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Bending-Invariant Correspondence Matching on 3L
Human Bodies for Feature Point Extraction

Samuel S.-M. Li, Charlie C.L. Wang¥Viember, IEEE and Kin-Chuen Hui

Abstract— In this paper, we present an automatic approach to I. INTRODUCTION
match correspondences on 3D human bodies in various postures
so that feature points can be automatically extracted. The feate IFFERENT from the design automation functions pro-
points are very important to the establishment of volumetric vided by current commerciaComputer-Aided Design

parameterization around human bodies for the human-centered (CAD) systems that are developed for products with regular

customization of soft-products [1]. For a given template human . : .
model with a set of predefined feature points, we first down- shapes and are usually driven by dimensional parameters,

sample the input model into a set of sample points. Then, the the design automation of human-centered soft-produciessrel
corresponding points of these samples on the human model are On establishing the volumetric parameterization of thecepa
identified by minimizing the distortion with the help of a series of around human bodies (see Fig.1), where one of the challgngin
transformations regardless of their differences in postures, sdes steps is how to extract the feature points on the 3D models

or positions. The basic idea of our algorithm is to transform the . .
template human body to the shape of the input model iteratively. of human bodies to serve as the anchors to constrain the

To generate a bending invariant mapping, the initial corre- volumetric' parameterization. In our prior resgarch [1]e th
spondence/transformation is computed in aMulti-Dimensional ~ feature points (at least part of them) are specified by users o
Scaling (MDS) embedding domain of 3D human models, where semi-automatically selected by rule-based systems (Rp.,

the Euclidean distance between two samples on a 3D model ingnqg [3]). An automatic method is proposed here to extract
the MDS domain corresponds to the geodesic distance betweenthem for the downstream processing in [1]

them in $3. As the posture change (i.e., the body bending) of
a human model can be considered as approximately isometric

in the intrinsic 3D shape, the initial correspondences established o problem definition

in the MDS domain can greatly enhance the robustness of our

approach in body bending. Once the correspondences betweereth  Given a template 3D human mod#l represented as a
surface samples on the template model and the input model are polygonal mesh surfacd/; € R with a set of predefined

determined after iterative transformations, we have essentially ; ; - :
found the corresponding feature points on the input model. feature pointsGy, we are going to find the corresponding

Lastly, the locations of the feature points on the input model [€ature pointsGy, on the surfaceMy of an input human

are refined by a curvature map based local matching step.. model H. Without loss of generality) is also represented
o83

Note to Practitioners—The research work presented in this by a polygonal mesh i and bothdr and My have surface

paper is to support the geometric solution for the design au- normals facing _outwards._ _ _
tomation of human-centered customization of freefrom producs The automatic extraction is challenging for two reasons.

(e.g., apparel products, shoes and glasses). The design aution ~ First, the feature points on human body are not always
of such products with complex geometric shapes is based On|gcated at the shape extremities, therefore the local shape

how to establish the relationship between the product and the . . -
human body and how to maintain such a relationship. This is matching based methods cannot robustly give satisfactory

quite different from the design automation function provided results. Sgcond, the robustness of local shape m_atchingr'rs m
by current commercial 3D/2D Computer-Aided Design (CAD) problematic when the postures of human bodies are varied
systems. A prior work presented in [1] gives a solution to such (i.e., the 3D bodies are bended).

problems. However, in that approach, the correspondences of |, this paper, we propose a global deformation based fitting

the feature points on human bodies are interactively specified by - -
users. The algorithm proposed in this paper aims at providing method to automatically find the correspondences between

an automatic method to extract the feature points on the Mr and My, and thus the locations of feature points Bn
input human bodies, which serves as the preprocessing step ofSpecifically, we are going to find a mappiAg to minimize
[1] in the pipeline of design automation for human-centered the distortion functiont as

freeform products. On the other aspect, most of the existing

cloth CAD systems focus on the simulation of virtual wear and _ 2

do not provide the design automation function for the personal E(T) = / 1M =T (Mr)|["ds @)
customization of apparel products.

. . 9 .
Index Terms— correspondence matching, bending invariant, With [[---[| being theL*-norm inR~. In other words, by the
multi-dimensional scaling, sign-flip, feature points. optimal mapping function
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we can determine the feature points by
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Template human body Il. LITERATURE REVIEW
with different clothing . . i . . .
and semantic feature Point matching algorithms in literature can be classified

points

into two major categoriedocal feature matchingnd global
iterative alignmenttechniques.

