar number of triangles are
generated in FSSR and our method by setting the value of scale
in this way.

Table 2 gives the statistics of tests on these models. Due
to the closed-form formulation, our method does not need any
global operation such as solving a large linear system. Its com-
putational time is only spent on constructing an octree to com-
puting the support size and the step of function value evaluation
in iso-surface extraction. Both SSD and Screened-Poisson need
to solve linear systems globally. In Poisson reconstruction,
the multi-grid solver performs a constant number of conjugate-
gradient iterations at each level, which gives linear complexity
w.r.t to the number of nodes in the octree. The SSD reconstruc-
tion uses conjugate-gradients to determine all the coefficients
simultaneously, which has a complexity of O(n1.5). In MPU
reconstruction, only local fitting is taken at leaf-nodes of an
octree. These surfaces are blended together to form the resul-
tant surface, which is fast but still slower than our method. On
the other aspect, as both FSSR and our method do not need any
global operations during the computation of surface reconstruc-
tion, it can easily be parallelized on the PC with multi-cores
– OpenMP is used in our implementation. We test both ap-
proaches on a PC with 8-cores. As shown in the computational
statistics in Table 2, the program can be effectively speed up on
8-cores. The multi-core version of FSSR is provided by the au-
thors on their homepage. When generating meshes with similar
number of triangles, our method is up to 30× faster than FSSR.

In summary, our method is the fastest method and can generate
similar results as the other methods.

We also study the effectiveness of our approach on the bench-
mark of FSSR with shape density variation caused by superpos-
ing point sets obtained from multiple scans. As shown in Fig.8,
the input set from four synthetic scans is downloaded from the
homepage of FSSR’s authors. We reconstruct mesh surfaces
with different resolutions on this data set to verify the perfor-
mance of our method. By default, an octree with 7 levels is em-
ployed in FSSR to generate the resultant mesh surface. It has
been changed to 9 levels in our tests to generate more triangles
on the resultant surface. When producing meshes with similar
number of triangles, our reconstruction is similar to FSSR.

5.2. Verification of numerical and geometric errors

Error-bound of the quasi-solution λ̃ with reference to the ex-
act solution λ has been derived in Section 3.2. It is also inter-
esting to study the error between λ̃ and λ in experimental tests.
We measure ‖λ̃ − λ‖∞ in examples shown above and the results
are listed in Table 3. The geometric error between the surfaces
obtained from exact and quasi-solutions is also measured by
the Hausdorff distance w.r.t. the diagonal length of a model’s
bounding box (see the last column of Table 3). From the statis-
tics, it is easy to find that our quasi-solution provides results
having small geometric difference to the exact solution.

The quality of scalar field in terms of interpolation can be
controlled by the error-bound in our reconstruction. As normal
approximation is an important characteristic of HRBF inter-
polant, we study the differences between the input normals and
the gradients of a reconstructed field, ∇ f̃ (x). As shown in Fig.9,
a subset of data points are sampled from the point cloud. Both
the input normals (in red) and ∇ f̃ (x) (in blue) are displayed to
illustrate the differences. It can be observed that the gradients
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Table 2: Computational performance of different reconstruction approaches†

MPU SSD SPR FSSR Our Method
Pnt. Trgl. Time Trgl. Time Trgl. Time in Sec. Trgl. Time in Sec. Trgl. Time in Sec.

Model # # (Sec.) # (Sec.) # 1-cor. 8-cor. # 1-cor. 8-cor. # 1-cor.∗ 8-cor.
Indoor 922.0k 313k 8.4 315k 19.1 319k 19.0 13.3 319k 470.6 98.4 313k 17.1 (16.0) 5.5
Aquar. 253.9k 368k 3.6 366k 12.3 369k 13.3 6.9 350k 407.3 89.6 375k 8.0 (7.8) 2.7
Horse 239.8k 242k 2.6 248k 6.0 249k 10.1 5.3 241k 262.3 56.2 245k 5.4 (5.2) 1.8

∗Note that, the time reported here includes both the surface reconstruction and the mesh extraction, and the time shown in the bracket is the time
for the isosurface extraction (i.e., field value evaluation and mesh generation). ‘1-cor.’ and ‘8-cor.’ stand for the number of cores.
†To have a fair comparison, similar number of triangles are generated for different approaches.

