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Abstract—A fast offset surface generation approach is pre-

sented in this paper to construct intersection-free offset surfaces, 

which preserve sharp features, from freeform triangular mesh 

surfaces. The basic spirit of our algorithm is to sample a narrow-

band signed distance-field from the input model on a uniform grid 

and then employ a contouring algorithm to build the resultant 

offset mesh surface from the signed distance-field. Four filters are 

conducted to generate the narrow-band signed distance-field 

around the offset surface in a very efficient way by alleviating 

computation redundancies in the regions far from the offset 

surfaces. The resultant mesh surfaces are generated by a modified 

dual contouring algorithm which relies on accurate intersections 

between the grid edges and the isosurfaces. A hybrid method is 

developed to prevent the expensive bisection search in the 

configurations that the analytical solutions exist. Our modified 

intersection-free dual contouring algorithm is based on convex-

concave analysis, which is more robust and efficient. The quality 

and performance of our approach are demonstrated with a 

number of experimental tests on various examples.  

 

Note to Practitioners—This research is motivated by the 

problem about how to generate intersection-free offset surfaces 

from a general freeform model bounded by triangular mesh 

surfaces. Current commercial 3D/2D Computer-Aided Design and 

Manufacturing (CAD/CAM) systems cannot support the 

offsetting operation on a general freeform 3D model. This paper 

presents a new approach which considers the problem in a 

different manner. Firstly, the offset surfaces are sampled into an 

implicit representation – a narrow-band signed distance-field. 

Secondly, the distance-field is contoured into an intersection-free 

mesh surface that gives the approximated offset surface. The 

approach can be integrated into commercial CAD/CAM systems 

to enrich their offsetting functions which are widely used in 

various CAD/CAM applications, such as filleting, rounding and 

hollowing of 3D models, tolerance and clearance analysis for 

assembly, coordinate measuring machines (CMM), tool path 

generation for 3D numerically controlled (NC) machining, and 

robot path planning. 

 
Index Terms—Offset surface generation; freeform surface; 

signed distance field; filtering; intersection-free 
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I. INTRODUCTION 

FFSET surface generation is an important operation in 

many CAD/CAM applications. An offset surface of a 

solid H is the set of points having the same offset distance r 

from the boundary ∂H of H. When considering the sign of 

distances, we can have a grown offset 
rH with the points on 


rH being outside of H and a shrunk offset surface 

rH that has 

all its points inside the solid H. 

Problem Definition: Given a solid model H with its boundary 

surface ∂H represented by a triangular mesh, the boundary 

mesh surface of 
rH  (or 

rH ) is to be computed. 

Although the offsetting operation is mathematically well 

defined [1], offsetting a solid model exactly has proven to be 

difficult. In general, for a polygonal mesh, the Minkowski sum 

of it with a sphere is decomposed into a set of spheres, 

cylinders, and prisms corresponding to vertices, edges, and 

faces of the mesh. A constructive solid geometry approach to 

offset surface computation is based on computing the union of 

all these elements. However, the computation for the union 

operations of these solids has been proven difficult because of 

its computational complexity and numerical instability [1-3]. 

In recent years, volumetric approaches (e.g., [4, 5]) and point-

based algorithm [6] have been proposed to overcome these 

difficulties. These algorithms first generate volumetric grids 

and sampling points to approximate the offset model and then 

employ a distance-field or collision detection technique to 

calculate the resultant implicit surface or sample points. 

However, they usually suffer the problems of missing sharp 

features (e.g., [4, 6]) or long computing time (e.g., [4], [5]).  

Our method for offset surface generation can also be 

classified as a volumetric approach. According to the offset 

surface‟s intrinsic property that every point on the offset 

surface with an offset value r has a minimal distance | r | to the 

original mesh, we use a distance function to define the offset 

surface directly on triangles. Specifically, an offset surface of 

H with distance r can be implicitly defined by the following 

equation 

0),()(  rHpdispf ,                      (1) 

where p is a point on the offset surface of the given model H in 

R
3
, and dis(…) is a function returning the signed distance with 

„+‟ representing a point outside H and „–‟ for a point inside. 