A. Local feature matching techniques

Feature based matching has been a common approach in
shape matching [4]-[7]. It can be found in 2D applications

|' 236% | ; such as photo panorama, text recognition and animation
A Proposed Correspondence . .

1 (¢ ( : Matching Algorithm . morphing. The features are always represented by grouping

: A US 3 regional information in point, known as descriptor. Two lwel

| K /\ J | Template clothing known descriptors for image are shape contexts and spin

{ 1\ : New human model fited on new human images [8], both utilizing a histogram obtained by binning

WY oot the space around a point according to the Euclidean metric

and collecting point counts. These methods have subsdguent
Fig. 1. lllustration of garment design automation, where #raplate model been generalized in a straight-forward manner to handle 3D
has predefined features and the clothes are designed atmutehtplate body. point sets. However. neither space contexts nor spin images
By the correspondences between human bodies, the garmentfiate the . . ’ .
new human model. are invariant to shape bending. Some extra work has to be
done to deal with the non-rigid object matching problem in

3D scenario.

To have a refined matching, some important pointsGip T_he Curvature Mapin'groduced_ by Gatzke et al. in [9] is_
should have local shape distributions similar to their eorr@ Kind of feature descriptor which gathers local differahti

sponding points inGr. This serves as constraints for thed€0metry information at a point. A curvature map is first
minimization problem defined in Eq.(2). defined around a point;, and then accumulates curvature

information from a region aroun& and takes one of two
forms: a one-dimensional (1-D) map, which only considers
the distance fromv, and a two-dimensional (2-D) map that
uses both distance and orientation information.

The main features of our method are outlined as follows. In most shape matching applications, geometric feature is

based poi hi lqorithm is i . very important portion to be preserved during matching
- An MDS' ased point matching algorithm is investigategj, ,.oggeg (e.g., reverse engineering of mechanical f&)ts [
to align the initial correspondences between the templ

h | he ai h | ' e significant drawback to incorporating curvature map in
uman model and the given 3D human model. A SI9%p object matching is its disability to handle bended olgject

flip correction technique is developed to enhance @y, 4h geodesic binning is invariant to bending, the his-

robglstness of t')VIDfS emdbgdding._ The details.(;f signr;fl' grams computed are based on curvature distributionghwhi
problem can be found in section IV-B. Without t IS;3re not invariant to bending.

sign correction technique, the MDS-based method cannot
be applied to find correct matching on those near. Global iterative alignment techniques

symmetric models like human bodies. ~In global iterative alignment matching approaches, there
« Starting from the initial correspondences, a global alignye two unknown variables that have to be determined: the

ment technique is exploited to iteratively find a mappinggrespondencand thetransformation While it is impossible

function (via the point correspondences) that optimizgg solve either variable without information regarding the

surface proximities and is constrained by feature poinfgner, it is possible to optimize these unknowns by determin
(see sections IV-D and IV-E). ing them iteratively. Once the correspondence is given, the

These main features of our method lead to a robust featdf@nsformation can be guessed with reasonable knowledge.
extraction technique for 3D human bodies in various posturén the other hand, the correspondence can be searched if
In fact, the method proposed in this paper can also be app”é@ transformation is known. Hence, it leads to a solution of
to other classes of models which are approximately isometrthe correspondence problem by alternating the estimaténs
Although whole human bodies are employed as examplesG@respondence and transformation (e.g., [10]-[12]).

this paper, there is no difference if we app|y it to parts of The ICP algorithm is the Simplest one among these methods.

human bodies (e.g', feet, handsy and faces)_ It utilizes the nearest-neighbor relationShip to aSSigl’ilnam
correspondence at each step. This estimation of the comesp

The rest of the paper is organized as follows. After radence is then used to refine the transformation, and vicevers
viewing the related work in section Il, the overview of oult is a very simple and fast algorithm which is guaranteed
algorithm is given in Section Il and the detailed methodglo to converge to a local minimum. Chui et al. enhanced this
of our algorithm is presented in Section IV. The experimentalgorithm in [13] by making two significant improvements:
results are shown and studied in Section V. Lastly, our papgoft-assignidea andRobust Point Matching- Thin Plate
ends with the conclusion section. Spline(RPM-TPS) algorithm.

