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Figure 1: Optimization of printing directions has mainly focused on structural stability and material cost. We develop a perceptual model
to find optimal printing directions that preserve important visual features. In comparison to alternative methods, our technique avoids
placing support structures on important regions to prevent damage in the final printed model. (Left) Support structures resulting from default
orientation. (Middle) Result by Autodesk MeshMixer. (Right) Our result.

Abstract

This paper introduces a perceptual model for determining 3D print-
ing orientations. Additive manufacturing methods involving low-
cost 3D printers often require robust branching support structures
to prevent material collapse at overhangs. Although the designed
shape can successfully be made by adding supports, residual ma-
terial remains at the contact points after the supports have been re-
moved, resulting in unsightly surface artifacts. Moreover, fine sur-
face details on the fabricated model can easily be damaged while
removing supports. To prevent the visual impact of these artifacts,
we present a method to find printing directions that avoid placing
supports in perceptually significant regions. Our model for prefer-
ence in 3D printing direction is formulated as a combination of met-
rics including area of support, visual saliency, preferred viewpoint
and smoothness preservation. We develop a training-and-learning
methodology to obtain a closed-form solution for our perceptual
model and perform a large-scale study. We demonstrate the per-
formance of this perceptual model on both natural and man-made
objects.

CR Categories: I.3.5 [Computer Graphics]: Shape Modeling—
Shape Analysis; J.6 [Computer-Aided Engineering]: Computer-
aided design (CAD)

Keywords: orientation, human preference, perceptual model, sup-
porting structure, 3D printing

∗joint second author

Figure 2: Photographs of 3D printed model comparing artifacts
from different support structure placement. (Left) Default orienta-
tion. (Middle) Autodesk MeshMixer. (Right) Our result.

1 Introduction

3D printers have become widely used in small-scale prototyping
and independent creative projects due to their flexibility and low
cost. A crucial step in the 3D fabrication pipeline is the placement
of support structures for printed objects: material is deposited in-
crementally in layers which fuse together to create the solid object.
As a result of this bottom-up procedure, overhanging geometry re-
quires additional supporting structures to be printed along with the
object to prevent collapse caused by gravity – such additional ma-
terial is referred to as supporting structures (or simply called sup-
port). An often ignored effect is that supports can lead to surface
artifacts which damage the visual quality of the object. Unlike in-
dustrial machines for additive manufacturing which can use dis-
solvable materials to make supporting structures, many home-use
3D printers can only extrude a single type of material. Supporting
structures have to be removed manually as a post-processing step
after printing, introducing two damaging outcomes:

• Visual Artifacts: Even after support removal, anchor points
remain at regions contacted by supporting structures. These
artifacts can significantly affect the appearance of a printed
model (see Figure 2).

• Damage on small features: When anchors of support are
linked to small features, support removal becomes challeng-
ing as geometric details can be easily damaged.



Many automatic techniques exist for generating support structures,
however these aim to optimize criteria focused on efficiency rather
than appearance. Recent approaches optimize either the topology
of support [Dumas et al. 2014; Vanek et al. 2014; Wang et al. 2013]
or the shape of input model [Hu et al. 2015] to reduce the volume
of support. Considerations of whether appearance distortion will
occur is left to case-by-case assessment by the user usually followed
by manual adjustment.

The volume and positioning of the supporting material depends on
the chosen print orientation of the object. Determining a good print-
ing direction is complex due to the many factors under consider-
ation. For example, Autodesk R© MeshMixerTM provides a semi-
automatic orientation optimization tool to minimize support vol-
ume, support area, structural strength, or a combination of these
three attributes. Users can weight each attribute according to their
objective. Prior approaches on determining optimal printing direc-
tions all focus on similar criteria (e.g., [Cheng et al. 1995; Majhi
et al. 1998; Padhye and Deb 2011; Hildebrand et al. 2013]). None
of them studied the problem of different appearance on a model
printed in different directions (especially the effectiveness of re-
mained anchor dots after removing supporting structures). As the
appearance of a printed model is a complex problem relating to
multiple factors, we propose a perceptual model in this paper to
find good printing directions. Training-and-learning methodology
is developed to construct the model. Results have been validated on
a variety of models.

We make three main contributions:

1. We introduce a perceptual model for finding preferable print-
ing directions using a training-and-learning approach. To the
best of our knowledge, this is the first approach using percep-
tual metrics to determine good orientations in 3D printing.

2. We conduct a study to determine relative importance of fac-
tors affecting appearance of 3D printed models after removing
support. Our model is formulated as a combination of known
metrics, including area of support, visual saliency, preferred
viewpoints and smoothness preservation. Our methods for ef-
ficient evaluation are presented.

3. We introduce a Double-Layered Extreme Learning Machine
(DL-ELM) to train the perceptual model. Our DL-ELM
method is able to convert pairwise training sets into a closed-
form formulation for evaluating the scores of a model printed
in a range of orientations.

Our approach can be applied to different types of single material
based 3D printing techniques, including Fused Deposition Model-
ing (FDM) and Stereolithographic (SLA) resin printing.

