
IEEE Transactions on Automation Science and Engineering

1

Abstract—A fast offset surface generation approach is pre-

sented in this paper to construct intersection-free offset surfaces,

which preserve sharp features, from freeform triangular mesh

surfaces. The basic spirit of our algorithm is to sample a narrow-

band signed distance-field from the input model on a uniform grid

and then employ a contouring algorithm to build the resultant

offset mesh surface from the signed distance-field. Four filters are

conducted to generate the narrow-band signed distance-field

around the offset surface in a very efficient way by alleviating

computation redundancies in the regions far from the offset

surfaces. The resultant mesh surfaces are generated by a modified

dual contouring algorithm which relies on accurate intersections

between the grid edges and the isosurfaces. A hybrid method is

developed to prevent the expensive bisection search in the

configurations that the analytical solutions exist. Our modified

intersection-free dual contouring algorithm is based on convex-

concave analysis, which is more robust and efficient. The quality

and performance of our approach are demonstrated with a

number of experimental tests on various examples.

Note to Practitioners—This research is motivated by the

problem about how to generate intersection-free offset surfaces

from a general freeform model bounded by triangular mesh

surfaces. Current commercial 3D/2D Computer-Aided Design and

Manufacturing (CAD/CAM) systems cannot support the

offsetting operation on a general freeform 3D model. This paper

presents a new approach which considers the problem in a

different manner. Firstly, the offset surfaces are sampled into an

implicit representation – a narrow-band signed distance-field.

Secondly, the distance-field is contoured into an intersection-free

mesh surface that gives the approximated offset surface. The

approach can be integrated into commercial CAD/CAM systems

to enrich their offsetting functions which are widely used in

various CAD/CAM applications, such as filleting, rounding and

hollowing of 3D models, tolerance and clearance analysis for

assembly, coordinate measuring machines (CMM), tool path

generation for 3D numerically controlled (NC) machining, and

robot path planning.

Index Terms—Offset surface generation; freeform surface;

signed distance field; filtering; intersection-free

Shengjun Liu is now with School of Mathematical Science and Computing

Technology, Central South University, China. This work was completed when

he was with the Department of Mechanical and Automation Engineering, The

Chinese University of Hong Kong, Shatin, NT, Hong Kong.

Charlie C.L. Wang (Corresponding Author) is with the Department of

Mechanical and Automation Engineering, The Chinese University of Hong

Kong, Shatin, NT, Hong Kong (Tel: (852) 2609 8052; Fax: (852) 2603 6002;

E-mail: cwang@mae.cuhk.edu.hk)

I. INTRODUCTION

FFSET surface generation is an important operation in

many CAD/CAM applications. An offset surface of a

solid H is the set of points having the same offset distance r

from the boundary ∂H of H. When considering the sign of

distances, we can have a grown offset
rH with the points on

rH being outside of H and a shrunk offset surface

rH that has

all its points inside the solid H.

Problem Definition: Given a solid model H with its boundary

surface ∂H represented by a triangular mesh, the boundary

mesh surface of
rH (or

rH) is to be computed.

Although the offsetting operation is mathematically well

defined [1], offsetting a solid model exactly has proven to be

difficult. In general, for a polygonal mesh, the Minkowski sum

of it with a sphere is decomposed into a set of spheres,

cylinders, and prisms corresponding to vertices, edges, and

faces of the mesh. A constructive solid geometry approach to

offset surface computation is based on computing the union of

all these elements. However, the computation for the union

operations of these solids has been proven difficult because of

its computational complexity and numerical instability [1-3].

In recent years, volumetric approaches (e.g., [4, 5]) and point-

based algorithm [6] have been proposed to overcome these

difficulties. These algorithms first generate volumetric grids

and sampling points to approximate the offset model and then

employ a distance-field or collision detection technique to

calculate the resultant implicit surface or sample points.

However, they usually suffer the problems of missing sharp

features (e.g., [4, 6]) or long computing time (e.g., [4], [5]).

Our method for offset surface generation can also be

classified as a volumetric approach. According to the offset

surface‟s intrinsic property that every point on the offset

surface with an offset value r has a minimal distance | r | to the

original mesh, we use a distance function to define the offset

surface directly on triangles. Specifically, an offset surface of

H with distance r can be implicitly defined by the following

equation

0),()(rHpdispf , (1)

where p is a point on the offset surface of the given model H in

R
3
, and dis(…) is a function returning the signed distance with

„+‟ representing a point outside H and „–‟ for a point inside.

Fast Intersection-free Offset Surface Generation

from Freeform Models with Triangular Meshes

Shengjun Liu and Charlie C.L. Wang, Member, IEEE

O

mailto:cwang@mae.cuhk.edu.hk

IEEE Transactions on Automation Science and Engineering

2

The offset value r can be either positive or negative. The

signed distance-field is sampled on uniform grids in a narrow-

band manner – i.e., accurate distances are only computed on

the grid nodes near the offset surface. Efficient algorithm for

constructing such a signed distance-field is developed by

introducing four filters that can greatly alleviate the

computational redundancy. As the mesh surface generated by

the dual contouring (DC) algorithm [7] can automatically

preserve sharp features, our distance-field is also converted

into the final offset surface through a dual contouring step that

needs to compute accurate intersections between the grid

edges and the offset surface. A hybrid method is developed to

prevent the expensive bisection search in the configurations

that analytical solutions exist. To get a resultant mesh surface

that has no self-intersection, we modify the intersection-free

DC algorithm [8] by a convex/concave analysis, which is more

robust and efficient.

In short, the major contributions of our approach include:

 To identify the grid cells which are intersected by the

offset surface and create a narrow-band signed distance-

field quickly, four filters are introduced in section IV. The

swept sphere volume hierarchy (SSVH) filter is adopted to

filter out most of the triangles on the input model from the

distance computation. A bounding box filter, a signed

distance filter, and an octree filter are employed to filter

out most of the grid nodes which are far from the offset

surface. These filters can remove around 97% – 99.9% of

the unnecessary distance computation on grid nodes.

 To employ the strategy of DC to generate the resultant

meshes for offset surfaces, the intersections between the

grid edges and the implicit offset surface must be

computed. A straightforward way to compute them is by

the bisection search, which however is very slow. We

introduce a hybrid method in section V that combines the

analytical solution (whenever is applicable) and the

bisection search to compute the intersections. To

reconstruct sharp features on the resultant offset mesh

surfaces, every intersection point must be equipped with a

normal vector, which can be determined by the closest

point search.

 Although self-intersections of the offset solid have been

automatically eliminated due to the distance-field based

representation, they may be re-generated on the resultant

mesh surfaces during the contouring procedure – see the

discussion and the first approach to address this problem

in [8]. We present a modified DC method based on

convex/concave analysis (in section VI), which is more

robust and efficient.

II. RELATED WORK

Offset operations can be considered as a special case of the

Minkowski sum [1]. There are several approaches in literature

for the evaluation of Minkowski sum on solid models.

Varadhan et al. proposed a method in [4] to approximate the

Minkowski sum of polyhedral models. This method avoids the

union step and its computation is simple and effective for

convex objects. For general 3D polyhedrons, a divided-and-

conquer approach is employed where it first applies convex

decompositions, then computes the pair-wise Minkowski sums

between those convex pieces, and finally extracts the boundary

from the union of all the pairwise Minkowski sums [9].

However, such decomposition is not easy for complex objects

[10] and makes too many components. In order to avoid the

last union step among a number of components, a distance-

field based method is employed in [4], which however has

difficulty to reconstruct sharp features. Recently, Zhang et al.

