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Abstract— In this paper, we present an automatic approach to
match correspondences on 3D human bodies in various postures
so that feature points can be automatically extracted. The feature
points are very important to the establishment of volumetric
parameterization around human bodies for the human-centered
customization of soft-products [1]. For a given template human
model with a set of predefined feature points, we first down-
sample the input model into a set of sample points. Then, the
corresponding points of these samples on the human model are
identified by minimizing the distortion with the help of a series of
transformations regardless of their differences in postures, scales
or positions. The basic idea of our algorithm is to transform the
template human body to the shape of the input model iteratively.
To generate a bending invariant mapping, the initial corre-
spondence/transformation is computed in aMulti-Dimensional
Scaling (MDS) embedding domain of 3D human models, where
the Euclidean distance between two samples on a 3D model in
the MDS domain corresponds to the geodesic distance between
them in ℜ

3. As the posture change (i.e., the body bending) of
a human model can be considered as approximately isometric
in the intrinsic 3D shape, the initial correspondences established
in the MDS domain can greatly enhance the robustness of our
approach in body bending. Once the correspondences between the
surface samples on the template model and the input model are
determined after iterative transformations, we have essentially
found the corresponding feature points on the input model.
Lastly, the locations of the feature points on the input model
are refined by a curvature map based local matching step..

Note to Practitioners—The research work presented in this
paper is to support the geometric solution for the design au-
tomation of human-centered customization of freefrom products
(e.g., apparel products, shoes and glasses). The design automation
of such products with complex geometric shapes is based on
how to establish the relationship between the product and the
human body and how to maintain such a relationship. This is
quite different from the design automation function provided
by current commercial 3D/2D Computer-Aided Design (CAD)
systems. A prior work presented in [1] gives a solution to such
problems. However, in that approach, the correspondences of
the feature points on human bodies are interactively specified by
users. The algorithm proposed in this paper aims at providing
an automatic method to extract the feature points on the
input human bodies, which serves as the preprocessing step of
[1] in the pipeline of design automation for human-centered
freeform products. On the other aspect, most of the existing
cloth CAD systems focus on the simulation of virtual wear and
do not provide the design automation function for the personal
customization of apparel products.

Index Terms— correspondence matching, bending invariant,
multi-dimensional scaling, sign-flip, feature points.
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I. I NTRODUCTION

D IFFERENT from the design automation functions pro-
vided by current commercialComputer-Aided Design

(CAD) systems that are developed for products with regular
shapes and are usually driven by dimensional parameters,
the design automation of human-centered soft-products relies
on establishing the volumetric parameterization of the spaces
around human bodies (see Fig.1), where one of the challenging
steps is how to extract the feature points on the 3D models
of human bodies to serve as the anchors to constrain the
volumetric parameterization. In our prior research [1], the
feature points (at least part of them) are specified by users or
semi-automatically selected by rule-based systems (e.g.,[2]
and [3]). An automatic method is proposed here to extract
them for the downstream processing in [1].

A. Problem definition

Given a template 3D human modelT represented as a
polygonal mesh surfaceMT ∈ ℜ3 with a set of predefined
feature points,GT , we are going to find the corresponding
feature points,GH , on the surfaceMH of an input human
modelH. Without loss of generality,MH is also represented
by a polygonal mesh inℜ3 and bothMT andMH have surface
normals facing outwards.

The automatic extraction is challenging for two reasons.
First, the feature points on human body are not always
located at the shape extremities, therefore the local shape
matching based methods cannot robustly give satisfactory
results. Second, the robustness of local shape matching is more
problematic when the postures of human bodies are varied
(i.e., the 3D bodies are bended).

In this paper, we propose a global deformation based fitting
method to automatically find the correspondences between
MT andMH , and thus the locations of feature points onH.
Specifically, we are going to find a mappingΥ to minimize
the distortion functionE as

E(Υ) =

∫

‖MH −Υ(MT )‖
2ds (1)

with ‖ · · · ‖ being theL2-norm inℜ3. In other words, by the
optimal mapping function

Υ = argminE(Υ), (2)

we can determine the feature points by

GH = {g | g = Υ(q), ∀q ∈ GT }. (3)
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Fig. 1. Illustration of garment design automation, where the template model
has predefined features and the clothes are designed around the template body.
By the correspondences between human bodies, the garments arerefit to the
new human model.