B. Main features
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The basic idea of the soft-assign [12] is to relax the binary
correspondence variables to be a continuous valued matrix
in the interval [0, 1], while enforcing the row and column
constraints. The continuous nature of the correspondence
matrix M basically allows fuzzy, partial matches between the
point sets. Hence the correspondences are able to improve
gradually and continuously during the optimization withou
jumping around in the space of binary permutation matrices.
The row and column constraints are enforced via iterative ro
and column normalization of the corresponding mathik  Fig. 2. Examples of the template model and the input model befersus
Chui et al. also proposed RPM-TPS as the parameterizatiorer the MDS transformation. Note that, the Euclidean coatés in®°
non-rigid spatial mapping transformation. Their work ised 2"d the RGB colors of the transformed models (in the right) esgmt the

- . normalized coordinates in th&dimensional MDS domain.

on the RPM algorithm that involves a dual update process
embedded within an annealing scheme. Obviously, the iterat
alignment approach does not require any complicated algamsstures are nearly isometric to each other and 2) the ismmet
rithm or computation. Nevertheless, the initial guess nrapp shapes have the same MDS embedding.
of correspondence must be good enough in order to solve thé&econdly, thesurface fitting step refines the surface of
bending invariant matching problem. the transformed template by optimizing the fithess and the

On the contrary, a hybrid approach of this technique on tisghoothness iteratively. Two main processssiface fitness
MDS signature would be a much reliable and advanced agptimization and surface smoothingare repeatedly applied
proach for deformable shape matching. Recently, Lipman audtil changes on the surface converge to a limited amount.
Funkhouser [14] proposed a surface correspondence mgtchiiie surface fitting procedure employs a bi-directional nivagpp
method by repeatedly computing ddius transformations, concept and an orientation-aware movement, which greatly
which requires the input models to be two-manifold — thignprove the fitting quality of the template model.
is more restricted than our approach that is based on spatidFinally, thefeature matching refinemestep further refines

transformation. the correspondences by adopting the feature descriptor con
straints on particular surface regions. At this stage, teedp-
C. Other Approaches tor is encoded on a surface point with curvature distrilsutio

formation on the surface around it. The concept is similar

Apart from the feature based and iterative alignment aF— :
proaches, other previous work of matching approaches rthe Curvgture Maps presented by Gatzk_e etal. in [9] b.Ut
constrained manner. Hence, the pre-defined featuréspoin

shape matching, such as skeletal based matching [15] ¢ )
image based matching, has also been studied. Some fam%r&sthe. template model can be mapped to the input model
approaches, such as the shock graph [16], reeb graph [flﬁ?ordmg to the feature-aligned models.

conformal geometry [18], and canonical homology basis,[19]
achieved the shape matching goal in certain fields of ap- ) ) )
plications. Nevertheless, the structural information oése ~ 1his section presents the details of our method. First of
approaches does not provide detailed matching ability shmell, two important techniques to enhance the robustness of

surfaces. The recent development of semantic features &k Matching algorithm, MDS transformation and sign-flip
relevant applications can be found in [20]-[23]. correction, are introduced. After that, the three stepsuwf o

algorithm, 1) pose alignment, 2) surface fitting and 3) featu
matching refinement, are detailed.