[11] generate the resultant boundary surface from sweeping

volume with a dual-contouring like approach to retain shape

features. However, self-intersections may happen (as discussed

in [8]). Moreover, the volumetric region of resultant solid is

computed by a flooding algorithm in [11]. This will miss the

inner voids that are very important for the shrunk offsetting

operation. Pavic and Kobbelt [5] extract the boundary surfaces

by a Marching Cubes (MC) like algorithm that does not

generate self-intersection. However, sharp features cannot be

automatically reconstructed and MC algorithm usually

generates much more triangles than DC. A post-processing

step is used to recover sharp features. This step however can

lead to self-intersection on the resultant mesh surfaces. A

point-based method is presented to robustly compute an

approximate and accurate representation of the Minkowski

sums boundary in [6]. Its resultant boundary is a point-based

representation and will lose those small but important sharp

features. These methods run much more slowly as they are not

specially designed for offset surface generation.

Offset operations can be applied to curves, surfaces, or

entire 3D models. In earlier work [1], the mathematical basis

for offsetting of solids was described. The offset techniques

for curves and surfaces have been extensively studied by Pham

[2] and Maekawa [3]. For 3D solid models, it will be more

complicated to generate offsets, which involve not only the

geometrical issue of offsetting each individual surface in the

model but also the topological issue of reconnecting these

offset surfaces into a closed 3D model. Generally, offsets of

3D models are achieved by first offsetting all surfaces of the

model and then trimming or extending these offset surfaces to

reconstruct a closed 3D model [1, 12, 13, 14]. These earlier

approaches first compute a superset of the offset surface by

offsetting 1) vertices into spheres, 2) edges into cylinders, and

3) faces into parallel faces. Then, they trim that superset by

subdividing its elements at their common intersections and

deleting the pieces that are too close to the original solid. This

is a very expensive computing process and the trimming at

tangential contacted regions is numerically unstable. The

computation in our approach is much more stable since we

work on a volumetric representation that can handle the

tangential contact robustly. Some surface-based approaches for

generating offset surfaces simply shift the original vertices in

the offsetting direction [15]. This is problematic as self-

intersections may occur either locally in areas of high

IEEE Transactions on Automation Science and Engineering

3

curvature or globally when different parts of the input surface

meet during the vertex shifting. On the contrary, self-

intersections are eliminated by our method since the

volumetric representation and an intersection-free contouring

method used in the surface extraction.

There are many other methods for offset surface generation

with the help of different representations. Volumetric methods

were presented based on distance-fields and the fast marching

method in [16, 17]. The approximation properties of the fast

marching [18] do not allow for high accuracy. Recently, a

point-based offsetting approach was introduced in [19], where

point samples are first generated on the input surface and are

then moved in normal direction. After that, the Minkowski

sum volume is rasterized on voxel grids in order to remove

self-intersections. In [20], another offsetting approach was

presented which aims mainly at visualizing the offset via

surface splats. In their cases, the classification on whether a

cell intersects the offset surface is based on conservative

estimates for both the minimum and maximum distance. While

this is sufficient for visualization purposes, it would be non-

trivial to extract a proper manifold offset surface from it. On

the contrary, our method gives intersection-free mesh surfaces

as the results.

A hybrid method combining surface and volume was

proposed in [5]. The algorithm is also based on computing the

union of a set of primitives (spheres, cylinders and planes). Its

computations are stable since the method works on a

volumetric representation and the self-intersections can be

easily removed by computing the min/max operations applied

to distance functions. However, there are still some limitations

of this method. The first one is that it generates two offset

surfaces simultaneously without identifying the outer or inner

ones. The second is the sharp feature extraction problem as

aforementioned. Nevertheless, our method defines the offset

surface in a narrow-band signed distance-field which results in

an identical surface, and the sharp features are intrinsically

preserved during the surface extraction. Another hybrid

method which combines point and implicit surface was

presented in [21]. This method reconstructs the zero-level

surface and an offset surface simultaneously from an oriented

point set. It first generates the offset point set, and then fits the

surfaces with an implicit function combining two point sets. It

is stable and robust for different point data, such as noisy

points and irregular points. However, using this method, the

sharp features cannot be reconstructed, and there are large

artifacts on the offset surface where there are no offset points

from the sharp features on the original model when the offset

distance is large. On the contrary, our method preserves the

sharp features and provides highly accurate results even if the

offset distance is very large.

III. OVERVIEW

Given a solid model bounded by oriented two-manifold

meshes, our goal is to obtain its intersection-free offset surface

with sharp features preserved. The whole algorithm consists of

three steps.

 Firstly, the given model H is embedded into a space Ф

bounding the model and its offset surfaces. The space Ф

is sampled into a narrow-band signed distance-field on

uniform grids, where the narrow-band region is around the

offset surface but not the surface of H. Four filters are

developed to efficiently evaluate the distance-field (see

section IV).

 Secondly, the intersections between the grid edges and the

offset surface are computed. We analyze the possible

configurations of the intersections, and derive a more

efficient method to compute the intersections analytically

whenever possible (see section V).

 Lastly, a modified intersection-free dual contouring

algorithm is introduced to extract the mesh of offset

surfaces (see section VI). Our method is based on convex/

concave analysis, which is more robust and efficient.

Figure 1 gives a 2D illustration of the overall algorithm. Our

approach is simple and easy to implement. Moreover, as the

narrow-band distance-field is sampled on uniform grids, the

minimal distance evaluation and the intersection computation

can be easily parallelized on PC with multi-core CPUs.

IV. FILTERS FOR DISTANCE-FIELD CONSTRUCTION

To construct a signed distance-field of a given model H

sampled on a uniform grid with n × n × n grid nodes, the most

Fig. 1. The overview of our algorithm illustrated in 2D: (leftmost) the given model bounded by oriented two-manifold mesh surfaces, (left) the input model is

embedded in a space that is sampled into uniform grids, (middle) classifying the grid nodes inside/outside the offset surface in a narrow-band manner – nodes

that are not in the narrow-band region of the offset surface do not need to be considered, (right) intersections between the offset surface and the grid edges are

computed, and (rightmost) the resultant offset mesh surface is extracted by an intersection-free dual contouring algorithm.

IEEE Transactions on Automation Science and Engineering

4

straightforward method is to compute the minimal distance

from these n
3
 nodes to the surface, ∂H, of H represented by

triangular meshes. The minimal distance from a query point q

to ∂H can be evaluated by an exhaustive search of all triangles

on ∂H. After finding the closest point cq of q on ∂H, the sign of

distance between cq and q is decided by the angle weighted

pseudonormal on cq [22]. Although the sign of distance can be

determined very efficiently, the computation of closest point is

time-consuming – especially when such a distance

computation is conducted on all n
3
 nodes with a large value of

n (e.g., n = 513 as shown in our examples in this paper). Four

filters are introduced in this section to speed up the evaluation.

A. Swept Sphere Volume Hierarchy (SSVH) Filter

The SSVH filter is applied to the triangles of ∂H to speed up

the distance computation between a query point q and the

triangles on ∂H. The basic idea is to establish a volume

bounding hierarchy (BVH) of the triangles so that the

computation on triangles that are far from the query point q

can be discarded. The Swept Sphere Volume Hierarchy

(SSVH) presented in [23] is adopted here as it can be easily

modified to compute the minimal distance between a point and

a set of polygons. Instead of computing the minimal distance

between polygons, we employ a fast algorithm in [24] to

compute the distance between the query point and a triangle,

where the triangle is defined as

10),(veuebvut

with the parametric domain }1],1,0[,:),{(vuvuvuD .

The minimal distance is computed by finding the optimal

parameters Dvu),(that lead to the closest point to the

query point q. Besides the minimal distance from q to ∂H, we

also record the closest point cq, the triangle holding cq, the

parameters),(vu for cq, and the sign of distance, which will

be used in the following computations.