2 Related Work

Methods for generating support structures to prevent material col-
lapse during layered fabrication have been studied for more than
two decades [Sachs et al. 1992; Kulkarni et al. 2000; Levya et al.
2003; Liu et al. 2014; Strano et al. 2013]. Early work originates
mainly in the CAD/CAM community to generate supports by deter-
ministic algorithms. When dissolvable materials are used, variants
of a region subtraction algorithm [Chalasani et al. 1995] are usu-
ally conducted to generate support structures. For FDM and SLA
using single materials, supports are connected to the main surface
by small pyramidal volumes, where methods similar to [Chen et al.
2013] are used in commercial systems.

In recent years, the problem of optimizing support structures has
been studied for a variety of objectives, for example, to increase
stability [Wang et al. 2013], decrease material, and improve print

speed [Alexander et al. 1998; Dumas et al. 2014; Vanek et al. 2014].
However, none of these approaches consider the artifacts remaining
on the surface of a printed object after removing support structures.
To eliminate the usage of supporting structures altogether, segmen-
tation methods have been investigated that subdivide a model into
height field pieces, which can also be fabricated by mold cast-
ing [Herholz et al. 2015; Hu et al. 2014]. However when the fi-
nal model is assembled from pieces fabricated separately, gaps and
seams may also detract from the appearance.

The appearance of printed models has been considered previously
in [Wang et al. 2015] together with printing time, but this approach
was limited to adjusting layer thickness and segmenting the input
model into subparts. Other approaches focus more on reflectance
results of printed models, e.g., [Dong et al. 2010; Papas et al. 2013;
Lan et al. 2013; Schüller et al. 2014]. In OpenFab [Vidimče et al.
2013], a programmable pipeline is proposed for synthesizing multi-
materials to generate different appearances on 3D printed objects.
These methods do not consider damage to surface quality due to
support removal which is the problem to be solved here.

Our work is inspired by Secord et al. [2011], where optimal view-
points were found for 3D models according to perceptual metrics.
While a large variety of metrics exist for evaluating the goodness of
views, Secord et al. [2011] conduct a learning-based method to find
the combination of attributes that match human preference. The re-
sulting perceptual model is formulated as a linear combination of
attributes by weights obtained from the pair-based training. We ap-
ply their result as a central component of our model. However, the
application domain has fundamental differences: fabricated models
are not limited to a static view, and we are considering damage to
the surface. Notably, we observe a non-linear nature in the metrics
for finding good printing directions preferred by users. Therefore,
a more advanced learning method – DL-ELM is investigated in our
work. Our contribution is to find a representation of the weight-
ings for perceptual metrics which encapsulate properties unique to
fabricated 3D models.

Artificial neural network methods have been widely used in many
engineering problems, where neural networks can map the rela-
tions between the input data and output performance directly [Co-
chocki and Unbehauen 1993]. Support Vector Machine (SVM) and
its extension – Least Square Support Vector Machine (LS-SVM)
are two important techniques for training and optimization. How-
ever, [Chorowski et al. 2014] has shown that both SVM and LS-
SVM face many challenges, such as slow learning speed, inten-
sive human intervention, etc. Recently, Extreme Learning Machine
(ELM) [Huang et al. 2015] aiming at overcoming these challenges
has received much attention. The universal approximation capabil-
ity and classification capability of ELM has been shown by Huang
et al. [2006a; 2012]. The key feature of ELM is that the hidden neu-
rons of generalized feedforward networks do not need to be tuned
and can be generated randomly, which is considered more closely
analogous to biological learning in animal brains. As a result, it
can achieve much faster learning speed. ELM learning has been
used in [Xie et al. 2014; Xie et al. 2015] for fast 3D segmentation
and labeling. In our perceptual model, the ELM learning is fur-
ther extended to a DL-ELM based training-and-learning method-
ology, where ELM classification is used in the first layer to eval-
uate relative-score between different printing directions and ELM
regression is investigated in the second layer to construct a global
score for all printing directions.

3 Metrics

In this section we describe the metrics constituting our measure of
goodness for printing directions. Contrary to previous work focus-



ing on efficiency objectives, such as material cost and print time
which may lead to poor feature preservation (Figs. 1,2), we analyze
factors relating to appearance. We assess properties of contact area,
visual saliency, viewpoint preference, and smoothness entropy.

M1: Contact area. We consider the total surface area of regions
connecting to supporting structures, As. Given a printing direction
d, the total area of contact As(d) is determined by considering
overhangs as well as potential connections at the base of supports.

Figure 3: Contact area
consists of both the red and
the blue regions. Green re-
gions are self-supported.

Many existing approaches cal-
culate overhangs by detecting
facing-down regions (e.g., [Vanek
et al. 2014; Hu et al. 2015]),
however, this is not representa-
tive. Surface regions need sup-
port only if the angle α1 between
its tangent plane and the printing
direction d is larger than the crit-
ical angle αmax (red regions in
Fig. 3). Faces with angle α2 <
αmax are self-supported (green
regions in Fig. 3). Moreover,
supporting structures can also at-
tach to up-facing regions when
“shadowed” by overhangs (blue

regions in Fig. 3). We develop an efficient method to compute As

using Layered Depth Images (LDI), which can be accelerated by
graphics hardware [Leung and Wang 2013; Faure et al. 2008]. De-
tails are presented in Section 6.1. A distribution of As(d) can be
computed and visualized on the Gauss sphere (see Fig. 5). The sup-
port contacting region is denoted by T (d) in the rest of our paper,
which corresponds to surface area As and depends on the printing
direction d. Note that our study uses the same self-supporting angle
as the default in MeshMixer.