IV. METHODOLOGY

IlIl. ALGORITHM OVERVIEW

The proposed bending-invariant matching algorithm intéd. MDS transformation
gratesGlobal Surface AlignmerdandFeature Based Matching To robustly establish the initial correspondences between
techniques, which are found as the two major techniquesthe template human modél and the input modeH, their
shape matching studies. The integration of these two tedbS embeddingsly;ps and Hy;ps are computed via the
niques inherits their advantages. The matching algoritlas hclassical MDS transformation, which involves a computa-
three steps: 1posture alignment2) surface fittingand 3) tionally expensive step — eigenvector analysis. In order to
feature matching refinement simplify and speed up the computation, their surface models
Firstly, the posture alignmenstep transforms the templateM; and My are sampled inten points, My = {ty,... t,,}
model to the input model non-rigidly according to the cohtrand My = {hy,...,h,,}, by the Farthest Point Sampling
point mapping defined by their similar isometric signhatures (FPS) method in [24]. According to this simplified shape
the multi-dimensional scalindqMDS) embedding. The MDS representation, when the samplesidf- are mapped to new
embedding of a given model is defined inkadimensional positions, e.g..M% = {t%,...,t* }, the newly mapped (or
domain according to the relative distribution of surfacén warped) shape of\fr can be determined by Radial Basis
on the model. The robustness of finding good initial correspoFunction (RBF) based warping function (ref. [1], [25]).
dences according to the MDS embedding is guaranteed by th&or these sample points, we calculate their geodesic distan
observation that 1) the shapes of a human body in differenap by the fast marching algorithm on triangulated domains
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Fig. 4. lllustration of several possible combinations ofsaftipping. It can
be observed that two flippingg,: and¢s, have the minimal value of’'(¢)
defined in Eq.(11); however, their costs are differenCi(¢y) (Eq.(12)).

Fig. 3. The MDS embeddings (colored) of two human bodies (cirbdard)

are significantly different due to the sign-flip, where theselst point search
will give wrong correspondences. The correct point comesiences are in_fl ;
specified by the dashed lines between the models in the spatitMDS B. Sign-flip correction

domains. The shapes of human bodies in the MDS domain are quite
similar to each other. Ideally, the correspondences betwee
_ the pointst; € M3 andh? € Mj; can be determined by the
(r.ef. [26]) and_store the result asrax m symmetric and zero g|ggest point search. However, such a mapping betv@&%n
diagonal matrixD and M}, is neither bijective nor robust. Our investigation finds
0, . that the main challenge comes from the random selection of
D ={di;} ={€°(i, )} ) the sign of eigenvalues (therefore the direction of eigetors)
jn,the MDS analysis. Thus, the shapesidf. and M}, can

h .. | h L ! _ » the shapes [ _
where £(i, j) evaluates the geodesic distance between tgreatly differ in terms of their axis directions — callsigin-flip

sample pointst; andt; on My (or betweenh;, andh; on (as illustrated in Fig.3)
Mp). The Multi-Dimensional Scaling(MDS) process is an 9-9).
Under the exhaustive search framework proposed by

important step to align the given model pair into the sal ) . .
oriZntation sgale an% postugre. Here wcl.O use the Gausshlo o anc_zl Brady [2_8],_the allgnmenfc of _the MDS embeddmg
affinity matrix A as the input of the MDS transformation which"&" be a_chle\_/ed by finding th? combination .Of axes swapping
is similar to the approach [27] which minimizes a shape difference metric. For instance,
' there are2® = 64 sign flipping combinations for 6D MDS
embeddings (see Fig.4). Therefo¥, different sign flipping

functions can be defined for a poit in the d-dimensional

The Gaussian kernel widthis chosen as the maximum value'vIDS domain as

among the elements db. Dk (k1 72(1)(1;*) = ngdt* (8)
The positions ofn sample points in thé-dimensional MDS

embedding domain can then be computed by building a

decomposing the inner product matuix

d;

Aij =1- 67275]‘ (5)

with Sl = diag(---,(=1)F™4..) (i = 1,....d).
Among them, the one giving the minimal cost on a shape
error metric is selected as the corrected MDS embedding. The
study of metrics is conducted below.

Let us assume that a functioft(---) can be establishéd
to map the points? € Mz with sign-flip corrected to the
positions of pointsh € M}, as

B= —%JAJ )

whereJ =1 — LLL" and Ly, = [1,1,...,1]7. Firstly, k
most dominated eigenvalues of By > Ay > ... > A\ > 0,
and their corresponding eigenvectors are calculated by the f(n(t7)) = hy Vi=1,....n 9)

power method. The: eigenvectors withn components for On using the same correspondences between points but in the

each are listed in the r'natmvmxk.' Lastly, the result.ant srPatiaI domain, we can have a similar mapping funcfion - )
coordinates of the sampling points in the MDS domain ca

be determined by flop(t;) —h; Vi=1,... n (10)

In the work of Shapiro and Brady [28], a cost functi6ti¢y, )

is formulated to score the shape distortion by measuring the
distances between sample points before versus after agplyi
the mapping function.