B. Bounding Box Filter

Although the evaluation of function f(p) using the SSVH

filter is fast, the construction of a signed distance field is still

time consuming since there are n
3
 nodes. Running on a PC

equipped with Intel Core 2 CPU 6600 2.4GHz with 2GB

RAM, the closest point computation using SSVH for a model

with 400K triangles (i.e., the vase-lion model shown later in

Fig.16) can be completed in 1.047ms on average. When

computing the signed distances on 513 × 513 × 513 grid

nodes, it takes 513 × 513 × 513 × 1.047ms ≈ 39.26 hr, which

is impractical. A wiser solution is to construct a narrow-band

distance field around the offset surface of H.

Without loss of generality, the offset surface is located in a

narrow-band region of the grid cells.

Definition 1 For any grid node, if its position p satisfies

lrHpdis),((2)

with l being the width of grid boxes, this grid node is adjacent

to the r-offset surface and defined as valid grid nodes.

For a grid node not agreeing with Eq.(2), it is called an invalid

grid node. In the middle figure of Fig.1, only the valid nodes

are displayed with small cubes. However, directly checking

whether a grid node is valid also involves the distance

computation between a point and the given triangular meshes.

To avoid redundant evaluation, we introduce the bounding box

filter below.

The grid cells are grouped into cubic bounding boxes with a

larger size, where each bounding box consists of m × m × m

grid boxes (i.e., including (m+1)
3
 grid nodes). The uniform

grids become mnmnmn)1()1()1(bins.

Remark 1 For a sphere with radius δ, if the minimal distance

from its center sc to the boundary surface of H satisfies

 lrHsdis c),(, (3)

all grid nodes in this sphere must be invalid.

The radius of the circumsphere for a bounding box is 23ml ,

therefore we can use the above remark to detect whether the

grid nodes in a bounding box are invalid with 23ml .

Checking remark 1 directly needs to compute the signed

distances on all bounding boxes. To speed up the computation,

in the bounding box filter, we compute the unsigned distance,

undis(sc, ∂H), between the center of the circumsphere of a

bounding box and the surface ∂H. If the circumsphere of a

bounding box agrees with

 ldHsundis c),(

where d = | r |, its corresponding signed distance must satisfy

Eq.(3) – such a bounding box is named as invalid bounding

box; otherwise, it is called valid bounding box.

Remark 2 All grid nodes in an invalid bounding box must be

invalid, but the grid nodes in the valid bounding box could be

either valid or invalid.

Figure 2 gives an illustration of the bounding box filter. Note

that, the grid nodes around both the grown and the shrunk

offset surfaces remain after applying this filter.

C. Signed Distance Filter

To retain only the bounding boxes around the grown offset

Fig. 2. Illustration of the bounding box filter in 2D with d = | r |. The bold

black line represents the surface of the given mode, and the two bold red lines

refer to the grown and the shrunk offset surfaces. The grid nodes in a

bounding box, the center of circumsphere that does not fall in the purple

regions, are invalid grid nodes – illustrated by empty circular dots. The black

circular dots are candidates of valid grid nodes.

IEEE Transactions on Automation Science and Engineering

5

surface (or the shrunk surface), we check the signed distance

dis(sc, ∂H) of the valid bounding boxes by a signed distance

filter using the remarks below.

Remark 3a For the distance-field for a grown offset surface

(r > 0), the grid nodes in a bounding box satisfying

),min(,),(ldldldHsdis c (4)

are invalid, where d = | r | and sc is the center of the bounding

box‟s circumsphere.

Remark 3b For the distance-field for a shrunk offset surface

(r < 0), if a bounding box satisfies

 ldldldHsdis c),,max(),(, (5)

all grid nodes in it are invalid.

Here, the invalidity of a grid node refers to the inability to

satisfy Eq.(2) in Definition 2. The min(…) and max(…)

functions in remark 3 are caused by the configuration that the

two band regions overlap when the offset distance d is very

small. Figure 3 shows two configurations when applying the

signed distance filter for the grown offsetting.

D. Octree Filter

The bounding box filter and the signed distance filter

introduced above can fast recognize many invalid grid nodes.

However, when choosing a large bounding box size, many

invalid grid nodes survive since they are enclosed by a valid

bounding box (see Fig.4(a) for an example). To further

exclude the invalid grid nodes from the narrow-band signed

distance-field, an octree filter is introduced. Starting from a

retained bounding box, we recursively subdivide the bounding

box into eight sub-boxes. For each sub-box B, the signed

distance disB from the center of its circumsphere to ∂H is

computed. If the signed distance disB agrees with Eq.(3), the

recursive subdivision on this sub-box is stopped, and all grid

nodes in this sub-box are classified as invalid. Those grid

nodes located on the interface of several sub-boxes are marked

as invalid if the signed distance from any center of these sub-

boxes‟ circumspheres agrees with remark 3. Figure 4(b) gives

the illustration of octree filtering on a retained bounding box.

V. SURFACE INTERSECTIONS ON GRID EDGES

After applying the above four filters, we can efficiently

construct a narrow-band signed distance-field around the offset

surface f(p) = r. The signed distances are only evaluated on the

valid grid nodes. By the local signed distances, we can detect

the grid cells intersecting with the offset surface.

Definition 2 For a grid edge e on the signed distance field

with two valid grid nodes p1 and p2, if p1 and p2 satisfy

0)()(21 pfpf (6)

with f(p) being the function defined in Eq.(1), the grid edge is

named as an intersected edge.

To extract the mesh surface from the implicitly defined offset

surface, we apply a modified dual contouring (DC) algorithm

that can automatically reconstruct sharp features and can be

parallelized easily. The DC algorithm on uniform grids needs

the intersection points between the intersected edge and the

implicit surface, as well as the surface normal vectors at these

intersection points. The intersection on an intersected edge e is

the solution of α for the following equation

0))1((21 ppf , (7)

which is nonlinear since the signed distance function dis(…) in

f(…) is nonlinear (ref. Eq.(1)). A straightforward way to find

the root of Eq.(7) is by the bisection search, which however is

slow.

In this section, we introduce a hybrid method which

combines the analytical solution (whenever is applicable) with

the bisection search to compute the intersections.

A. Feasibility of Analytical Solution

Definition 3 For a query point q, cp(q) denotes the closest

point to q on the surface ∂H of the given model H.

The analytical solution is obtained when cp(q) (eq)

Fig. 3. Two configurations when applying the signed distance filter to grown

offsetting – two band regions are (a) separated and (b) overlapped.

Fig. 4. Using an octree filter to further detect the validity of grid nodes in the

retained bounding boxes: (a) the bounding box is valid but the enclosed grid

nodes are invalid, and (b) invalid grid nodes are excluded recursively in the

octree filter.

IEEE Transactions on Automation Science and Engineering

6

belongs to the same triangle T on ∂H. This configuration

happens frequently when the grid edges are short enough.

Remark 4 For an intersected edge e with two ends p1 and p2,

cp(p1) and cp(p2), being in the same triangle T is the necessary

condition for]1,0[,))1((21 Tppcp .

For an intersected edge which does not satisfy the necessary

condition given in remark 4, the bisection search method is

used to find the solution of Eq.(7). Note that, to detect whether

cp(p1) and cp(p2) are in the same triangle, the configurations

when any of them is on the boundary of a triangle must be

further evaluated. This is because cp(p1) and cp(p2) reported

by the closest point query may not belong to the same triangle,

but could be any of the configurations below.

 cp(p1) is inside the triangle t1, and cp(p2) is on an edge e

of triangle t2 adjacent to t1 and e is also an edge of t1.

 cp(p1) is inside the triangle t1, and cp(p2) is on a vertex v

of triangle t2 and t1 is one of the triangles incident to v.

 cp(p1) and cp(p2) are on two edges that are adjacent to a

common triangle.

 cp(p1) is on the edge e of a triangle t1 and cp(p2) is on the

vertex v of a different triangle t2, but there is a common

triangle incident to e and v.

 cp(p1) and cp(p2) are on the vertices of different triangles,

but these two vertices are incident to a common triangle.