M2: Visual saliency. We compute mesh saliency of the input mesh
model at each vertex by the method of Lee et al. [2005]. The met-
ric is a scalar quantity indicating the importance of a local region
in low-level human visual attention. Let χ(x) denote the mesh
saliency of a point x on the input model, the metricM2 is defined as
the integral of mesh saliency of all points in the support contacting
region, T (d).

M2(d) =
1

As

∫
x∈T (d)

χ(x)dA (1)

M3: Viewpoint preference. This metric measures the goodness of
a viewpoint based on the perceptual model introduced by Secord
et al. [2011]. The five most dominant attributes are employed in
our approach, which include projected area (a1), surface visibility
(a2), silhouette length (a4), max depth (a7) and above preference
(a12). The final score of M3 is obtained by linear blending of these
five attributes using the weights provided [Secord et al. 2011]. An
interactive tool is also developed to further incorporate the viewing
preference of a user into this metric (see Section 6.2).

M4: Smoothness entropy. To prevent adding anchor dots at
smooth regions where they will be highly visible, the metric of
smoothness entropy is also introduced in our model. For a point
x on the surface S of an input model, defineN (x) as x’s Euclidean
neighboring region on S and n̂(·) as the unit normal. The smooth-
ness at x can be evaluated as:

$(x) = inf{p, q ∈ N (x) : 〈n̂(p), n̂(q)〉} (2)

Given a threshold τ , the region S = {x : $(x) > τ} is considered
smooth. The value of τ is selected by Otsu’s method [Otsu 1979].
Briefly, the histogram of $ is computed and τ is selected at the

Figure 4: Histogram of $(x) is used to determine the value of τ
by Otsu’s method. τ = 0.2706 is computed in this example. The
detected smooth region is shown on the model.

location that minimizes the weighted within-class variance. This
turns out to be the same as maximizing the between-class variance,
which means a minimal probability of misclassification. An exam-
ple can be found in Figure 4. The smaller the overlap between S
and the support contacting area T (d), the better the appearance of
the fabricated model. Thus we have

M4(d) =
1

As

∫
x∈(S∩T (d))

dA (3)

In the following sections we devise a method to optimize printing
direction based on these multiple metrics. Note all metrics are nor-
malized into the range [0, 1] to serve as the input parameters for
the perceptual model (Section 4). Details on how to evaluate these
metrics efficiently can be found in Section 6.

4 Perceptual model

The goodness of a printing direction for a model is commonly
determined by the four factors analyzed above. To construct the
objective function F (Mi,i=1,...,4(d)), we conduct a training-and-
learning strategy. A study is first performed to collect data from
trainers about the relative goodness of printing directions according
to human preferences. Next, the dataset obtained from training is
passed to a machine-learning model – i.e., a mathematical formula-
tion of F (· · · ). As a result, the values evaluated from F (· · · ) can
be used to determine good printing directions.

4.1 Collecting human preferences

The purpose of the training stage in our study is to learn which
printing directions are preferred. Ideally we seek a direct quantita-
tive measurement on preference. However, as the amount of data to
be trained is large, personal variations will occur, e.g., a score ‘75’
given by a trainer at the end of training may be better than a score
‘90’ given at the beginning. Further, equivalent scores given by
two people may have different interpretations. Inspired by Secord
et al. [2011], the method of paired comparison is conducted which
asks people to select between two printing directions. This is the
well-known 2-Alternative Forced Choice experiment (2AFC). The
overall rank for all printing directions is established from many of



Figure 5: Metrics for measuring four different factors of preference in 3D printing directions. The distribution of each metric is visualized on
the Gauss sphere, both the front-view (left) and back-view (right) are displayed. Blue denotes zero and red denotes one (highest preference).
To display the overall distribution, the Gauss spheres are also unfolded onto a rectangular region.

Figure 6: Pairs for comparison in Amazon study. Anchor points
are represented as black dots on the model surface. In the study,
ten views are provided for each printing direction (only four views
displayed here).

such 2AFC experiments. The service of Amazon Mechanical Turk
(AMT) is applied in our study. AMT hires anonymous workers
(known as Turker) to perform tasks (called HITs in AMT) that re-
quire human intelligence, which now is heavily used in machine
learning research.

Ten models are employed in our study to generate HITs of AMT
(see Figure 12). We uniformly sample the Gauss sphere to obtain
1,500 possible printing directions. For each model, 500 pairs of
printing directions are randomly picked to generate HITs. Among
them, 16 random pairs of each model occur more than once for
testing the honesty of Turkers. Nearby orientations can result in
supporting structures which are too similar. We therefore exclude
the pairs with less than 10◦ difference. To show Turkers the results
of printed models after removing supports, we simulate anchor dots
on the models. Images for each HIT contain 10 different views for
each model in the simulated pair. An example is shown in Figure 6.
These images were precomputed in our system and then uploaded
to AMT.