To have a refined matching, some important points inGH

should have local shape distributions similar to their corre-
sponding points inGT . This serves as constraints for the
minimization problem defined in Eq.(2).

B. Main features

The main features of our method are outlined as follows.

• An MDS-based point matching algorithm is investigated
to align the initial correspondences between the template
human model and the given 3D human model. A sign-
flip correction technique is developed to enhance the
robustness of MDS embedding. The details of sign-flip
problem can be found in section IV-B. Without this
sign correction technique, the MDS-based method cannot
be applied to find correct matching on those nearly
symmetric models like human bodies.

• Starting from the initial correspondences, a global align-
ment technique is exploited to iteratively find a mapping
function (via the point correspondences) that optimizes
surface proximities and is constrained by feature points
(see sections IV-D and IV-E).

These main features of our method lead to a robust feature
extraction technique for 3D human bodies in various postures.
In fact, the method proposed in this paper can also be applied
to other classes of models which are approximately isometric.
Although whole human bodies are employed as examples in
this paper, there is no difference if we apply it to parts of
human bodies (e.g., feet, hands, and faces).

The rest of the paper is organized as follows. After re-
viewing the related work in section II, the overview of our
algorithm is given in Section III and the detailed methodology
of our algorithm is presented in Section IV. The experimental
results are shown and studied in Section V. Lastly, our paper
ends with the conclusion section.

II. L ITERATURE REVIEW

Point matching algorithms in literature can be classified
into two major categories:local feature matchingand global
iterative alignmenttechniques.

A. Local feature matching techniques

Feature based matching has been a common approach in
shape matching [4]–[7]. It can be found in 2D applications
such as photo panorama, text recognition and animation
morphing. The features are always represented by grouping
regional information in point, known as descriptor. Two well-
known descriptors for image are shape contexts and spin
images [8], both utilizing a histogram obtained by binning
the space around a point according to the Euclidean metric
and collecting point counts. These methods have subsequently
been generalized in a straight-forward manner to handle 3D
point sets. However, neither space contexts nor spin images
are invariant to shape bending. Some extra work has to be
done to deal with the non-rigid object matching problem in
3D scenario.

The Curvature Mapintroduced by Gatzke et al. in [9] is
a kind of feature descriptor which gathers local differential
geometry information at a point. A curvature map is first
defined around a pointv, and then accumulates curvature
information from a region aroundv and takes one of two
forms: a one-dimensional (1-D) map, which only considers
the distance fromv, and a two-dimensional (2-D) map that
uses both distance and orientation information.

In most shape matching applications, geometric feature is
a very important portion to be preserved during matching
processes (e.g., reverse engineering of mechanical parts [5]).
One significant drawback to incorporating curvature map in
3D object matching is its disability to handle bended objects.
Although geodesic binning is invariant to bending, the his-
tograms computed are based on curvature distributions, which
are not invariant to bending.

B. Global iterative alignment techniques

In global iterative alignment matching approaches, there
are two unknown variables that have to be determined: the
correspondenceand thetransformation. While it is impossible
to solve either variable without information regarding the
other, it is possible to optimize these unknowns by determin-
ing them iteratively. Once the correspondence is given, the
transformation can be guessed with reasonable knowledge.
On the other hand, the correspondence can be searched if
the transformation is known. Hence, it leads to a solution of
the correspondence problem by alternating the estimationsof
correspondence and transformation (e.g., [10]–[12]).