Symmetric cases of above configurations must also be

considered.

When the necessary condition is satisfied, we conduct the

analytical solution described below to find the solution of

Eq.(7) – α0. After that, a verification step is performed by

checking whether

 rHppdis)),)1((2010 (8)

is satisfied, where ε=10
-5

 is the error tolerance. If the distance

difference is not less than ε, the bisection search method is

further applied to find the root of Eq.(7). Note that, the

terminal criterion of the bisection search is also Eq.(8) and

with the same value of ε. Moreover, during the subdivision of

bisection search, if the searched line segment satisfies the

necessary condition of using an analytical scheme (i.e.,

Remark 4), we will compute the analytical solution – this can

further speed up the computation of intersection points.

After finding the intersection point p, the normal vector at p

can be easily assigned to (p-cp(p))/||p-cp(p)|| for grown

offsetting and (cp(p)-p)/||p-cp(p)|| for shrunk offsetting.

B. Analytical Solution

For an intersected edge e with two ends p1 and p2, if the

closest points from all the points on e to ∂H are located in the

same triangle T on ∂H and f(p1)f(p2)<0, we will find a point p

on e which has f(p)=0.

After analysis, we find that when a query point q is located

in different regions around a triangle T, its closest point cp(q)

on T should be inside the face, on the edges, or on the vertices

respectively. In general, the space around the triangle T is

classified into seven regions (see regions 0-6 in Fig. 5(a)),

which are separated by the triangle‟s bounding planes.

Definition 4 For a region around the triangle T, if the

closest point of any point q in this region is

1) not on the boundary of T – the region is defined as a face

region of T;

2) on the unique edge ei (i=1,2,3) of T – the region is called an

edge region of ei on T;

3) on the unique vertex vj (j=1,2,3) of T – this region is named

as a vertex region of vj on T.

As illustrated in Fig. 5(a), region 0 is a face region, regions 1-3

are edge regions, and regions 4-6 are vertex regions. Based on

this classification, we develop the following method to find the

intersection point (i.e., the solution of Eq.(7)) analytically.

Remark 5 For a line segment p1p2, if all points on the

segment fall in the face region around the triangle T, the

solution of 0))1((21 ppf is

))()(()(211 pfpfpf . (9)

An illustration of remark 5 has been given in Fig.5(b). For the

segment whose points all fall in an edge region, the solution of

Eq.(7) is not obvious. As shown in Fig.5(c), suppose p is the

intersection point on p1p2 that we are going to find, we first

project p, p1 and p2 onto the plane of T to get q’, q’1 and q’2.

Then, q’, q’1 and q’2 are projected onto the line segment of the

edge that defines the edge region – q, q1 and q2 are obtained.

Because of the two projections, we have the following ratio

between the line segments held.

1122

11

2211

11

qqqq

qqqq

nqpnqp

nqpnqp

TT

TT

 (9)

By this, we could have

TTT nqpnppnqp 1121)(, (10)

(a)

(b) (c) (d)

Fig. 5. Illustration of finding the analytical solution of intersection points on

the intersected grid edge: (a) space around a triangle T is subdivided into

seven regions by the bounding planes (represented by dash lines in the

figures), (b) the configuration of a segment in a face region, (c) the segment

is fully in an edge region, and (d) at a vertex region.

IEEE Transactions on Automation Science and Engineering

7

111122)(qqqqqqqq . (11)

Thus, the value of α can be determined by the function

 222
rqqnqp T . (12)

Remark 6 For a line segment p1p2, if all points on the

segment fall in an edge region of the triangle T, any α

determined by Eq.(12) with]1,0[is a valid solution of

Eq.(7).

When all points of a segment fall in a vertex region, the

spherical equation is used to obtain the root of Eq.(7) – see the

illustration in Fig.5(d).

Remark 7 For a line segment p1p2, if all points of it are in the

vertex region for a vertex q on T, any α determined by

22

21)1(rppq (13)

with]1,0[is a valid solution.

Although the above analytical solution can fast evaluate

accurate intersection point on an intersected edge e, the edge

in practice usually passes through more than one region. In

order to apply the above analytical solution to find the

intersection point on e, we need to subdivide the segment of e

into several segments where each is in a unique single face,

edge or vertex region around T. For a sub-segment with two

endpoints sp1 and sp2, if it satisfies f(sp1)f(sp2)>0, we simply

neglect it. For the sub-segments satisfying f(sp1)f(sp2)<0, the

first root of Eq.(7) will be employed as the intersection point

in the grid edge.

In our implementation, we compute the sub-segment in a

faster way. By knowing the region where the first endpoint of a

grid edge e falls in, we can sort the bounding planes of the

triangle T in either clockwise or anti-clockwise order and then

calculate the intersections between e and the boundary planes

progressively. Therefore, the sub-segments are found one by

one. Before going to the next sub-segment, we check whether

this segment‟s two endpoints lead to the sign-flip on the

function f(…). If they do, Remark 5-7 are employed to find the

analytical root; and the rest sub-segments are not considered

any more.

VI. CONTOURING: AN INTERSECTION-FREE METHOD

The purpose of the work presented in this section is to

investigate a more efficient approach than [8] for generating

intersection-free iso-surface from the uniformly sampled grids

using dual contouring (DC). Crack-free mesh surface can be

generated by DC, and DC is able to reconstruct sharp features

when Hermite data (i.e., intersection points equipped with

surface normal vectors) are available. However, surfaces

produced by dual contouring are rarely intersection-free (see

Fig.2 in [8]). The only work existing in literature to address

the problem of geometric intersection on the mesh surface

generated by DC is [8], which combines the primal and dual

contouring. Some necessary conditions have been derived in

[8] to try to reduce the number of triangles. However, although

the conditions in [8] are sufficient, the detection involves the

detection of polygon-edge intersection which is neither as

robust nor as efficient as our new approach based on

convex/concave detection.

Basically, when applying the dual contouring algorithm to

volumetric data sampled on uniform grids, the isosurface can

be generated by linking vertices generated in boundary grid

cells. A grid cell with its eight grid nodes having inconsistent

inside (or outside) configurations is a boundary grid cell. In

each boundary cell c, a vertex vc on the resultant mesh surface

is created and located at the position minimizing the Quadratic

Error Function (QEF) defined by the Hermite data samples on

the grid edges of c. For each cell edge e that contains a sign

change – with one end inside but the other outside, two

triangles will be constructed to link four vertices in the cells

around it. However, the mesh surface constructed in this way

is rarely intersection-free.

A hybrid approach of a primal and dual method is

developed in [8]. As illustrated in Fig.6, a triangle fan with

eight triangles is generated around a cell edge e with sign

change in the hybrid approach, where each triangle connects

the edge vertex ve on e, the face vertex vf on a cell face f

containing e and the cell vertex vc in a cell c sharing f. The

authors of [8] then proved that the hybrid approach generates

intersection-free triangles if each cell vertex, face vertex and

edge vertex lies interior to the corresponding cell, face or

edge. The envelope Ee at a grid edge e is defined as the union

of eight tetrahedra, each of which is formed by the edge e, the

face vertex vf and the cell vertex vc (see Fig.6). It has proven

that the envelopes Ee of different edges e are disjoint, and the

triangles generated by the hybrid method around e are

contained in separate tetrahedron of the envelope Ee.