Before training, the instructions are provided to each Turker to build
up the basic concept about single material based 3D printing and
the artificial anchor points left on the model. In addition, an exam-

ple pair with simulated and physical results is also given to better
explain the instructions. The provided instructions are:

• When 3D printing a complicated shape, printers often require
extra structures to support the model. These accessory struc-
tures temporarily support overhanging parts of the shape, and
need to be manually removed after printing. However, anchor
dots (that is, the black dots in images) will be left on the sur-
face of a printed object and affect the appearance.

• To minimize the damage caused by supporting structures, a
preferred printing direction is selected so that important fea-
tures of a model can be well preserved.

• Criteria of preference selection includes:
1. No dot is located at important regions (e.g. eyes, nose and
sharp features); 2. No dot (or only a few) can be found in a
human-preferred view.

Considering the human preference, we hired 8 Turkers for each
HIT. Note that, according to the running mechanism of AMT, the
number of trainers involved is much larger than that (e.g., 32 in
our training). After the training, a total number of 40,000 =
8×500×10 choices are obtained. A trainer who gives more than 4
inconsistent choices among any of the repeated pairs is considered
as taking random picks. All his or her choices are excluded from
the dataset. As a result 22,134 out of 40,000 choices remained in
the ‘honest’ dataset to be used in our learning practice below.

4.2 Linear or nonlinear

The most straightforward formulation to score a problem with mul-
tiple factors is to linearly blend the metrics. In our problem,

F (d) =

4∑
i=1

wiMi(d) (4)

with wi to be determined. From each HIT of the trained dataset
given two printing directions da and db, the result of training indi-
cates F (da) > F (db) (or F (da) < F (db)). Reformulating the
above equation, each HIT can be considered as inputting a class
label y for the 4-dimensional patterns with

4Mi,i=1,...,4 = (Mi(da)−Mi(db))

as the four components for a pattern x. The training dataset withm
HITs gives

(x1, y1), · · · , (xm, ym) ∈ <4 × {±1}. (5)



Figure 7: Comparison on the ‘best’ printing directions determined
by a linear SVM learning (top), Autodesk MeshMixer (middle) and
our learning model (bottom). Our nonlinear model results in less
material cost and better feature preservation.

Classifiers such as linear Support Vector Machines (SVM) can then
be used to determine the values of w = (w1, w2, w3, w4) via a
decision function

y(x) = sign

(
4∑

i=1

w · x+ b

)
. (6)

The solution can be obtained by solving a quadratic programming
problem [Hearst et al. 1998].

Now we study the configuration space spanned by the dataset of
AMT training. As visualized in Figure 8, the training set is hard to
classify into two groups by a hyperplane:

w · x+ b = 0 (w ∈ <4, b ∈ <).

Specifically, the function to find the optimized printing direction
should be complex and cannot be determined by a linear classifi-
cation. When using a least-square solution to find the value of w,
the resultant F (· · · ) gives poorer results than our DL-ELM method
below. Although nonlinear SVM can be used to conduct the clas-
sification, it may result in a form with too many support vectors so
that the evaluation of F (· · · ) becomes time-consuming. We pro-
pose a DL-ELM method in the following section to formulate the
nonlinear function F (· · · ). The difference of results obtained from
a linear SVM vs. the nonlinear learning model can be found in Fig-
ure 7.

5 Learning from human preferences

ELM is a learning technique [Huang et al. 2006b] aimed at over-
coming the problems of slow learning speed and intensive hu-
man intervention in conventional machine learning techniques (e.g.,
SVM). An ELM neural network is composed of one input layer, one
hidden layer and one output layer as illustrated in Figure 9. For a
learning problem, nodes in the input layer are entries of the train-
ing dataset. All the nodes in the hidden layer are independent of

training data, and they are randomly generated. In the output layer,
the coefficients, βi, are problem based, which are variables to be
determined by the training dataset.

Considering m input-output samples (xj , yj) ∈ <4 × <, ELM
formulates the output of a single layer feed-forward neural network
with n hidden nodes as

f(x) =

L∑
i=1

βiφ(ai, bi,x) (7)

where ai and bi are learning parameters of hidden nodes and βi
is the weight connecting the i-th hidden node to the output node.
φ(ai, bi,x) is the output of the i-th hidden node with respect to the
input x. There are many choices for activation functions used in
ELM, such as sigmoid, sine, hard-limit, radial basis functions, and
complex activation functions, etc. Sigmoid activation function is
employed here, which gives

φ(ai, bi,x) =
1

1 + e−(ai·x+bi)
. (8)

If a single layer feed-forward neural network with L hidden nodes
can approximate m samples with zero error, it implies that there
exist βi, ai, and bi such that (see Appendix for more details)

f(xj) =

L∑
i=1

βiφ(ai, bi,xj) = yj j = 1, . . . ,m. (9)

This ELM neural network is conducted in the rest of this section to
model our perceptual model of preference in 3D printing. ELM is
first used to give the relative goodness between two printing direc-
tions. Next, a DL-ELM method is investigated to score all printing
directions.