Fast Intersection-free Offset Surface Generation 

from Freeform Models with Triangular Meshes 

Shengjun Liu and Charlie C.L. Wang, Member, IEEE 

O 

mailto:cwang@mae.cuhk.edu.hk


IEEE Transactions on Automation Science and Engineering 

 

2 

The offset value r can be either positive or negative. The 

signed distance-field is sampled on uniform grids in a narrow-

band manner – i.e., accurate distances are only computed on 

the grid nodes near the offset surface. Efficient algorithm for 

constructing such a signed distance-field is developed by 

introducing four filters that can greatly alleviate the 

computational redundancy. As the mesh surface generated by 

the dual contouring (DC) algorithm [7] can automatically 

preserve sharp features, our distance-field is also converted 

into the final offset surface through a dual contouring step that 

needs to compute accurate intersections between the grid 

edges and the offset surface. A hybrid method is developed to 

prevent the expensive bisection search in the configurations 

that analytical solutions exist. To get a resultant mesh surface 

that has no self-intersection, we modify the intersection-free 

DC algorithm [8] by a convex/concave analysis, which is more 

robust and efficient.  

In short, the major contributions of our approach include: 

 To identify the grid cells which are intersected by the 

offset surface and create a narrow-band signed distance-

field quickly, four filters are introduced in section IV. The 

swept sphere volume hierarchy (SSVH) filter is adopted to 

filter out most of the triangles on the input model from the 

distance computation. A bounding box filter, a signed 

distance filter, and an octree filter are employed to filter 

out most of the grid nodes which are far from the offset 

surface. These filters can remove around 97% – 99.9% of 

the unnecessary distance computation on grid nodes.   

 To employ the strategy of DC to generate the resultant 

meshes for offset surfaces, the intersections between the 

grid edges and the implicit offset surface must be 

computed. A straightforward way to compute them is by 

the bisection search, which however is very slow. We 

introduce a hybrid method in section V that combines the 

analytical solution (whenever is applicable) and the 

bisection search to compute the intersections. To 

reconstruct sharp features on the resultant offset mesh 

surfaces, every intersection point must be equipped with a 

normal vector, which can be determined by the closest 

point search.  

 Although self-intersections of the offset solid have been 

automatically eliminated due to the distance-field based 

representation, they may be re-generated on the resultant 

mesh surfaces during the contouring procedure – see the 

discussion and the first approach to address this problem 

in [8]. We present a modified DC method based on 

convex/concave analysis (in section VI), which is more 

robust and efficient. 

II. RELATED WORK 

Offset operations can be considered as a special case of the 

Minkowski sum [1]. There are several approaches in literature 

for the evaluation of Minkowski sum on solid models. 

Varadhan et al. proposed a method in [4] to approximate the 

Minkowski sum of polyhedral models. This method avoids the 

union step and its computation is simple and effective for 

convex objects. For general 3D polyhedrons, a divided-and-

conquer approach is employed where it first applies convex 

decompositions, then computes the pair-wise Minkowski sums 

between those convex pieces, and finally extracts the boundary 

from the union of all the pairwise Minkowski sums [9]. 

However, such decomposition is not easy for complex objects 

[10] and makes too many components. In order to avoid the 

last union step among a number of components, a distance-

field based method is employed in [4], which however has 

difficulty to reconstruct sharp features. Recently, Zhang et al. 