Therefore, the triangulated surface is guaranteed to be

intersection-free. To reduce the number of triangles generated

by the hybrid method, three rules are defined in [8] for

contouring an octree grid. The rules are based on the detection

of polygon-edge intersections. However, when contouring

uniform grids, a simpler and more robustness method based on

convex/concave analysis can be developed as follows, which is

one of the major contributions in this paper.

First of all, as long as all cell vertices are located in their

corresponding cell boxes, the intersection between the cell

face fpq of two neighboring cells cp and cq (containing cell

vertices vp and vq) and the line segment vpvq is always in the

face fpq when contouring uniform grids. Thus, the face vertices

in the hybrid method of [8] are not needed. By removing face

Fig. 6. (a) Triangle fans generated by the hybrid method at a grid edge e with

sign change, and (b) the envelope Ee of triangles formed by the union of

tetrahedra.

IEEE Transactions on Automation Science and Engineering

8

vertices, the envelope Ee around e is then formed by four

tetrahedra.

Definition 5 An envelope Ee around an edge e that does not

have volume overlap with other edge envelopes is formed by

four tetrahedra: vp-vq-v
+

e-v
-
e, vq-vr-v

+
e-v

-
e, vr-vs-v

+
e-v

-
e and vs-

vp-v
+

e-v
-
e, where vp, vq, vr and vs are cell vertices in cells cp, cq,

cr and cs around e, and v
+

e and v
-
e are two vertices at the end of

e.

Figure 7 gives an illustration of the four tetrahedra that form

the intersection-free envelope Ee around the edge e. Note that

the indices p, q, s and r are circularly used here.

Definition 6 For the cell vertex vc forming the intersection-

free envelope Ee around an edge e, if any of the edges vc-v
+

e or

vc-v
-
e is concave, it is defined as a concave envelope vertex of

Ee; otherwise, it is named as a convex envelope vertex.

Remark 8 The edge vp-v
+

e is concave if vp is below the plane

defined by the oriented triangle vs-vq-v
+

e, and the edge vp-v
-
e is

concave if vp is below the plane defined by the oriented

triangle vq-vs-v
-
e.

Figure 8 gives an illustration of Remark 8.

Proposition 1 For two cell vertices vs and vq in two non-

neighboring cells cs and cq, the tetrahedron Tsqe formed by the

cell vertice vs and vq and the edge e can only intersect three of

the four cells around e.

Proof can be found in [25].

Since all points in cp will be above the oriented planes vs-vq-

v
+

e and vq-vs-v
-
e when the tetrahedron Tsqe intersects cr (see

Fig.9), by Remark 8 and Proposition 1, we can conclude the

following remark.

Remark 9 A cell vertex vp in the cell cp will NOT be a

concave envelope edge if the tetrahedron Tsqe formed by its

previous cell vertex vs, its latter cell vertex vq and the edge e

does not intersect the volume of cell cp.

Proposition 2 For four cell vertices vp, vq, vr and vs around

an edge e, if no concave envelope vertex is found, all the four

triangles: vp-vq-vr, vp-vr-vs, vp-vq-vs and vq-vr-vs are enclosed by

Ee.

Proposition 3 For four cell vertices vp, vq, vr and vs around

an edge e, if only vp is a concave envelope vertex, triangles vp-

vq-vr and vp-vr-vs will be enclosed by the envelope Ee, whereas

some part of the triangles vp-vq-vs and vq-vr-vs will NOT be

enclosed by Ee.

Proofs can be found in [25].

Remark 10 For four cell vertices vp, vq, vr and vs around an

edge e, only one or two vertices can be concave envelope

vertices, and these two vertices must be in the adjacent cells.

If vp is a concave envelope vertex, the tetrahedron Tsqe formed

by vs, vq and the edge e can only intersect cp, cs and cq but not

the cell cr (by Proposition 1). Therefore, vr cannot be a

concave envelope vertex (by Remark 9). Also, if vq is a

concave envelope vertex, vs cannot be a concave envelope

vertex.

Remark 11 If two vertices are concave envelope vertices,

none of the triangles vp-vq-vr, vp-vr-vs, vp-vq-vs and vq-vr-vs is

enclosed by Ee.

If vp is a concave envelope vertex (or vr is a concave envelope

vertex), the edge vs-vq is outside Ee; and the edge vp-vr is

outside Ee when vq (or vs) is outside Ee. Figure 10 shows an

example of that. If two vertices are concave envelope vertices,

we have to further split them into four triangles by adding an

edge vertex ve on e to ensure that Ee encloses all the triangles.

Robust and Efficient Implementation: Our convex/concave

analysis based approach is more robust and efficient

comparing with the intersection-free approach presented in [8],

which is based on the edge-polygon intersection tests. In

general, 4 to 6 edge-triangle intersection tests are needed for

constructing two triangles for an intersected cell edge.

Fig. 7. Four tetrahedra form the intersection-free envelope Ee around the edge

e.

Fig. 8. Two cases that vp becomes a concave envelope vertex: (left) the edge

vp-v
-
e is concave and (right) the edge vp-v

+
e is concave.

Fig. 9. The tetrahedron formed by two cell vertices in diagonal cells and the

edge e can only intersect three of the four cells around e.

Fig. 10. An example with two concave envelope vertices: (left) location of

vertices around edge e and (right) the triangulation by inserting an edge

vertex ve.

IEEE Transactions on Automation Science and Engineering

9

According to the fastest algorithm of edge-triangle intersection

test in literature (ref. [26]), each edge-triangle intersection test

needs 3 cross-products and 3 (or 4) dot-products. Therefore,

totally 18 cross-products and 24 dot-products are required in

the worst case. In our convex/concave analysis, we only need

to detect whether the four vertices are concave envelope

vertices. Specifically, detecting whether a vertex vp is below

the oriented triangle vs-vq-v
+

e can be efficiently done by

checking if the scalar triple product below satisfies

(vp – v
+

e) · ((vs - v
+

e) × (vq - v
+

e)) < 0.

In the worst case, 8 cross-products and 8 dot-products are

needed. When computing scalar triple product by using

determination, the computation can be further reduced.

Moreover, if vp is found to be a concave envelope vertex, the

detection of vr can be neglected (by Remark 11). The detection

on vq and vs can be simplified in the same way. Practical tests

and comparisons with [8] can be found in the following section

(section VII-B).

In the aspect of robustness, the detection based on edge-

polygon intersection test is suffered from the extreme cases

(e.g., intersection occurs on the edge or vertex of the triangle).

To ensure not missing any possibility of self-collision, some

nearly intersected (but not really intersected) cases may be

classified as intersection, which leads to more triangles on the

resultant mesh surfaces by the unnecessary triangulation. Our

detection that is based on convex/concave analysis does not

have such a problem.

VII. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed approach has been implemented in Visual

C++ plus OpenMP. OpenMP is employed to parallelize the

computation on the PC with multi-core CPUs, which is quite

common on consumer-level PCs.

A. Experimental Tests

Our implementation has been tested on a variety of models

to generate grown or shrunk offset surfaces in different offset

values (as shown in Figs.11-19). The computational statistics

in terms of time are shown in Table I. The input mesh models

are with different number of triangles varying from 7.1k to

400k. Offset surfaces for these models can be generated in less

than 40 seconds. The statistics in this paper are all tested on a

PC with two Intel Xeon Quad E5440 CPUs at 2.83GHz + 8GB

RAM. All the offset distances are described as relative values

to the diagonal lengths of bounding boxes for the given

models. Table II gives the statistics on computing time for

generating the offset surfaces (r = 0.02) on a chair model (see

Fig.17) with different numbers of triangles. From the statistical

data, it is easy to find that our approach scales quite well with

the increase of grid resolution and the number of triangles. The

increase of computing time is approximately linear to the

increase of resolution, which outperforms other volumetric

approaches on uniform or adaptive grids. The computing time

increases less than linear ratio compared with the increment of

(a) (b) (c)

(d)

Fig. 11. Offset surfaces generated by our approach on a carved-cube model:

(a) the given model, (b) the shrunk offset surface with distance -0.04, (c) the

grown offset surface with distance 0.05, and (d) the zoom-in view of the

shrunk offset surface – it is easy to find that sharp features are well

reconstructed on the offset surface.