5.1 Pairwise learning by ELM

Suppose the relative goodness between two printing directions, da

and db, can be evaluated by a function

G(da :: db) = G(Ma
1 ,M

a
2 ,M

a
3 ,M

a
4 ,M

b
1 ,M

b
2 ,M

b
3 ,M

b
4 ) (10)

by using their corresponding metrics as input. Here we denote
Mi(da) by Ma

i (also Mb
i similarly). As the printing preference

between da and db has been provided by Turkers in the AMT train-
ing, the relative score at a pair (da :: db) can be obtained by voting
as follows:

• Starting from zero, one preference in da will increase the
score by one while one preference in db will decrease one.

• After updating the score by all Turkers at this HIT, the final
score is divided by the number of Turkers (i.e., normalizing
into the range [−1, 1]).

As a result, a higher score indicates that more people prefer the
printing direction da.

Using the metrics in each of the m training pairs as the pattern
vector x and the score as the target function value y, the function
G(· · · ) for evaluating the relative score between any pair of printing
directions can be learned from the dataset by ELM. Here we have
x ∈ <8. Note that G(da :: db) = 0 is enforced when a = b. The
type of classifier with 15 neurons is used in ELM learning, and the
resultant function G(· · · ) will return one of the values {−1, 0, 1}.

Finding ‘Best’: With the help of the relative goodness function,
we can now search for the most preferred printing direction on a



Figure 8: Visualization for the configuration space spanned by the dataset of AMT training. The classification boundary between {+1} (star)
and {−1} (dot) groups of training samples is nonlinear in the space of 4-dimensional patterns: (4M1,4M2,4M3,4M4).

given model. First, sampling N directions (points) on the Gauss
sphere. For each dk, we evaluate values of the relative score func-
tion G(dk :: dj) with all other directions. The ‘best’ one should
be better than most of the other printing directions. We then define
a ranking function

R(dk) =

N∑
j=1

G(dk :: dj), (11)

with which a larger returned value indicates a more preferable print-
ing direction.

5.2 DL-ELM for evaluation

Using relative scores to find good printing directions requires ex-
ploring all possible pairs of printing directions, with a slow compu-
tational complexity ofO(N2). A new function F (· · · ) is trained in
the second layer of our learning model to directly score a printing
direction d according to its metrics, Mi(d) (i = 1, · · · , 4), which
forms a 4-dimensional feature vector m. This learning model is
called DL-ELM as double layers of ELM neural networks are con-
ducted (see Fig. 9).

Ideally, the newly trained function F (· · · ) satisfies the follow-
ing constraint over the entire configuration space spanned by 4-
dimensional patterns.

sign (F (ma)− F (mb))) = G(da :: db)

Using the sign function will result in formulas with inequalities,
which is hard to solve. Therefore, we employ a weak form of the
above constraint in our training process:

F (ma)− F (mb) = G(da :: db) (∀ma,mb ∈ <4). (12)

Substituting into Eq.(7), the function F (· · · ) can be learned by
ELM using:

L∑
i

βig(ai, bi,ma,mb) = G(da :: db). (13)

with g(ai, bi,ma,mb) = φ(ai, bi,ma)−φ(ai, bi,mb). The hid-
den layer output matrix of the network can then be constructed, and
its Moore-Penrose generalized inverse is employed to determine the
values of {βi}.

In this second layer of ELM, the bounding box of all training sam-
ples in the dataset is first constructed. Uniform samples of the con-
figuration space are then generated inside the bounding box, where
each dimension is sampled into 100 points – generating 100M sam-
ples in total. 100,000 pairs of samples are randomly selected to
train the function F (· · · ). Through ELM for regression, we can
obtain a function that is able to evaluate the goodness of a print-
ing direction according to the input metrics. The correctness of this
function has been verified on all samples of our preference dataset
trained by AMT. We found 92% of evaluations given by our non-
linear approximation F (· · · ) are consistent with Turkers’ choices,
compared with only 86% using ELM method. When using this
function to find preferred printing directions, the orientations lead-
ing to higher values of F (· · · ) are selected.

6 Implementation

This section presents issues relating to implementation details. We
employ sampling based methods and computation in image space
that can be accelerated by graphics hardware (i.e., GPUs) to evalu-
ate the values of metrics in different printing directions. We sample
the Gauss sphere into 1,500 directions and the continuous distribu-
tion of metrics is generated by interpolation. Methods for evaluat-
ing different metrics are discussed below.



Figure 9: Overview of the DL-ELM method we propose to evaluate
the function F (· · · ) indicating preference in 3D printing directions.
Three layers of an ELM model (circled by blue dashed lines): input
layer, hidden neuron layer and output layer.