n n

1
Kmxk = VkaAlgxk (7)

with Agxr = diag(A1, Ae, ..., \;). Each row of X, rep-

resents a point coordinate in tkedimensional MDS domain.
The value ofk directly affects the robustness of initial 9 9

shape matching. By our experimental tests,= 6 can C(or) ZZZ‘”ti_tJH = IF (e (t:)) = F(r(t5))II]

give satisfactory results in all cases while still keepiny a 1=0=0 (11)

acceptable computational speed. Therefore, in all theeﬁgupl-he major drawback of this cost function is that it only

shown in this paper, the first three compo_nents of a !ooint tj'ﬂeasures the distortion in shape but does not consider the
the MDS domain are displayed as the Euclidean coordinates in

3 and the next three components are displayed by the RGBDetails about how to construct such a mapping function carobad in
colors. See Fig.2 for an example. the section IV-C.
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significant difference can be distinguished by comparindehgth of thered ‘f &
line which is constructed by the normal offsets of the vestios the template g .
model (left) and that on the transformed models (middig:and right: ¢1) fO(Mr) i J
respectively. €%

N7

LY

Fig. 5. Sign-flip correction with normal offset component irstfunction. A | %

swap of surface orientation. Take the human model shown L
Fig.4 as an example;; and¢s lead to the same minimal cost
by C(¢y) in Eq.(11) —i.e., the sign-flip cannot be successfull
corrected. In order to consider the surface orientatiorhen t
shape distortion metric, we modify the cost function so th
it is based on the shifted positions along the normal vegto
Ng. .

i

C™(dr) = D > llI(ti +wng,) — (8 + wng,)|*
i=0 j=0 (12)

—[I(f (r(t:)) + wng,) = (f(Dr(t;)) +wne,)|?|

As shown in the example of Fig.5, the new cost function wi
have different values witli"* (¢, ) andC*(¢3), where the one
with the correct surface orientation will have a smallerueal
A very small number should be selected for the offset value Fig. 6. Flow of the posture alignment step and the relatigndtdtween

in all our tests. we use = 0.5 centimeter. Then. an optimal the spatial and MDS domains of the template and the input modéis.
' ) ’ ’ correspondences between sample point&inare established by thelosest

sign-flip function can be found by point match(CPM) conducted in the MDS-domain. Note that, the blue points
N . N on the human bodies are sample points used in this step of conithig.
¢* = arg min C* (). (13)

C. Pose alignment ) , ) ] ]
. . _ formation function. The greateris, the stronger its smoothing
After transforming the sample points froR? into the MDS effect is.

domain, the sample points in MDS domain are then be used . . ) )
to correct the sign-flip and estimate the pose alignment. In th_e pose z_slllgnment step, Yve flr”st apply the 5|_gn-ﬂ|p
Given the sample points! ¢ Mz, we first employ the correction technique to obtain a “good” MDS-embedding for
approximate-nearest-neighbgANN) search [29] to find the th€ template model. Here, a very small number of sample
closest pointsc* (t%) € M,’; of t:. Using these Correspon_pomts are .used to avoid being trapped on_local opt_|mum at
dences, we can find the mapping of sample&infrom M the beginning of the correspondence mapping algorithm. We

to My ast; — c(t;) € My. Then, a transformation function choosen = 20. Also, a large valuep = 10°, is adopted to
£ can be defined on such correspondences by the RBF-basétain & correct sign-flip function®.
thin-plate spline transformation as Starting from a sign-flip corrected MDS-embedding
n ¢* (M) of the given template model, we search for the closest
(D) = an + [ang1, Gnga, Gnis]p + Z aig(|p — c(t;)|)), points c(ty) of the sample points} € ¢*(M;), thus also
im1 determine the correspondencesfh ast; — c(t;) € My.