The ICP algorithm is the simplest one among these methods.
It utilizes the nearest-neighbor relationship to assign a binary
correspondence at each step. This estimation of the correspon-
dence is then used to refine the transformation, and vice versa.
It is a very simple and fast algorithm which is guaranteed
to converge to a local minimum. Chui et al. enhanced this
algorithm in [13] by making two significant improvements:
Soft-assignidea andRobust Point Matching– Thin Plate
Spline(RPM-TPS) algorithm.
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The basic idea of the soft-assign [12] is to relax the binary
correspondence variables to be a continuous valued matrixM
in the interval [0, 1], while enforcing the row and column
constraints. The continuous nature of the correspondence
matrix M basically allows fuzzy, partial matches between the
point sets. Hence the correspondences are able to improve
gradually and continuously during the optimization without
jumping around in the space of binary permutation matrices.
The row and column constraints are enforced via iterative row
and column normalization of the corresponding matrixM .
Chui et al. also proposed RPM-TPS as the parameterization of
non-rigid spatial mapping transformation. Their work is based
on the RPM algorithm that involves a dual update process
embedded within an annealing scheme. Obviously, the iterative
alignment approach does not require any complicated algo-
rithm or computation. Nevertheless, the initial guess mapping
of correspondence must be good enough in order to solve the
bending invariant matching problem.

On the contrary, a hybrid approach of this technique on the
MDS signature would be a much reliable and advanced ap-
proach for deformable shape matching. Recently, Lipman and
Funkhouser [14] proposed a surface correspondence matching
method by repeatedly computing Möbius transformations,
which requires the input models to be two-manifold – this
is more restricted than our approach that is based on spatial
transformation.

C. Other Approaches

Apart from the feature based and iterative alignment ap-
proaches, other previous work of matching approaches for
shape matching, such as skeletal based matching [15] and
image based matching, has also been studied. Some famous
approaches, such as the shock graph [16], reeb graph [17],
conformal geometry [18], and canonical homology basis [19],
achieved the shape matching goal in certain fields of ap-
plications. Nevertheless, the structural information of these
approaches does not provide detailed matching ability on mesh
surfaces. The recent development of semantic features and
relevant applications can be found in [20]–[23].

III. A LGORITHM OVERVIEW

The proposed bending-invariant matching algorithm inte-
gratesGlobal Surface AlignmentandFeature Based Matching
techniques, which are found as the two major techniques in
shape matching studies. The integration of these two tech-
niques inherits their advantages. The matching algorithm has
three steps: 1)posture alignment, 2) surface fittingand 3)
feature matching refinement.

Firstly, theposture alignmentstep transforms the template
model to the input model non-rigidly according to the control
point mapping defined by their similar isometric signatures–
the multi-dimensional scaling(MDS) embedding. The MDS
embedding of a given model is defined in ak-dimensional
domain according to the relative distribution of surface points
on the model. The robustness of finding good initial correspon-
dences according to the MDS embedding is guaranteed by the
observation that 1) the shapes of a human body in different

Fig. 2. Examples of the template model and the input model before versus
after the MDS transformation. Note that, the Euclidean coordinates inℜ3

and the RGB colors of the transformed models (in the right) represent the
normalized coordinates in the6-dimensional MDS domain.

postures are nearly isometric to each other and 2) the isometric
shapes have the same MDS embedding.

Secondly, thesurface fitting step refines the surface of
the transformed template by optimizing the fitness and the
smoothness iteratively. Two main processes,surface fitness
optimization and surface smoothing, are repeatedly applied
until changes on the surface converge to a limited amount.
The surface fitting procedure employs a bi-directional mapping
concept and an orientation-aware movement, which greatly
improve the fitting quality of the template model.

Finally, thefeature matching refinementstep further refines
the correspondences by adopting the feature descriptor con-
straints on particular surface regions. At this stage, the descrip-
tor is encoded on a surface point with curvature distribution
information on the surface around it. The concept is similar
to the Curvature Maps presented by Gatzke et al. in [9] but
in a constrained manner. Hence, the pre-defined feature points
on the template model can be mapped to the input model
according to the feature-aligned models.

IV. M ETHODOLOGY

This section presents the details of our method. First of
all, two important techniques to enhance the robustness of
our matching algorithm, MDS transformation and sign-flip
correction, are introduced. After that, the three steps of our
algorithm, 1) pose alignment, 2) surface fitting and 3) feature
matching refinement, are detailed.

A. MDS transformation

To robustly establish the initial correspondences between
the template human modelT and the input modelH, their
MDS embeddingsTMDS and HMDS are computed via the
classical MDS transformation, which involves a computa-
tionally expensive step – eigenvector analysis. In order to
simplify and speed up the computation, their surface models
MT andMH are sampled intom points,M̃T = {t1, . . . , tm}
and M̃H = {h1, . . . ,hm}, by the Farthest Point Sampling
(FPS) method in [24]. According to this simplified shape
representation, when the samples ofM̃T are mapped to new
positions, e.g.,M̃∗

T = {t∗1, . . . , t
∗

m}, the newly mapped (or
warped) shape ofMT can be determined by aRadial Basis
Function (RBF) based warping function (ref. [1], [25]).