6.1 Contact area

The metrics M1, M2 and M4 each depend on the support contact-
ing region, T (d), according to a given direction d. An efficient
method is crucial since searching for an optimal printing direction
could require exploring over one thousand possible printing direc-
tions. Facing-down regions in T (d) can be found easily on polyg-
onal mesh models. The difficult task is the facing-up part which
depends on whether there are regions ‘shadowed’ by overhang ar-
eas (e.g., blue regions in Fig. 3). As direct computation on a mesh
model is costly, we conduct a rasterization based method to com-
pute a discrete version of T (d). Specifically, a LDI decomposition
is conducted along a printing direction d for meshM, which results
in a set of intersections stored on parallel rays passing through the
centers of pixels in LDI. After sorting the intersections along d, the
samples for entering (facing-up) and leaving (facing down) a solid
can be known by the order of samples. Moreover, borrowing the
idea of Wang et al. [2010], the surface normal is encoded into color
values and can be obtained simultaneously during rasterization ac-
celerated by graphics hardware. Points belonging to self-supported
regions can be easily detected from the angle between their surface
normals and the printing direction d. Here we use the same self-
supporting angle as the default in MeshMixer of 25 degrees. By this
method, the points belonging to T (d) can easily be found. Each
sample represents a surface region with the same area as a pixel. A
discrete integration on the sample gives a good approximation of
As(d).

The LDI-based decomposition may miss point overhangs and edge
overhangs. We compensate for such cases by first detecting point
and edge overhangs on meshes and then searching for rays around
these overhangs. Samples below these overhangs are added into
T (d). This simple method works nicely in practice. Note that
edge overhangs are also sampled into points and inserted into T (d)
together with the point overhangs. The resultant set of points are
employed to evaluate all three metrics, M1, M2 and M4.

6.2 Viewpoint preference

Computing viewpoint preference is based on evaluating five at-
tributes originally listed in [Secord et al. 2011]. We compute the
attributes in image space for fast computation. The projected area
(a1) of an object is defined on the viewing plane, and can be ob-

Figure 10: Interactive modification of viewpoint preference – (top-
left) automatic computation M3(d), (top-right) Harmonic field
H(d) according to user specification and (bottom) the modified
field by average and normalization.

tained by counting pixels in the stencil buffer. The visible surface
attribute (a2) is defined as the surface area of visible triangles over
the total surface of object. When an input model has been sampled
into LDI points, this can be approximated by the ratio between the
number of rays containing samples and the total number of sam-
ples. The silhouette of a rendered model can be easily detected in
the rendered image by edge extraction filters. The number of pixels
belonging to the silhouette is counted to approximate the silhouette
length (a4) in the image plane. The maximum depth is computed
with the help of z-buffer in the rendering pipeline. The above pref-
erence attribute (a12) is computed exactly by the method of [Secord
et al. 2011].

In some scenarios designers may wish to modify the viewpoint pref-
erences via interactive selection. Our system provides a function to
modify the distribution of M3(d) for this purpose. By selecting a
strongly intended viewing direction va, a Harmonic field H(d) is
computed on the Gauss sphere as

∇2H(d) = 0

s.t. H(va) = 1, H(−va) = 0.

The new metric of viewpoint preference is then updated by the av-
erage of M3(d) and H(d) and then normalized (see Figure 10).

6.3 Other details

Mesh saliency: To evaluate the metric of visual saliency, we need
to compute the distribution of mesh saliency, χ(x), on a given
model. The method of Lee et al. [2005] is conducted. Mean cur-
vature is first evaluated at all vertices. Then, saliency at a vertex is
computed as the difference between mean curvatures filtered with
a narrow and a broad Gaussian. Different standard deviations are
employed to obtain a distribution of saliency, and the final result
is the aggregate of saliency at all scales with a non-linear normal-
ization. When a model with large number of vertices is used, the
computation could be very time-consuming. However, for each new
model, this ξ(x) only needs to be computed once and can be repeat-
edly used to evaluate M2(d) in different directions. Moreover, the
computation of saliency on mesh vertices is independent and easily
sped up on many-core CPUs. In practice, M2 is computed by using
sample points in T (d) as: M2(d) =

∑
p∈T (d) χ(p).

ELM learning: According to the theorem of ELM learning [Huang
et al. 2006b], trials are applied to generate different sets of random
parameters (ai, bi) for the neurons: φ(ai, bi,x). In each trial, a



Figure 11: The distribution ofF (· · · ) values for a sculptural object
– three local maximums can be found. We leave the final selection
to the end-users.

newly learned function f(x) is determined. We then evaluate the
accuracy of this function by the L2-norm∑

j(f(xj)− yj)2

according to Eq.(9). Among all trials, the one with smallest L2-
norm is kept as the best result of learning. Also, the number of
neurons needs to be determined before training. When more neu-
rons are used, it is easier to get a more accurate result. However,
unwanted numerical oscillation will come together as a byproduct.
A smaller number of neurons but still giving accurate result are de-
manded. L = 15 is a good tradeoff obtained by our experimental
tests.

‘Best’ printing direction: Due to variations in personal preference,
the printing direction with highest score in F (· · · ) may not always
correspond with the top pick by a user. Therefore, we find all local
maximums on the map of F (· · · ) and ask users to make the final
decision on which one he or she prefers to use. One example can
be found in Figure 11, where there are three local maximums.