(14) By these correspondences, a transformation funcfiorcan
where the coefficients,, 3 define the affine transforma-pe determined by Eq.(15). We can compute the new sign-flip
tion of the pointp, a;s define the weights of pointe t0  corrected MDS-embedding frorf?(A1); therefore, the new
the control pointc(t;), and the basis functiop(r) is chosen correspondences and the new transformation funcfioean
as g(r) = r*. An optimal transformation function can beajso be computed. Repeatedly applying this correspondence
determined by solving the following linear equation systemtransformation computing step, we can iteratively updaee t

G-\ PT e transformation functiory’ (Mr) (j = 1,2,3,---) to make it
[ P 0 } [ai] = [ 0 ] (15)  more and more aligned with the pose &fy (see Fig.6 for
an illustration). During the iteration, we decrease theigabf
where G = [g;] with gi; = g(|[t; — e(t;)I), P* = by aboutl/10 gradually after each loop. According to the
[1,£7,t7,65], Y = [e”(ti), ¥ (t;), c*(t;)], and A is the sO-  experiments, the changes ff(1/7) would converge to a very
called regularization (smoothing) parameter [25] of tl$  small value (e.g.10~?) within ten iterations.
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—— Reference Model
Template Model
== Fitted Surface

Single Direction Bi-Direction Mapping

Fig. 7. Surface fitting by single-directional and bi-diieaal mappings of
points respectively. Fitted surface is displayed in dadimeg and the mapping
is displayed by arrows.

Fig. 9.
template model, the surface fitting result of the template mogéhé method
proposed in section IV-D, the surface fitting result by [Yjdahe input human
model Mg .

An example of surface fitting. From left to right, thespoaligned

« Lastly, a smoothing term is added to the fitting procedure
to enhance the smoothness of the fitting result. Figure 8
shows the results with and without the smoothing term.

The pseudo-code of the surface fitting algorithm is listed in
Algorithm SurfaceFitting. The correspondence mappings
then updated byl : My — M/. Figure 9 shows an example

Given a posture-aligned template modgl(M7) and an fitting result and its comparison with the method presented i

input model My, the surface fitting process in this sectiorfl].

further increases the accuracy of correspondence mapping

T defined in Eq.(2). However, to simplify the evaluation ofAlgorithm 1 SurfaceFitting

the distortion function® in Eq.(1), we can actually evaluate 1: Update the template modél/;- to M/. by the optimized
a discrete version of it onn sample points generated by  posture alignment functiori’ (- - - );

the farthest point sampling. For the examples shown in thig: 7 < 0.5 ando < 0.9;

paper, we use all the vertices of the template model (i.e3: repeat

Fig. 8. Surface fitting with (left) and without (right) the sothing term
respectively.

D. Surface fitting

m = 11,074). For each sample poirtt; € Mp, we find its  4:
closest point(t;) € {h;|Vh; € My}. The mapping function s:
T is then updated by moving the verticese My according 6:
to c(t;). Meanwhile, the smoothness of surface on the template:
model M is constrained. The method was employed in [1] fors:
a similar purpose. However, it has two defects. Firstly,mgo o:
mappings appear on the near but opposite surfaces. Secondly
the surface smoothness is distributed in regions with dense

meshes. 12:
To overcome these defects, we add three modifications 18:
the procedure of surface fitting. 14:

« First of all, we do not move the vertices on the dynamié®:
mesh (i.e., the warped template model) to their closesf:
points on the model to fit. Instead, we move the verticek'-

Vt; € M, find the closest point(t;) € Mpy;
Establish a new mapping functignby t; — c(t;);
for all t; € M} do
pi < &(t);
if (ng, -np,) > o then
if |t; + 0.5, — pi| < [t; — 0.57ng, — p;| then
t; =t +0.5mn,;
else
t, <=t — 0.57'Ilti;
end if
end if
end for
o< 0.90 andT < 1.17;
SmoothingM/. by a Gaussian filter;

along their own normal vectors like [30]. The mappingt® Until o < omin @NAT > Tinax
established by the closest point match (CPM) is validateld: "eturn;

by checking two constraints: 1) normal compatibility —
i.e., if the angle between;, andnry,) is too large (by

a parameter), and 2) relaxation power that controls E. Feature matching refinement

the maximal allowing Euclidean distance betweegmand
its mapped position (t;).