For these sample points, we calculate their geodesic distance
map by the fast marching algorithm on triangulated domains
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Fig. 3. The MDS embeddings (colored) of two human bodies (checkerboard)
are significantly different due to the sign-flip, where the closest point search
will give wrong correspondences. The correct point correspondences are
specified by the dashed lines between the models in the spatialand MDS
domains.

(ref. [26]) and store the result as am×m symmetric and zero
diagonal matrixD

D = {dij} = {ξ2(i, j)} (4)

where ξ(i, j) evaluates the geodesic distance between the
sample pointsti and tj on MT (or betweenhi and hj on
MH ). The Multi-Dimensional Scaling(MDS) process is an
important step to align the given model pair into the same
orientation, scale and posture. Here, we use the Gaussian
affinity matrixA as the input of the MDS transformation which
is similar to the approach [27].

Aij = 1− e−
dij
2δ (5)

The Gaussian kernel widthδ is chosen as the maximum value
among the elements ofD.

The positions ofm sample points in thek-dimensional MDS
embedding domain can then be computed by building and
decomposing the inner product matrixB

B = −
1

2
JAJ (6)

whereJ = I − 1
m
LLT andL1×m = [1, 1, . . . , 1]T . Firstly, k

most dominated eigenvalues of B,λ1 > λ2 > . . . > λk ≥ 0,
and their corresponding eigenvectors are calculated by the
power method. Thek eigenvectors withm components for
each are listed in the matrixVm×k. Lastly, the resultant
coordinates of the sampling points in the MDS domain can
be determined by

Xm×k = Vm×kΛ
1

2

k×k (7)

with Λk×k = diag(λ1, λ2, . . . , λk). Each row ofXm×k rep-
resents a point coordinate in thek-dimensional MDS domain.

The value ofk directly affects the robustness of initial
shape matching. By our experimental tests,k = 6 can
give satisfactory results in all cases while still keeping an
acceptable computational speed. Therefore, in all the figures
shown in this paper, the first three components of a point in
the MDS domain are displayed as the Euclidean coordinates in
ℜ3 and the next three components are displayed by the RGB
colors. See Fig.2 for an example.

Fig. 4. Illustration of several possible combinations of axis flipping. It can
be observed that two flippings,φ1 andφ3, have the minimal value ofC(φk)
defined in Eq.(11); however, their costs are different inC∗(φk) (Eq.(12)).

B. Sign-flip correction

The shapes of human bodies in the MDS domain are quite
similar to each other. Ideally, the correspondences between
the pointst∗i ∈ M̃∗

T andh∗

i ∈ M̃∗

H can be determined by the
closest point search. However, such a mapping betweenM̃∗

T

andM̃∗

H is neither bijective nor robust. Our investigation finds
that the main challenge comes from the random selection of
the sign of eigenvalues (therefore the direction of eigenvectors)
in the MDS analysis. Thus, the shapes ofM̃∗

T and M̃∗

H can
greatly differ in terms of their axis directions – calledsign-flip
(as illustrated in Fig.3).

Under the exhaustive search framework proposed by
Shapiro and Brady [28], the alignment of the MDS embedding
can be achieved by finding the combination of axes swapping
which minimizes a shape difference metric. For instance,
there are26 = 64 sign flipping combinations for 6D MDS
embeddings (see Fig.4). Therefore,2d different sign flipping
functions can be defined for a pointt∗ in the d-dimensional
MDS domain as

φk (k=1,··· ,2d)(t
∗) = Sk

d×dt
∗ (8)

with Sk
d×d = diag(· · · , (−1)k mod i, · · · ) (i = 1, . . . , d).

Among them, the one giving the minimal cost on a shape
error metric is selected as the corrected MDS embedding. The
study of metrics is conducted below.