TABLE I

COMPUTATIONAL STATISTICS (IN SECOND)

Model Fig. F# Offset Ts Td Tc Ttol

Carve-

cube
11 7.1k

-0.04
0.06

13.2 15.7 28.96

0.05 13.8 17.8 31.66

Anchor-

plate
12 9k

-0.041

0.06

6.4 13 16.96

0.013 7.2 13.9 21.16

0.2 16.15 18.13 34.33

Octa-

flower
13 15.8k

-0.05
0.15

4.95 13.45 18.55

0.1 12.2 16.2 28.55

Dragon 14 49.4k
-0.02

0.45
8.16 13.65 22.26

0.03 13.8 15.37 29.62

Vase-

lion
15

400k

-0.02
4.2

15.8 15.5 35.5

0.04 17 17.2 38.4

Rabbit 21 134k -0.03 1.3 5.6 13.5 20.4

F#: number of triangles for the given model

Ts: time for construction SSVH

Td: time for generating the narrow-band signed distance field

Tc: time for surface contouring

Ttol: the total time for offset surface generation

TABLE II

OFFSETTING TIME ON GRIDS WITH DIFFERENT RESOLUTION (IN SECOND)

Res. 65×65×65 129×129×129 257×257×257 513×513×513

F#: 40k 0.53 0.98 3.34 21.6

F#: 400k 4.6 5.3 8.4 28.7

F#: number of triangles on the chair model.

TABLE III

COMPUTING TIME FOR DIFFERENT OFFSET VALUES (IN SECOND)

Rocker-

arm

r 0.01 0.02 0.04 0.08 0.16 0.32

Ttol 19.8 20.7 22.4 26 31.7 50.7

Terracotta

-warrior

r -0.02 -0.01 0.01 0.02 0.04 0.08

Ttol 18.6 19.2 19.7 21.2 23.1 26.6

Filigree
r -0.005 0.005 0.01 0.02 0.04 0.08

Ttol 26.8 29.5 30.6 33.5 37.4 49.2

r: offset value

Ttol: the total time for offset surface generation

*The results can be found in Figs.17-19.

IEEE Transactions on Automation Science and Engineering

10

triangle numbers. Another study is the computing time of our

approach on generations with different offset values (see Table

III). Again, the increment of computing time is less than linear

ratio compared with the increment of offset values. In short,

our approach scales well on models with different triangles,

different offset values, and different grid resolutions.

To study the performance of the filters proposed in this

paper, we test the reduction in the number of closest point

(a) The given model (b) The shrunk offset surface with distance -0.041 (c) The grown offset surface with distance 0.2

Fig. 12. The anchor-plate model and its offset surfaces.

(a) The given model (b) The shrunk offset surface with distance -0.05 (c) The grown offset surface with distance 0.1

Fig. 13. The octa-flower model and its offset surfaces.

(a) The given model (b) The shrunk offset surface with distance -0.02 (c) The grown offset surface with distance 0.03

Fig. 14. The offset surfaces for the dragon model.

(a) The given model (b) The shrunk offset surface with distance -0.02 (c) The grown offset surface with distance 0.04

Fig. 15. The offset surfaces for the vase-lion model.

TABLE IV

NUMBER OF TIMES OF DISTANCE COMPUTATION BY APPLYING DIFFERENT FILTERS

Offset

Dist.
BB BB + SD BB + OT BB + SD + OT

BB8 BB16 BB32 BB64 BB8 BB16 BB32 BB64 BB128 BB128

-0.04 5,767k 2,982k 2,023k 1,583k 3,670k 1,737k 1,110k 556k 585k (159k) 120k (41k)

-0.02 5,243k 2,785k 1,790k 1,322k 4,194k 2,228k 1,307k 819k 620k (152k) 240k (72k)

-0.01 5,243k 2,654k 1,638k 1,196k 4,981k 2,294k 1,397k 943k 625k (129k) 325k (89k)

0.01 5,505k 2,785k 1,818k 1,269k 5,505k 2,785k 1,818k 1,269k 642k (136k) 476k (122k)

0.02 6,029k 3,113k 2,073k 1,506k 6,029k 3,113 2,073k 1,506k 775k (169k) 534k (139k)

0.04 6,291k 3,899k 2,699k 2,017k 6,291k 3,899k 2,699k 2,018k 750k (203k) 630k (170k)

0.08 10,224k 5,833k 4,227k 2,668k 10,224k 5,833k 4,104k 2,668k 865k (240k) 858k (234k)

0.16 16,777k 11,239k 7,258k 4,248k 16,777k 11,239k 7,258k 4,248k 1,410k (389k) 1,410k (389k)

0.32 40,370k 26,116k 15,667k 8,847k 40,370k 26,116k 15,667k 8,847k 2,846k (797k) 2,846k (797k)

Values in the bracket are the number of times of distance computation for testing valid and invalid bounding boxes during filtering.

IEEE Transactions on Automation Science and Engineering

11

query conducted in the construction of narrow-band signed

distance field. The terracotta-warrior model with 60k triangles

and the uniform grid with resolution 513×513×513 are

employed in these tests. Four classes of cases are tested here:

1) bounding box filter BBm with m denoting the number of

grid cells in the bounding box in one direction, 2) bounding

box filter plus the signed distance filter SD, 3) bounding box

filter plus the octree filter OT, and 4) BBm + SD + OT. Table

IV lists the statistical data. It is not difficult to find that by

applying BBm + SD + OT together, around 97% – 99.9% of

the unnecessary distance computations on grid nodes can be

removed.

The efficiency of our hybrid model for intersection-point

computation on intersected edges is also studied. We count the

number of intersected edges that can have the intersection

point been found on the terracotta-warrior model with different

(a) The given model (b) 64×64×64 (c) 128×128×128 (b) 256×256×256 (b) 512×512×512

Fig. 16. The chair model with 40k triangles and its offset surfaces generated with different grid resolutions.

(a) The given model (b) r = 0.01 (c) r = 0.02 (d) r = 0.04 (e) r = 0.08

Fig. 17. The rocker-arm model with 20k triangles and its offset surfaces using different r.

(a) the given model (b) r = -0.02 (c) r = -0.01 (d) r = 0.01 (e) r = 0.02

Fig. 18. The terracotta warrior model with 200k triangles and its offset surfaces using different r.

(a) the given model (b) r = -0.005 (c) r = 0.005 (d) r = 0.01 (e) r = 0.02

Fig. 19. The filigree model with 260k triangles and its offset surfaces using different r.

IEEE Transactions on Automation Science and Engineering

12

resolutions – with 60k, 200k and 600k triangles. The similar

test is also conducted on the same terracotta-warrior model

(with 60k triangles) but with different offset values and on

grids with different resolutions. All statistical data are listed in

Table V. It is easy to conclude that the analytical solution can

be found on more than 90% of the intersected edges after six

times of subdivision; whereas, the bisection search based

method can find intersection points on less than 7% of the

intersected edges after six times of subdivisions. In short, our

hybrid method greatly reduces the time of intersection

computation.

The resultant models of offsetting are required to be self-

intersection-free in general. Figure 20 gives an example of

some successfully removing self-intersected triangles on the

offset surface of the anchor-plate model which has been

previously shown in Fig.12(b).