After determining an updated mappirij by the surface
fitting of My to My, we can extract the feature point set

« Secondly, a bi-directional mapping is conducted to dé& g by T as Eq.(3). However, the previous fitting steps are
cide the moving direction of the vertices on the dyglobal alignment based which do not consider the local shape
namic mesh. A comparison of single-directional and bdistribution, and thus the locations of feature points avé n
directional mappings is given in Fig.7. It is easy to findccurate enough. A feature matching refinement is conducted
that bi-directional mapping fits surface into narrowed (aas the last step of our algorithm to further adjust the loceti
sharped) regions like armpits and crotches more flexiblgf the selected feature poin€sy on My.
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Template

Zoom In

Fig. 10. Construction of the feature descriptor around atpoion a template
model (left) and on an input human model (right). The Gaussiamature

map is generated within the red circle. Note that, for illastm purpose, only
a4 x 4 Gaussian curvature map is displayed. The three axes of Icrakk
are displayed in red, green and blue arrows.

To serve the shape matching on surfaces of human bodi
a local shape descriptor is proposed. Basically, we neec
shape descriptor that is invariant to the differences ofesca
orientation and topology between the template madel and
the Input modelMy. Given a pointv on a tnangular mesh Fig. 11. lllustration of the feature descriptors on a paitc region of a

surfacelM, its feature descriptoF,.(v) with support size iS  vertex on two human models. The top row displays the featurerigésr at
constructed as follows. different orientations by rotating the local frames arounel hormal vectors
— maps at four example rotations are shown.

Zoom In

Input Mode! Feature Descriptors

« First, a local frame[t;, to,t3] at v is established by

curvaturess at these points are evaluated by the method |/ \ - !

of [31], and the values of Gaussian curvature are normal- | [ |\ ( & e X AR

ized from [, x52%] into the range of—1, 1], where & J\‘ f \ /\\

k@™ and kE** are the minimal and maximal Gaussian | (I { e
|

letting t, be along the surface normal & t; be an _ o~
grbitrfiry unit vector on the tangent planevaandts = Q > TN Bf‘fjfe fea:fﬂ:if‘"es ({,) . j .
tl X t2' .'/. ®) { L i | 2 » .f.\.
« Second, the points arounst within a radiusr are [R - ’u ‘ ® ) ;lg (\" f\:\ o A.jjr\u\
searched and assigned to a point Bet The Gaussian T A By BN, -4“---;}1 ]
‘| { v \ Predefined points B AR

E " After feature refines / E §
curvatures among all the points . respectively. \/ ol A
« Lastly, the normalized Gaussian curvatures at the points | 1;\ Inout Model i,
in V,. are projected onto the tangent planevofo form R
a Gaussian Curva_ture image with x 10 pixels — this is Fig. 12. An example of the feature matching refinement step. éasy to
our feature deSCI’IptOIFT(V). find that, after the feature matching, the relocated featanetpare positioned
Based on our experimental tests selectai*ngs ten times of in places similar to where they are on the template model.
the average edge length dvir is a good trade-off between

robustness and speed. Figure 10 shows an example of §a8.ch Note that, during the search, the local frames on the
feature descriptor at a local convex region. surface samples are rotated to find the best match as the
Once the feature descriptor scheme has been developed 80d §, of a local frame is arbitrary on the tangent plane of
the feature points on the template model have been defingd, g rface point (see Fig.11 for the illustration). A featu
the surface of the template moded is refined iteratively by matching refinement example is shown in Fig.12.
re-aligning the feature mapping between the template model
My and the input modeMy once at a time. V. RESULTS AND DISCUSSION
For simplicity, the feature matching algorithm focuses on a
single vertext, in Gr during each iteration. The correspon-
denceh, of t, must be found on the surface of the inpu
human modelM/y so that the cost of feature descriptor

s

We have implemented the proposed algorithm in a prototype
rogram by Visual C++ with OpenGL library for 3D visu-
alization of models. The experimental tests are carried out
on a PC with Intel Core i5 430 CPU (2.27GHz) plus 4GB

Cr(ta,hy) = ||F(ts) — F(h,)|| (16) main memory running 64bit MS Windows 7. Basically, the
o computation of all examples can be completed in less than
iS minimized as one minute.