Let us assume that a functionf∗(· · · ) can be established1

to map the pointst∗i ∈ M̃∗

T with sign-flip corrected to the
positions of pointsh∗

i ∈ M̃∗

H as

f∗(φk(t
∗

i )) 7→ h∗

i ∀i = 1, . . . , n. (9)

On using the same correspondences between points but in the
spatial domain, we can have a similar mapping functionf(· · · )

f(φk(ti)) 7→ hi ∀i = 1, . . . , n. (10)

In the work of Shapiro and Brady [28], a cost functionC(φk)
is formulated to score the shape distortion by measuring the
distances between sample points before versus after applying
the mapping function.

C(φk) =

n
∑

i=0

n
∑

j=0

|‖ti − tj‖
2 − ‖f(φk(ti))− f(φk(tj))‖

2|

(11)
The major drawback of this cost function is that it only
measures the distortion in shape but does not consider the

1Details about how to construct such a mapping function can be found in
the section IV-C.



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING,ACCEPTED 5

Fig. 5. Sign-flip correction with normal offset component in cost function. A
significant difference can be distinguished by comparing thelength of thered
line which is constructed by the normal offsets of the vertices on the template
model (left) and that on the transformed models (middle:φ3 and right:φ1)
respectively.

swap of surface orientation. Take the human model shown in
Fig.4 as an example,φ1 andφ3 lead to the same minimal cost
by C(φk) in Eq.(11) – i.e., the sign-flip cannot be successfully
corrected. In order to consider the surface orientation in the
shape distortion metric, we modify the cost function so that
it is based on the shifted positions along the normal vectors,
nti .

C∗(φk) =
n
∑

i=0

n
∑

j=0

|‖(ti + ωnti)− (tj + ωntj )‖
2

−‖(f(φk(ti)) + ωnti)− (f(φk(tj)) + ωntj )‖
2|

(12)

As shown in the example of Fig.5, the new cost function will
have different values withC∗(φ1) andC∗(φ3), where the one
with the correct surface orientation will have a smaller value.
A very small number should be selected for the offset valueω;
in all our tests, we useω = 0.5 centimeter. Then, an optimal
sign-flip function can be found by

φ∗ = argminC∗(φk). (13)

C. Pose alignment

After transforming the sample points fromℜ3 into the MDS
domain, the sample points in MDS domain are then be used
to correct the sign-flip and estimate the pose alignment.

Given the sample pointst∗i ∈ M̃∗

T , we first employ the
approximate-nearest-neighbor(ANN) search [29] to find the
closest pointsc∗(t∗i ) ∈ M̃∗

H of t∗i . Using these correspon-
dences, we can find the mapping of samples inℜ3 from MT

to MH asti 7→ c(ti) ∈ MH . Then, a transformation function
f can be defined onn such correspondences by the RBF-based
thin-plate spline transformation as

f(p) = an + [an+1, an+2, an+3]p+

n
∑

i=1

aig(‖p− c(ti)‖),

(14)
where the coefficientsan,...,n+3 define the affine transforma-
tion of the pointp, ais define the weights of pointsp to
the control pointc(ti), and the basis functiong(r) is chosen
as g(r) = r2. An optimal transformation function can be
determined by solving the following linear equation system

[

G− λI PT

P 0

]

[ai] =

[

Y
0

]

(15)

where G = [gij ] with gij = g(‖ti − c(tj)‖), PT =
[1, txi , t

y
i , t

z
i ], Y = [cx(ti), c

y(ti), c
z(ti)], and λ is the so-

called regularization (smoothing) parameter [25] of the trans-

Fig. 6. Flow of the posture alignment step and the relationship between
the spatial and MDS domains of the template and the input models.The
correspondences between sample points inℜ3 are established by theclosest
point match(CPM) conducted in the MDS-domain. Note that, the blue points
on the human bodies are sample points used in this step of our algorithm.

formation function. The greaterλ is, the stronger its smoothing
effect is.

In the pose alignment step, we first apply the sign-flip
correction technique to obtain a “good” MDS-embedding for
the template model. Here, a very small number of sample
points are used to avoid being trapped on local optimum at
the beginning of the correspondence mapping algorithm. We
choosen = 20. Also, a large value,λ = 108, is adopted to
obtain a correct sign-flip functionφ∗.