Figure 8: When processing an input with significant density variation – e.g., from four synthetic scans (most-left), FSSR (with scale=0.0105) and ours (with s = 1.0)
can avoid generating unwanted artifacts caused by high frequency noise. The computation time for generating meshes in different resolutions has been reported,
where both FSSR and ours are tested on a CPU with eight-cores. An octree with 7 levels (default value) is employed in FSSR to generate the result with 16k
triangles, and it is set to have 9 levels to produce a result with 301k triangles.

Table 3: Error Statistics of Quasi-Solution

Model∗ η/103 ‖λ‖∞ ‖λ̃ − λ‖∞ Err.
Armadillo 2.42 4.58 × 10−4 1.74 × 10−4 0.22%

Bimda 1.05 6.87 × 10−4 3.29 × 10−4 0.14%
Aquarius 7.64 1.46 × 10−4 7.26 × 10−5 0.53%

Horse 5.39 2.04 × 10−4 1.21 × 10−4 0.39%

∗We do not include the example of indoor scan in this statistic as the
exact reconstruction runs out of memory when solving the huge
system of linear equations with 4 × 922k unknown variables.

of field are quite consistent with the input normals. Quantita-
tively, the average/maximal angular errors between ∇ f̃ (pi) and
ni, θ(∇ f̃ (pi),ni), are measured and listed in Table 4. The errors
of position interpolation are also evaluated by the distances be-
tween input points and the reconstructed mesh surfaces – de-
noted by d(pi, S ). From the statistics on angular errors, we can
observe relative large variation on raw data with noise, but a
smaller error (both Max. and Avg.) on a clean data set – Bimda.
This is because that the reconstructed surface must compromise
to the imperfect positions/orientations given on noise.

5.3. Noisy data

In the following tests, we verify the robustness of our ap-
proach on input with noise at different levels. For a given point
setPwith normal vectorsN , if the diagonal length of its bound-
ing box is d, a new point set with δ% Gaussian noise is obtained
as follows:

• Select δ% points from P to add into a sub-set G;

Figure 9: An example for displaying the deviation of gradients (in blue) on the
reconstructed field w.r.t. input normals (in red). To have a better visualiza-
tion, the normal and gradient vectors are only displayed on 1/10 of the original
points.

• Randomly generate a set of scales with Gaussian distribu-
tion,DG = {di} (di ∈ [0, δd/1000]);

• Impose the noise onto the points in G by p′j = p j + d jn j

for all p j ∈ G.

Normal vectors on a set of noisy points are re-generated by
the orientation-aware Principal Component Analysis (PCA) [7]
with p-nearest neighbors – here p = 6 is used in all tests.

We reconstruct mesh surfaces from a filigree model with
30% and 60% Gaussian noise by different methods, including
Screen-Poisson, FSSR and ours (see Fig.10). The noise-free
set of points are sampled from a mesh model so that we can
compare the results of reconstruction with the original mesh
to evaluate the shape approximate errors generated by different
methods. Screen-Poisson reconstruction does not perform well
on noisy models. As shown in Fig.10, models with incorrect
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Figure 10: Examples of reconstruction from sets (having 250k points) with different level of Gaussian noise. Topological errors can be found on the results of
Screen-Poisson and FSSR (see the regions circled by dashed lines in red). The cross-sectional view of function values in our reconstruction has also been given in
the right, where the regions in white color have undefined function values.

Figure 11: Results of MLS-based reconstruction from highly noisy points shown in Fig.10: (top row) the results from an input with 30% Gaussian noise and (bottom
row) the results on points with 60% Gaussian noise. Different values are tried for the support scaling factor, h, on both HPSS [34] and APSS [30].

Figure 12: Adaptive HRBF implicits are generated by our method with the help of center selection [39]: (a) the input set with 100, 371 points in high non-uniformity,
(b) the reconstruction using all points as centers of HRBF implicits will lead to holes in the sparse regions, (c) the spherical cover – the spheres are displayed in
radii as 1/4 of the real ones, (d) the selected 13, 446 centers of RBFs, and (e) reconstruction from the selected centers – no hole will be generated as the densities of
centers in the left and the right are similar to each other.
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Table 4: Statistics of Angular and Position Errors†

|θ(∇ f̃ (pi),ni)| |d(pi, S )|
Model Max. Avg. Max. Avg.
Indoor 179.56◦ 5.34◦ 0.016 9.6 × 10−4

Armadillo† 176.60◦ 15.66◦ 0.023 7.5 × 10−3

Bimda 33.69◦ 1.53◦ 0.0041 2.1 × 10−4

Aquarius 136.57◦ 9.87◦ 0.013 3.8 × 10−4

Horse 167.12◦ 3.64◦ 0.014 5.3 × 10−4

†Large average errors are found on the noisy Armadillo in Fig.5.
∗All models have been scaled into a bounding box of [−1, 1]3 ∈ <3.