17) Figure 13 shows the results of our approach on four ex-
amples of real human bodies with different postures. All the

The search for an optimdh, starts fromh, = Y(t,). A results are generated automatically. The template modal wi

search window with a radius is established to include all predefined features is shown at the first column of Fig.13. The

surface points (sampled) oh/y; with a distance tot, less computational statistics are shown in Table 1.

thanr. Then, the minimal feature descriptor c@stbetween In Fig.14, we compare the resultant surfaces warped from

t, and all these surface points can be found by an exhaustivéemplate fat human body to a thin human body by the cor-

h, = argmin Cp(t,, h,).
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Pose Alignment Surface Fitting Feature Matching Refinement

Fig. 13. Results of applying our approach to four examples [#@st column of first four rows) by using the template human motlelva at the first
column of the figure. The progressive results in differenpstef our approach are shown in different columns of the figiihe: feature points are displayed
in orange.

respondences established by various shape matching mseth
It is not difficult to find that our method gives the best fitting
results.

Another interesting study is about the number of samp!
points used in the pose alignment step and its effects on -
final matching result. An example is given in Fig.15, wher
the results obtained with 250, 500 and 750 sample points
shown. It is found that the pose aligned result does not leuu
toa SatiSfa_‘Ctory matching result in 'Our algorithm if too feVV—'ig. 14. Comparison of the surfaces warped from a template datahn
sample points are used. However, it does not mean that th&iel (leftmost) to a thin human model (rightmost) by the corradpaces
more sample points, the more accurate result can be obtairggferated by different approaches: (2nd column) our metgrd, ¢olumn)
When further increasing the number of sample points, thg) Vith 60 MDS, (4th column) [32] with 3D MDS, and (Sth colum3].
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TABLE |
COMPUTATIONAL STATISTICS (IN SECOND)

ExamplesinFig1l3 A= B [A=>C[A=D][ A= FE|

Pre-computation 11.7 125 13.3 12.6
Posture Alignment 18.6 15.2 16.1 195
Surface Fitting 145 12.6 16.8 17.7
Feature Matching 121 9.6 10.9 9.9

[ Total Time [ 569 [ 499 | 571 | 59.7 ]

* The statistics are tested on a PC with Intel Core i5 430 CPU
(2.27GHz) plus 4GB main memory running 64bit MS Windows 7.

{/ \ \ Matching Results |

|

Fig. 16. The results of matching a human body to itself withedéht postures
in different levels of bending. The error of matching resalts measured by
the publicly available Metro tool [33].

we can find a clear trend that the matching results become
less and less accurate. Future work can be done to overcome
this problem and one possible solution is to segment the mesh
surface before applying MDS transformation. This can dyeat
reduce the stretch error accumulated in the MDS embedding
and eliminate those local dense regions. However, there is
a drawback of multiple sign-flip correction problems if the
divided segments are symmetrically identical, for example
sign-flip correction cannot be performed on two arm segments
alone. Therefore, the possibility of segmentation is stiltler
evaluation at this moment.

Last but not the least, more future work can be done
to enhance the performance of the proposed algorithm. In
our current implementation, the computation time is highly
Fig. 15. Comparison of the surface maiching results by usifigrént ~ gependent on the sample rates in all stages of the algorithm,
number of samples — the template shown in Fig.13 is employed bere t . . . .
From left to right, the result by pose alignment, the resukrasurface fitting, the number of iterations and the RBF warping processes in
and the final result. each step. In the near future, we will consider using thelighra
computing power, which is nowadays available on desktop

) ] o PCs, will be considered to speed up our approach.
computation (i.e., surface fitting) may be stuck at somelloca

optimum.

According to the experimental tests, satisfactory redts
be obtained for those testing examples with a moderate levelThe proposed algorithm in this paper presents a corre-
of deformation. However, one of the limitations of our apspondence identification algorithm on 3D human models by
proach is its restriction on the deformation effects betwie referencing an isometrically similar template model. The-p
models in local regions — specifically, isometric deformati sented approach is designed for engineering applicathuats t
is assumed. For instance, a particular highly stretched, @re require feature point identification on the surface of 3D ham
dense point distributed region or a twisted surface may fdibdies. The experimental tests have verified the correstnes
the validity of the algorithm. Figure 16 shows a study of thand effectiveness of our approach. The research work pre-
geometric errors generated on the matching results to the sasented in this paper can support the geometric solution for
human body but in different levels of bending, from whiclthe design automation of human-centered customization of

750
samples

VI. CONCLUSION
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freeform products including clothes, shoes, glasses.fst@ [20]
preprocessing step of volumetric parameterization foigtes

automation [1], the automatic method for extracting featuPl]
points can further shorten the time of product design and
fabrication cycle. [22]
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