Starting from a sign-flip corrected MDS-embedding
φ∗(M∗

T ) of the given template model, we search for the closest
points c(t∗i ) of the sample pointst∗i ∈ φ∗(M∗

T ), thus also
determine the correspondences inℜ3 as ti 7→ c(ti) ∈ MH .
By these correspondences, a transformation functionf0 can
be determined by Eq.(15). We can compute the new sign-flip
corrected MDS-embedding fromf0(MT ); therefore, the new
correspondences and the new transformation functionf1 can
also be computed. Repeatedly applying this correspondence-
transformation computing step, we can iteratively update the
transformation functionf j(MT ) (j = 1, 2, 3, · · · ) to make it
more and more aligned with the pose ofMH (see Fig.6 for
an illustration). During the iteration, we decrease the value of
λ by about1/10 gradually after each loop. According to the
experiments, the changes off j(MT ) would converge to a very
small value (e.g.,10−5) within ten iterations.
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Fig. 7. Surface fitting by single-directional and bi-directional mappings of
points respectively. Fitted surface is displayed in dashedline, and the mapping
is displayed by arrows.

Fig. 8. Surface fitting with (left) and without (right) the smoothing term
respectively.

D. Surface fitting

Given a posture-aligned template modelf j(MT ) and an
input modelMH , the surface fitting process in this section
further increases the accuracy of correspondence mapping
Υ defined in Eq.(2). However, to simplify the evaluation of
the distortion functionE in Eq.(1), we can actually evaluate
a discrete version of it onm sample points generated by
the farthest point sampling. For the examples shown in this
paper, we use all the vertices of the template model (i.e.,
m = 11, 074). For each sample pointti ∈ MT , we find its
closest pointc(ti) ∈ {hj |∀hj ∈ MH}. The mapping function
Υ is then updated by moving the verticesti ∈ MT according
to c(ti). Meanwhile, the smoothness of surface on the template
modelMT is constrained. The method was employed in [1] for
a similar purpose. However, it has two defects. Firstly, wrong
mappings appear on the near but opposite surfaces. Secondly,
the surface smoothness is distributed in regions with dense
meshes.

To overcome these defects, we add three modifications to
the procedure of surface fitting.

• First of all, we do not move the vertices on the dynamic
mesh (i.e., the warped template model) to their closest
points on the model to fit. Instead, we move the vertices
along their own normal vectors like [30]. The mapping
established by the closest point match (CPM) is validated
by checking two constraints: 1) normal compatibility –
i.e., if the angle betweennti andnΥ(ti) is too large (by
a parameterσ), and 2) relaxation powerτ that controls
the maximal allowing Euclidean distance betweenti and
its mapped positionΥ(ti).

• Secondly, a bi-directional mapping is conducted to de-
cide the moving direction of the vertices on the dy-
namic mesh. A comparison of single-directional and bi-
directional mappings is given in Fig.7. It is easy to find
that bi-directional mapping fits surface into narrowed (or
sharped) regions like armpits and crotches more flexibly.

Fig. 9. An example of surface fitting. From left to right, the pose aligned
template model, the surface fitting result of the template model by the method
proposed in section IV-D, the surface fitting result by [1], and the input human
modelMH .

• Lastly, a smoothing term is added to the fitting procedure
to enhance the smoothness of the fitting result. Figure 8
shows the results with and without the smoothing term.

The pseudo-code of the surface fitting algorithm is listed in
Algorithm SurfaceFitting. The correspondence mappingΥ is
then updated byΥ : MT 7→ M ′

T . Figure 9 shows an example
fitting result and its comparison with the method presented in
[1].