Our offsetting approach is volumetric which is immune to

self-intersection, and the offset surface is defined by a signed

distance function (Eq.(1)) so that it guarantees the uniform

wall thickness – which is important for generating the

hollowed model in rapid prototyping. A rabbit fabricated from

the hollowed model generated by our method is shown in

Fig.21. It is easy to find that the wall thickness is uniform and

the sharp features are preserved on the inner surface of the

hollowed model.

B. Discussions

To verify the performance of our algorithm, we test the

Buddha model with 1M triangles used in [5] on our

implementation with the same offset value (2% of the diagonal

length of the bounding box) and the same resolution (512
3
).

Moreover, to fairly conduct the comparison, we turn off the

parallel speedup in our implementation – in other words, only

one core of the CPU is employed. When using one core (i.e.,

no speed optimization using parallel computing), the offset

surface can be generated in 180.5 seconds where we spend 9

seconds on SSVH construction (Ts), take 114.5 seconds in

generating the signed distance fields in narrow-based (Td) and

TABLE V

STATISTICS OF HYBRID METHOD FOR INTERSECTION POINT ON EDGES

Tests on the Terracotta-warrior Model with Different Number of Triangles

F# IntE#
Hybrid Bisect.

Sd = 0 Sd = 1 Sd = 2 Sd ≤ 6 Sd ≤ 6

60k 85032 71.5% 15.4% 7% 99.5% 6.4%

200k 85032 51.3% 20.6% 13.3% 98.8% 6.4%

600k 85032 34.7% 20.3% 17.7% 97.6% 6.4%

Tested on Terracotta-warrior Model with 60k Trgl. with Diff. Off. Dist.

Offset

Dist.
IntE#

Hybrid Bisect.

Sd = 0 Sd = 1 Sd = 2 Sd ≤ 6 Sd ≤ 6

-0.04 16646 64.8% 15.2% 9.5% 99.2% 6.9%

-0.02 34952 52% 19.8% 13.4% 98.8% 6.6%

-0.01 49208 44.3% 22.7% 15.8% 98.7% 6.9%

0.01 77356 59.1% 21.5% 10.7% 99.4% 6.6%

0.02 85032 71.5% 15.4% 7% 99.5% 6.4%

0.04 101458 82.1% 9.5% 4.5% 99.7% 6.6%

0.08 139356 89.6% 5.5% 2.5% 99.8% 6.5%

0.16 229504 94.8% 2.7% 1.2% 99.9% 6.6%

0.32 463838 97.6% 1.2% 0.6% 99.9% 6.4%

Tested on Terracotta-warrior Model with 60k Trgl. with Diff. Grid Res.

Grid

Res.
IntE#

Hybrid Bisect.

Sd = 0 Sd = 1 Sd = 2 Sd ≤ 6 Sd ≤ 6

64 1268 6.2% 15.5% 27% 97.7% 0.8%

128 5520 20.4% 25.5% 22.2% 93.4% 1.5%

256 21030 47.6% 24.7% 14.8% 99.3% 3%

512 85032 72.1% 14.9% 7% 99.5% 6.4%

*The percentages shown here describe the number of intersected edges

that have found the intersection points after Sd times of subdivision.

Fig. 20. Self-intersection on triangles can be successfully removed on our

modified intersection-free dual contouring algorithm. The surface is an offset

of the anchor-plate model given in Fig.12.

Fig. 21. Hollowing a rabbit model: (top) the rabbit and its hollowed model,

and (bottom) the fabricated model by a Fused Deposition Modeling (FDM)

RP machine.

Fig. 22. Offset surface generating on a Buddha model with 1M triangles:

(left) the given model and (right) the offset surface with offset value equaling

to 2% of the diagonal length of the bounding box.

IEEE Transactions on Automation Science and Engineering

13

use 57 seconds for surface contouring (Tc). The computing

time reported in [5] is more than 3,000 seconds. We consider

this as a significant speed up (with more than 20 times). When

eight cores on our test-bed are all used, the time for offsetting

the surface can be further reduced into 51.1 seconds with Ts =

9 sec., Td = 22.8 sec. and Tc = 19.3 sec. – more than 50 times

speed up. Figure 22 shows our offsetting result.

The self-intersection detection approach proposed in section

VI is also compared with the method presented in [8]. The

testing results agree with our analysis – around two times of

speed up can be achieved. Furthermore, as ours is more robust

from numerical errors, less triangles are generated. The

computational statistics on several examples can be found in

Table VI.

The precision analysis on the resultant model is given in

Table VII, where the average distance errors and the maximal

distance errors with reference to the offset value have been

listed. Generally, the average distance errors are small but the

maximal distance errors are relative big in some examples.

This is because that the surface contouring is limited by the

highest resolution of distance and may generate some triangle

edges that have high shape approximation error. This

considered as the first limitation of our approach.

The second major limitation of our approach is a common

problem of all approaches when using a fixed resolution to

sample the problem domain. The features whose size is less

than the sampling distance may be missed during the

reconstruction step. This may result in an offset mesh surface

which is not topologically homeomorphic to the actual offset

surface. Although the surface reconstruction for guaranteeing

the topology is important, the homeomorphic requirement can

be released in some applications (e.g., rapid prototyping, CNC

manufacturability analysis), where our approach can be

employed. An adaptive sampling based approach like [27] can

be considered to preserve the topology. This is one of our

possible future works.

Another limitation of our current implementation is that

some sharp features whose size is less than the sampling

distance between neighboring grid nodes may be harmed

during the intersection-free reconstruction. The shape of such

features however can be recovered by the original dual

contouring [7]. One of our near future works is to develop an

incremental algorithm to recover the shape of these small

sharp features while preventing self-intersection.

VIII. CONCLUSION

In this paper, we present a fast offset surface generation

approach to construct intersection-free offset surfaces from a

solid bounded by triangular mesh surfaces. Sharp features are

preserved on the resultant models. The basic spirit of our

algorithm is to sample a signed distance field in a narrow-band

from the input model on a uniform grid and then employ a

contouring algorithm to build the resultant offset mesh surface

from the signed distance field. Four filters are developed to

generate the distance-field around the offset surface in a very

efficient way by neglecting the redundancies in the regions far

from the offset surfaces. In our approach, the resultant mesh

surfaces are generated by a modified dual contouring which

relies on accurate intersections between the grid edges and the

isosurfaces. A hybrid method is developed to prevent the

expensive bisection search in the configurations where the

analytical solutions exist. Our modified intersection-free dual

contouring is based on convex/concave analysis, which is more

robust and efficient. The quality and performance of our

approach have been demonstrated by a number of tests on

various models and the comparisons with the state-of-the-arts.

ACKNOWLEDGMENT

The authors would like to thank the support of HKSAR

Research Grants Council GRF Grant (CUHK/417508), CUHK

Direct Research Grant (CUHK/2050400), and Shun Hing

Institute of Advanced Engineering (SHIAE) Research Grant

(CUHK/8115022). The first author is also partially supported

by the Natural Science Foundation of China (NSFC - Grant

No.: 60970097) and the Open Project Program of the State

Key Lab of CAD&CG (Grant No.: A0805) at Zhejiang

University. Some models shown in this paper are obtained

from the Aim@Shape Shape Repository.

REFERENCES

[1] J.R. Rossignac, and A.A.G. Requicha, “Offsetting operations in solid

modeling”, Computer Aided Geometric Design, vol.3, no.2, pp.129-

148, 1986.

[2] B. Pham, “Offset curves and surfaces: a brief survey”, Computer-Aided

Design, vol.24, no.4, pp.223-229, 1992.