7 Results

We now describe experimental validation and analysis of our ap-
proach. The metrics evaluation is developed as a standalone pro-
gram in C++ with the use of OpenGL API to speed up the computa-
tion on graphics hardware. The machine learning part is conducted
in MATLAB. All tests have been performed on a PC equipped with
Intel Core i7 3.4 GHZ with 8GB RAM and nVidia GTX 660 Ti
with 2GB VRAM. In all the tests, 1, 500 directions are randomly
selected on the Gauss sphere to evaluate the metrics.

For all examples, supports are generated using Autodesk Mesh-
Mixer, and models are printed with a MakerBot Replicator 2X. In
our comparisons with MeshMixer, we specify only support area
weight when automatically selecting printing orientation. Support
volume and strength parameters are given zero weight since they do
not relate to surface appearance.

Training set: Ten models are used in the AMT training to ob-
tain the votes of preference on pairs of different printing directions.

Figure 12: Ten models used in the AMT training – both natural and
man-made objects are assessed.

Both natural and man-made models are included (see Fig. 12). The
performance of the perceptual model developed in our research was
first verified on the three models that are part of the training set. As
shown in Figure 13, pairs are randomly selected for these mod-
els from the training set. The function values from our perceptual
model are compared with the votes from trainers. In each case,
the direction with higher function values in our perceptual model is
consistent with a higher voting.

Verification of DL-ELM: We carried out a study to verify the per-
formance of our DL-ELM learning and the advantage of the global
scoring function F (· · · ). The Kitten model shown in Figure 12 is
used here to generate the set of data for verification. We randomly
selected 14 printing directions. A trainer is asked to provide his or
her preferences for each of the 91 unordered pairs, which results
in a symmetric pattern as shown in Figure 14 (left). Specifically,
a grid location (i, j), is black when direction di is preferred over
dj ; otherwise square (i, j) is white. A gray color is used for equal
preference, e.g., the diagonal. These pairs of preference are then
added into our AMT dataset to learn new functions G(. . . ) and
F (· · · ). The pattern of signs of G(di :: dj) on all 142 ordered
pairs can be obtained as shown in Figure 14 (middle) – the result
of ELM learning. The pattern obtained from ELM learning may
be asymmetric which is caused by a result of G(da :: db) and
G(db :: da) that is not always additive inverse (especially when
there is no significant perference between da and db). Learning
both G(da :: db) and G(db :: da) can help improve this aspect
of ELM learning. The pattern obtained from DL-ELM learning,
i.e. sign of (F (di) > F (dj)), is symmetric. It can be seen from
Figure 14 (right) that results obtained by DL-ELM are more accu-
rate than the results from the relative scores by single layer ELM
learning.

Perceptual model: The outcome of this work can be directly ap-
plied using the coefficients of our perceptual model in Table 1. Note
that although two learning functions need to be computed in two
layers of ELM learning, the goodness of a printing direction d on a



Figure 13: Function values of our perceptual model are consistent with the votes given by Turkers in the AMT training – the direction with
higher F value has more votes than the other in the same pair.

Figure 14: Verifying the accuracy of our DL-ELM learning com-
pared to conventional ELM: (left) test samples from Turkers’ pref-
erence, (middle) ELM results and (right) our DL-ELM results. A
black grid square indicates direction di is preferred over dj .

model M can be directly evaluated by using the function in Eq.(7),
where an input x is formed by the four metrics {Mi, i = 1, . . . , 4}
as described in Section 3. For a training set of 24k pairs of pref-
erence input, the function of our DL-ELM method can be obtained
in 9.6 minutes. Note that, 10.5M pairs of samples are employed in
the ELM regression of the second layer of DL-ELM.

Novel input: We studied performance on novel 3D meshes to fur-
ther verify the function of our perceptual model. Given a new object
that is not in the training set, e.g., with the armadillo in Figure 15,
a preferable printing direction is computed by finding a point with
maximal score in F . An example of a man-made model is given
in Figure 17. Our results are compared with Autodesk MeshMixer
and also the ‘optimal’ results obtained by considering only a single
factor (M2 and M3 are tested in these examples). These can be ob-
tained by searching for the maximum of M2(d) or M3(d) on their
corresponding distribution. Contradictions occur between factors
(e.g., minimizing material leads to bad feature preservation), thus
results obtained from a single metric are less optimal than our mul-
tiple factor approach. More examples can be found in Figure 16.