Algorithm 1 SurfaceFitting

1: Update the template modelMT to M ′

T by the optimized
posture alignment functionf j(· · · );

2: τ ⇐ 0.5 andσ ⇐ 0.9;
3: repeat
4: ∀ti ∈ M ′

T , find the closest pointc(ti) ∈ MH ;
5: Establish a new mapping functionξ by ti 7→ c(ti);
6: for all ti ∈ M ′

T do
7: pi ⇐ ξ(ti);
8: if (nti · npi

) > σ then
9: if |ti + 0.5τnti − pi| < |ti − 0.5τnti − pi| then

10: ti ⇐ ti + 0.5τnti ;
11: else
12: ti ⇐ ti − 0.5τnti ;
13: end if
14: end if
15: end for
16: σ ⇐ 0.9σ andτ ⇐ 1.1τ ;
17: SmoothingM ′

T by a Gaussian filter;
18: until σ < σmin andτ > τmax

19: return ;

E. Feature matching refinement

After determining an updated mappingΥ by the surface
fitting of MT to MH , we can extract the feature point set
GH by Υ as Eq.(3). However, the previous fitting steps are
global alignment based which do not consider the local shape
distribution, and thus the locations of feature points are not
accurate enough. A feature matching refinement is conducted
as the last step of our algorithm to further adjust the locations
of the selected feature pointsGH on MH .
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Fig. 10. Construction of the feature descriptor around a point v on a template
model (left) and on an input human model (right). The Gaussian curvature
map is generated within the red circle. Note that, for illustration purpose, only
a 4× 4 Gaussian curvature map is displayed. The three axes of local frames
are displayed in red, green and blue arrows.

To serve the shape matching on surfaces of human bodies,
a local shape descriptor is proposed. Basically, we need a
shape descriptor that is invariant to the differences of scale,
orientation and topology between the template modelMT and
the input modelMH . Given a pointv on a triangular mesh
surfaceM , its feature descriptorFr(v) with support sizer is
constructed as follows.

• First, a local frame[t̂1, t̂2, t̂3] at v is established by
letting t̂2 be along the surface normal atv, t̂1 be an
arbitrary unit vector on the tangent plane atv and t̂3 =
t̂1 × t̂2.

• Second, the points aroundv within a radius r are
searched and assigned to a point setVr. The Gaussian
curvaturesκG at these points are evaluated by the method
of [31], and the values of Gaussian curvature are normal-
ized from [κmin

G , κmax
G ] into the range of[−1, 1], where

κmin
G and κmax

G are the minimal and maximal Gaussian
curvatures among all the points inVr respectively.

• Lastly, the normalized Gaussian curvatures at the points
in Vr are projected onto the tangent plane ofv to form
a Gaussian curvature image with10× 10 pixels – this is
our feature descriptor,Fr(v).

Based on our experimental tests, selectingr as ten times of
the average edge length onMT is a good trade-off between
robustness and speed. Figure 10 shows an example of the
feature descriptor at a local convex region.

Once the feature descriptor scheme has been developed and
the feature points on the template model have been defined,
the surface of the template modelMT is refined iteratively by
re-aligning the feature mapping between the template model
MT and the input modelMH once at a time.

For simplicity, the feature matching algorithm focuses on a
single vertexta in GT during each iteration. The correspon-
denceha of ta must be found on the surface of the input
human modelMH so that the cost of feature descriptor

CF (ta,ha) = ‖F (ta)− F (ha)‖ (16)

is minimized as

ha = argminCF (ta,ha). (17)

The search for an optimalha starts fromha = Υ(ta). A
search window with a radiusr is established to include all
surface points (sampled) onMH with a distance tota less
than r. Then, the minimal feature descriptor costC between
ta and all these surface points can be found by an exhaustive

Fig. 11. Illustration of the feature descriptors on a particular region of a
vertex on two human models. The top row displays the feature descriptor at
different orientations by rotating the local frames around the normal vectors
– maps at four example rotations are shown.

Fig. 12. An example of the feature matching refinement step. It iseasy to
find that, after the feature matching, the relocated feature points are positioned
in places similar to where they are on the template model.

search. Note that, during the search, the local frames on the
surface samples are rotated to find the best match as the
axis t̂1 of a local frame is arbitrary on the tangent plane of
the surface point (see Fig.11 for the illustration). A feature
matching refinement example is shown in Fig.12.

V. RESULTS AND DISCUSSION

We have implemented the proposed algorithm in a prototype
program by Visual C++ with OpenGL library for 3D visu-
alization of models. The experimental tests are carried out
on a PC with Intel Core i5 430 CPU (2.27GHz) plus 4GB
main memory running 64bit MS Windows 7. Basically, the
computation of all examples can be completed in less than
one minute.