Table 5: Error Statistics of Reconstruction on Noisy Input

FSSR on the Filigree Model (Fig.10)
Noisy Forward Dist. Backward Dist.
Level Max. Ave. Max. Ave. Scale
10% .00360 .000295 .0175 .00315 .00375
30% .00800 .00600 .0325 .00140 .00670
60% .0115 .00145 .0300 .00170 .0112

Our Method on the Filigree Model (Fig.10)
Noisy Forward Dist. Backward Dist.
Level Max. Ave. Max. Ave. s
10% .00405 .000255 .0115 .000275 1.9
30% .00700 .000800 .00700 .000800 2.7
60% .0135 .00210 .0150 .00220 3.5

∗The errors are measured by the Metro tool [37].

topology are generated. FSSR and ours can still reconstruct
acceptable models even after embedding 60% Gaussian noise.
We then compare these two methods in terms of shape approx-
imation error by the Metro tool [37] (see Table 5). For the
measurements based on forward distances from ground-truth
to the reconstruction, FSSR has slightly smaller errors. In the
errors based on backward distances (i.e., from reconstruction to
ground-truth), our method outperforms FSSR. This is because
FSSR generates some interior isolated regions (i.e., topological
errors) but our method does not – see the zoom-view in Fig.10.
Moreover, our method is 17.5× and 36.4× faster than FSSR on
the 30% and 60% noisy models respectively.

Similar to Moving Least-Squares (MLS) based methods for
point-sampled geometry, the implicit function for surface re-
construction is constructed in our approach by weighted sum
of data points. However, different from the MLS methods, en-
forcement on the gradients of RBF functions strengthens the
robustness of our method. When applying the normal interpo-
lated – HPSS [34] or approximated – APSS [30] methods to the
highly noisy input, results with poor quality are observed (see
Fig.11). The results of HPSS are based on our implementa-
tion, and we use the plug-in of MeshLab to generate the results
of APSS. Different scaling factors have already been tested to
achieve the best results.

5.4. Limitation

The limitations of our approach are mainly caused by the
nature of locally compact support of our method. Therefore, we

Figure 13: Reconstructions from an input with noises and outliers: (left) in-
put point cloud, (middle) the reconstructed surface before post-processing and
(right) the resultant surface after mesh cleaning.

share the following common limitations as the FSSR method.

• Near the boundary of regions with function-value defined,
some small fragments isolated from the main reconstruc-
tion could be formed by the numerical oscillation. Such
isolated fragments must be removed by a post-processing
step taken on the mesh surface after polygonization (see
Fig.13 for an example).

• Although reconstruction with high quality can be found
at the example shown in Fig.7, misaligned multiple scan
could lead to multi-layers of points, which produce multi-
ple surface layers at those ‘overlapped’ regions.

• Lastly, holes are easily formed in the sparse region when
the input point set has high non-uniformity.

To overcome the last limitation, an optional step can be applied
to select a subset of input points to serve as the centers of ker-
nels to obtain a better surface reconstruction (see the illustra-
tion shown in Fig.12). A method akin to the spherical covering
method proposed in prior work [42] is used here, and more de-
tails can be found in [39]. An alternative is the adaptive center
selection method employed in [43]. Besides, as stated in Sec-
tion 4.1 that the support size selection algorithm cannot be theo-
retically proved to converge, it could (although rarely happens)
result in a reconstruction without error-bound.

6. Conclusion

In this paper, we present a novel surface reconstruction
method based on computing an approximate solution of HRBF-
based implicit surface fitting. The approximate solution is for-
mulated as a weighted sum of compactly supported basis func-
tions centered at input data points equipped with normal vec-
tors. We provide a closed-form solution without any global op-
eration. As a result, the implicit function for surface reconstruc-
tion can be evaluated efficiently and robustly. Experimental re-
sults have shown the performance of our approach by compar-
ing to the state-of-the-arts.
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No global operation needs to be applied during the surface
reconstruction of our approach. As a result, it is easy to ex-
tend our implementation to run in the out-of-core manner or
on a distributed PC-cluster. We would like to further inves-
tigate the strength of our method in this aspect in our future
work, which can make it possible to realize the on-site recon-
struction of large-scale 3D models (e.g., outdoor scenes like
city scale). Many robotics and virtual reality applications could
benefit from this work.
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