Our perceptual model generates results with better appearance by
placing fewer support structures at visually important regions. Run
times for the whole procedure are shown in Table 2. The computa-

Table 1: Coefficients of Perceptual Model

F (x) =
∑

i βiφ(ai, bi,x)

i βi ai bi

1 0.170 (0.913,−0.672, 0.092, 0.503) 0.635

2 1.728 (0.871, 0.332,−0.202,−0.542) 0.950

3 0.540 (−0.084, 0.788,−0.169,−0.871) 0.444

4 −3.472 (−0.519, 0.033,−0.638, 0.534) 0.060

5 −0.393 (0.527, 0.405,−0.489, 0.342) 0.866

6 −0.238 (0.518,−0.692,−0.958, 0.430) 0.631

7 −0.995 (0.481, 0.906, 0.847, 0.284) 0.355

8 −4.020 (0.487, 0.0818, 0.307,−0.161) 0.997

9 −2.752 (−0.788, 0.359, 0.865,−0.218) 0.224

10 −0.780 (0.363,−0.926,−0.673, 0.632) 0.652

11 2.144 (−0.073, 0.618, 0.842,−0.365) 0.605

12 2.293 (−0.575, 0.497, 0.589, 0.629) 0.387

13 0.933 (−0.803,−0.759, 0.154, 0.578) 0.142

14 2.239 (0.647, 0.050,−0.119, 0.704) 0.025

15 2.838 (−0.650,−0.348,−0.484, 0.011) 0.421

tion time ofM1 is related to the LDNI resolution and scale of model
and can be accelerated by computing in parallel. Running time of
M2 can be greatly improved by using a spatial data-structure such
as a grid or octree [Lee et al. 2005]. Similarly, the computing time
of M3 can be sped up by parallel computing since it depends only
on screen resolution and model scale.

Table 2: Run times for sample models (see Fig. 17).

model† # faces time (sec.)
M1 M2 M3 M4 supports DL-ELM

cow 5.8K 40.2 17 63 1.2 1.2 0.07

duck 19.3K 83.4 51.5 70.6 5.2 2.5 0.07

gargoyle 71.5K 267 363.8 85.4 77.9 11 0.08

†All the models are normalized to 40mm height.



Figure 16: Additional results, novel meshes not in the training set. (Top) generated by MeshMixer, (bottom) our results. Arrows indicate the
printing direction.

Figure 15: The result of a sculptural object. (Top-left) M2 only,
(top-right) M3 only, (bottom-left) MeshMixer result, and (bottom-
right) our result. The values of F (· · · ) are provided.

8 Conclusion

We present a perceptual model to determine good directions for 3D
printing which avoid placing support structures on user-preferred
features. Our method minimizes the visual impact of artifacts re-
maining on a model after support structures are removed. Our per-
ceptual model is established by a training-and-learning process on
a large-scale set of samples obtained from the service of Amazon
Mechanical Turk. Four attributes, including viewpoint preference,
visual saliency, smoothness entropy and area of support, are formu-
lated into a non-linear combination by a novel DL-ELM method,
which is able to convert pairwise training sets into a closed-form
formulation for evaluating the scores of a model printed in differ-
ent orientations. Our approach has been implemented on a training
set built from ten models (both natural and man-made) and verified

Figure 17: The result of a man-made object. (Top-left) M2 only,
(top-right) M3 only, (bottom-left) MeshMixer result, and (bottom-
right) our result. The values of F are provided.

on a variety of novel meshes. Experimental results are encouraging
– although our results are similar to other methods in some cases,
overall we find improved printing directions with reduced visual
artifacts, allowing higher quality printed models.

Limitations and future work: While the perceptual model proposed
in this paper is promising, there are several limitations which could
inspire future work. First, the attributes considered may not be
comprehensive. For example, symmetry has recently caught atten-
tion for enhancing the beauty of 3D models [Podolak et al. 2006;
Rhodes et al. 1998]. Future work could study how to incorporate
a factor of symmetry in optimal printing directions. Second, the
perceptual model learned from large-scale training sets relies heav-
ily on personal preferences. As preferences can vary based on age,
gender and culture background, it is worth studying how such dif-



ferences affect the accuracy of our model. Lastly, the computa-
tion of mesh saliency and area-of-support is the bottleneck in our
pipeline. We plan to further improve performance by parallelizing
the computation on multi-core CPUs.
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Appendix: Computation for ELM

The learning parameters ai, bi and βi can be obtained from the con-
stitution equations enforced onm input-output training samples. In
other words, Eq.(9) can be rewritten into

Hb = y (14)

where

H(a1, . . . ,an, b1, . . . , bn,x1, . . . ,xm)

=

 φ(a1, b1,x1) · · · φ(an, bn,x1)
... · · ·

...
φ(a1, b1,xm) · · · φ(an, bn,xm)


m×n

, (15)

b =

 β1
...
βn

 and y =

 y1
...
yn

 . (16)

H is called the hidden layer output matrix of the network [Huang
et al. 2006b]. The i-th column of H represents the i-th hidden
node’s output vector with respect to inputs {x1, . . . ,xm}, and the
j-th row of H is the output vector of the hidden layer with respect
to input xj . Note that n � m, the training error cannot be made
exactly zero but can approach a minimum. Input weights ai and
biases bi of the hidden layer may simply be assigned with random
values according to any continuous sampling distribution without
tuning [Huang et al. 2006b]. Eq.(14) then becomes a linear system
and the output weights b are estimated as

b̂ = H†y, (17)

where H† is the Moore-Penrose generalized inverse of the hidden
layer output matrix H.

The universal approximation capability has been analyzed in
[Huang et al. 2006b] that ELM neural network with randomly gen-
erated additive and a wide range of activation functions can univer-
sally approximate any continuous target functions in any compact
subset of the Euclidean space <n.