[3] T. Maekawa, “An overview of offset curves and surfaces”, Computer-

Aided Design, vol.31, no.3, pp.165-173, 1999.

[4] G. Varadhan, and D. Manocha, “Accurate Minkowski sum

approximation of polyhedral models”, Graphical Models, vol.68, no.4,

pp.343–355, 2006.

TABLE VI

COMPARISONS FOR SELF-INTERSECTION DETECTION METHODS

Models Offset
Method in [8] Our method

Trgl. # Time (s) Trgl # Time (s)

Buddha(1M) 0.02 974k 0.094 964k 0.046

Filigree(500k) 0.02 1,031k 0.093 1,021k 0.046

Chair (400k) 0.02 1,041k 0.11 1,041k 0.062

Terracotta

warrior (200k)

0.02 567k 0.062 565k 0.031

-0.01 327k 0.031 325k 0.015

TABLE VII

STATISTICS FOR SHAPE APPROXIMATION ERRORS

Models Figure Face # Offset Avg. Err. Max. Err.

Carve-cube 11 7.1k
-0.04 0.000029 0.0009

0.05 0.000038 0.00074

Anchor-

plate
12 9k

-0.041 0.00017 0.033

0.013 0.00072 0.016

0.2 0.000024 0.0017

Octa-flower 13 15.8k
-0.05 0.00006 0.02

0.1 0.000063 0.0027

Dragon 14 49.4k
-0.02 0.000094 0.094

0.03 0.0008 0.061

Vase-lion 15 400k
-0.02 0.00078 0.07

0.04 0.0004 0.027

Rabbit 21 134k -0.03 0.000096 0.053

IEEE Transactions on Automation Science and Engineering

14

[5] D. Pavic, and L. Kobbelt, “High-resolution volumetric computation of

offset surfaces with feature preservation”, Computer Graphics Forum,

vol.27, no.2, pp.165–174, 2008.

[6] J. M. Lien, “Covering Minkowski Sum Boundary using Points with

Applications,” Computer Aided Geometric Design, vol. 25, no. 8,

pp.652–666, 2008.

[7] T. Ju, F. Losasso, S. Schaefer, and J. Warren, “Dual contouring of

hermite data”, Prof. of SIGGRAPH 2002, pp.339-346, 2002.

[8] T. Ju, and T. Udeshi, “Intersection-free contouring on an octree grid”,

Proc. of Pacific Graphics 2006, IEEE Computer Society.

[9] P. Hachenberger, “Exact Minkowski sums of polyhedral and exact and

efficient decomposition of polyhedral in convex pieces”, Proc. 15th

Annual European Symposium on Algorithms (ESA), pp. 669-680, 2007.

[10] J.M. Lien, and N.M. Amato, “Approximate convex decomposition of

polyhedra”, Proc. of the ACM Symposium on Solid and Physical

Modeling 2007, pp.121-131, 2007.

[11] X.Y. Zhang, Y.J. Kim, and D. Manocha, “Reliable sweeps”, Proc. of

the ACM Symposium on Solid and Physical Modeling 2009, pp.373-

378, 2009.

[12] R.T. Farouki, “Exact offset procedures for simple solids”, Computer

Aided Geometric Design, vol.2, no.4, pp.257-279.

[13] M. Bala, and T.C. Chang, “Automatic cutter selection and optimal

cutter path generation for prismatic parts”, International Journal of

Production Research, vol.29, no.11, pp.2163-2176, 1991.

[14] M. Forsyth, “Shelling and offsetting bodies”, Proc. of the ACM

Symposium on Solid Modeling and Applications, pp.373-381, 1995.

[15] X. Qu, and B. Stucker, “A 3D surface offset method for STL-format

models”, Rapid Prototyping Journal, vol.9, no.3, pp.133–141, 2003.

[16] D.E. Breen, and S. Mauch, “Generating shaded offset surfaces with

distance, closest-point and color volumes”, Proceedings of the

International Workshop on Volume Graphics, pp. 307–320, 1999.

[17] D.E. Breen, S. Mauch, and R.T. Whitaker, “3D scan conversion of CSG

models into distance volumes”, Proceedings of the 1998 IEEE

symposium on Volume visualization, ACM Press, pp.7–14, 1998.

[18] J.A. Sethian, Level Set Methods and Fast Marching Methods, Second

Ed., Cambridge University Press, Cambridge, 1999.

[19] Y. Chen, H. Wang, D.W. Rosen, and J. Rossignac, “A point-based

offsetting method of polygonal meshes”, Technical Report, 2005.

[20] J. Huang, Y. Li, R. Crawfis, S.C. Lu, and S.Y. Liou, “A complete

distance field representation”, Proceedings of the conference on

Visualization’01, pp. 247–254, 2001.

[21] S.J. Liu and C.C.L. Wang, “Duplex fitting of zero-level and offset

surfaces”, Computer-Aided Design, vol.41, no.4, pp.268-281, 2009.

[22] J.A. Baerentzen, and H. Aanaes, “Signed distance computation using

the angle weighted pseudonormal”, IEEE Transactions on Visualization

and Computer Graphics, vol.11, no.3, pp.243-253, 2005.

[23] E. Larsen, S. Gottschalk, M.C. Lin, and D. Manocha, “Fast proximity

queries with swept sphere volumes”, Proc. of International Conference

on Robotics and Automation, pp.3719-3726, April 2000.

[24] D. Eberly, “Distance between point and triangle in 3D”, Geometric

tools, LLC, http://www.geometrictools.com, 2008.

[25] C.C.L. Wang, “Intersection-free dual contouring on uniform grids: an

approach based on convex/concave analysis”, Technical Report, 2009,

http://www2.mae.cuhk.edu.hk/~cwang/pubs/TRIntersectionFreeDC.pdf.

[26] N. Chirkov, “Fast 3D line segment–triangle intersection test”, Journal

of Graphics, GPU, & Game Tools, vol.10, no.3, pp.13-18, 2005.

[27] G. Varadhan, S. Krishnan, T.V.N. Sriram, and D. Manocha, “Topology

preserving surface extraction using adaptive subdivision”, Proceedings

of Eurographics Symposium on Geometry Processing, pp.235-244,

2004.

Shengjun Liu is currently a lecturer at the school of mathematical sciences

and computing technology, Central South University, China. He received his

B.S. degree in Computational Mathematics and Applied Software in 2000

and M.Sc. degree in Applied Mathematics in 2002 from Central South

University, D.Eng. degree in Computer Science and Technology in 2007 from

Zhejiang University. His research interests include geometric modeling in

CAD/CAM, reverse engineering, and computer graphics.

Charlie C.L. Wang is currently an Associate Professor at the Department of

Mechanical and Automation Engineering, the Chinese University of Hong

Kong, where he began his academic career in 2003. He gained his B.Eng.

(1998) in Mechatronics Engineering from Huazhong University of Science

and Technology, M.Phil. (2000) and Ph.D. (2002) in Mechanical Engineering

from the Hong Kong University of Science and Technology. He is a member

of IEEE and ASME, and an executive committee member of Technical

Committee on Computer-Aided Product and Process Development (CAPPD)

of ASME. Dr. Wang has received a few awards including the ASME CIE

Young Engineer Award (2009), the CUHK Young Researcher Award (2009),

the CUHK Vice-Chancellor‟s Exemplary Teaching Award (2008), and the

Best Paper Awards of ASME CIE Conferences (in 2008 and 2001). His

current research interests include geometric modeling in computer-aided

design and manufacturing, biomedical engineering and computer graphics, as

well as computational physics in virtual reality.

http://www.geometrictools.com/
http://www2.mae.cuhk.edu.hk/~cwang/pubs/TRIntersectionFreeDC.pdf