Figure 13 shows the results of our approach on four ex-
amples of real human bodies with different postures. All the
results are generated automatically. The template model with
predefined features is shown at the first column of Fig.13. The
computational statistics are shown in Table 1.

In Fig.14, we compare the resultant surfaces warped from
a template fat human body to a thin human body by the cor-
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Fig. 13. Results of applying our approach to four examples (the last column of first four rows) by using the template human model shown at the first
column of the figure. The progressive results in different steps of our approach are shown in different columns of the figure.The feature points are displayed
in orange.

respondences established by various shape matching methods.
It is not difficult to find that our method gives the best fitting
results.

Another interesting study is about the number of sample
points used in the pose alignment step and its effects on the
final matching result. An example is given in Fig.15, where
the results obtained with 250, 500 and 750 sample points are
shown. It is found that the pose aligned result does not lead
to a satisfactory matching result in our algorithm if too few
sample points are used. However, it does not mean that the
more sample points, the more accurate result can be obtained.
When further increasing the number of sample points, the

Fig. 14. Comparison of the surfaces warped from a template fat human
model (leftmost) to a thin human model (rightmost) by the correspondences
generated by different approaches: (2nd column) our method, (3rd column)
[27] with 6D MDS, (4th column) [32] with 3D MDS, and (5th column)[13].
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TABLE I

COMPUTATIONAL STATISTICS (IN SECOND)

Examples in Fig.13 A ⇒ B A ⇒ C A ⇒ D A ⇒ E

Pre-computation 11.7 12.5 13.3 12.6
Posture Alignment 18.6 15.2 16.1 19.5
Surface Fitting 14.5 12.6 16.8 17.7
Feature Matching 12.1 9.6 10.9 9.9
Total Time 56.9 49.9 57.1 59.7

∗ The statistics are tested on a PC with Intel Core i5 430 CPU
(2.27GHz) plus 4GB main memory running 64bit MS Windows 7.

Fig. 15. Comparison of the surface matching results by using different
number of samples – the template shown in Fig.13 is employed here too.
From left to right, the result by pose alignment, the result after surface fitting,
and the final result.

computation (i.e., surface fitting) may be stuck at some local
optimum.

According to the experimental tests, satisfactory resultscan
be obtained for those testing examples with a moderate level
of deformation. However, one of the limitations of our ap-
proach is its restriction on the deformation effects between the
models in local regions – specifically, isometric deformation
is assumed. For instance, a particular highly stretched area, a
dense point distributed region or a twisted surface may fail
the validity of the algorithm. Figure 16 shows a study of the
geometric errors generated on the matching results to the same
human body but in different levels of bending, from which

Fig. 16. The results of matching a human body to itself with different postures
in different levels of bending. The error of matching resultsare measured by
the publicly available Metro tool [33].

we can find a clear trend that the matching results become
less and less accurate. Future work can be done to overcome
this problem and one possible solution is to segment the mesh
surface before applying MDS transformation. This can greatly
reduce the stretch error accumulated in the MDS embedding
and eliminate those local dense regions. However, there is
a drawback of multiple sign-flip correction problems if the
divided segments are symmetrically identical, for example,
sign-flip correction cannot be performed on two arm segments
alone. Therefore, the possibility of segmentation is stillunder
evaluation at this moment.

Last but not the least, more future work can be done
to enhance the performance of the proposed algorithm. In
our current implementation, the computation time is highly
dependent on the sample rates in all stages of the algorithm,
the number of iterations and the RBF warping processes in
each step. In the near future, we will consider using the parallel
computing power, which is nowadays available on desktop
PCs, will be considered to speed up our approach.

VI. CONCLUSION

The proposed algorithm in this paper presents a corre-
spondence identification algorithm on 3D human models by
referencing an isometrically similar template model. The pre-
sented approach is designed for engineering applications that
require feature point identification on the surface of 3D human
bodies. The experimental tests have verified the correctness
and effectiveness of our approach. The research work pre-
sented in this paper can support the geometric solution for
the design automation of human-centered customization of
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freeform products including clothes, shoes, glasses, etc.As a
preprocessing step of volumetric parameterization for design
automation [1], the automatic method for extracting feature
points can further shorten the time of product design and
fabrication cycle.
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