[11] generate the resultant boundary surface from sweeping 

volume with a dual-contouring like approach to retain shape 

features. However, self-intersections may happen (as discussed 

in [8]). Moreover, the volumetric region of resultant solid is 

computed by a flooding algorithm in [11]. This will miss the 

inner voids that are very important for the shrunk offsetting 

operation. Pavic and Kobbelt [5] extract the boundary surfaces 

by a Marching Cubes (MC) like algorithm that does not 

generate self-intersection. However, sharp features cannot be 

automatically reconstructed and MC algorithm usually 

generates much more triangles than DC. A post-processing 

step is used to recover sharp features. This step however can 

lead to self-intersection on the resultant mesh surfaces. A 

point-based method is presented to robustly compute an 

approximate and accurate representation of the Minkowski 

sums boundary in [6]. Its resultant boundary is a point-based 

representation and will lose those small but important sharp 

features. These methods run much more slowly as they are not 

specially designed for offset surface generation. 

Offset operations can be applied to curves, surfaces, or 

entire 3D models. In earlier work [1], the mathematical basis 

for offsetting of solids was described. The offset techniques 

for curves and surfaces have been extensively studied by Pham 

[2] and Maekawa [3]. For 3D solid models, it will be more 

complicated to generate offsets, which involve not only the 

geometrical issue of offsetting each individual surface in the 

model but also the topological issue of reconnecting these 

offset surfaces into a closed 3D model. Generally, offsets of 

3D models are achieved by first offsetting all surfaces of the 

model and then trimming or extending these offset surfaces to 

reconstruct a closed 3D model [1, 12, 13, 14]. These earlier 

approaches first compute a superset of the offset surface by 

offsetting 1) vertices into spheres, 2) edges into cylinders, and 

3) faces into parallel faces. Then, they trim that superset by 

subdividing its elements at their common intersections and 

deleting the pieces that are too close to the original solid. This 

is a very expensive computing process and the trimming at 

tangential contacted regions is numerically unstable. The 

computation in our approach is much more stable since we 

work on a volumetric representation that can handle the 

tangential contact robustly. Some surface-based approaches for 

generating offset surfaces simply shift the original vertices in 

the offsetting direction [15]. This is problematic as self-

intersections may occur either locally in areas of high 
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curvature or globally when different parts of the input surface 

meet during the vertex shifting. On the contrary, self-

intersections are eliminated by our method since the 

volumetric representation and an intersection-free contouring 

method used in the surface extraction. 

There are many other methods for offset surface generation 

with the help of different representations. Volumetric methods 

were presented based on distance-fields and the fast marching 

method in [16, 17]. The approximation properties of the fast 

marching [18] do not allow for high accuracy. Recently, a 

point-based offsetting approach was introduced in [19], where 

point samples are first generated on the input surface and are 

then moved in normal direction. After that, the Minkowski 

sum volume is rasterized on voxel grids in order to remove 

self-intersections. In [20], another offsetting approach was 

presented which aims mainly at visualizing the offset via 

surface splats. In their cases, the classification on whether a 

cell intersects the offset surface is based on conservative 

estimates for both the minimum and maximum distance. While 

this is sufficient for visualization purposes, it would be non-

trivial to extract a proper manifold offset surface from it. On 

the contrary, our method gives intersection-free mesh surfaces 

as the results. 

A hybrid method combining surface and volume was 

proposed in [5]. The algorithm is also based on computing the 

union of a set of primitives (spheres, cylinders and planes). Its 

computations are stable since the method works on a 

volumetric representation and the self-intersections can be 

easily removed by computing the min/max operations applied 

to distance functions. However, there are still some limitations 

of this method. The first one is that it generates two offset 

surfaces simultaneously without identifying the outer or inner 

ones. The second is the sharp feature extraction problem as 

aforementioned. Nevertheless, our method defines the offset 

surface in a narrow-band signed distance-field which results in 

an identical surface, and the sharp features are intrinsically 

preserved during the surface extraction. Another hybrid 

method which combines point and implicit surface was 

presented in [21]. This method reconstructs the zero-level 

surface and an offset surface simultaneously from an oriented 

point set. It first generates the offset point set, and then fits the 

surfaces with an implicit function combining two point sets. It 

is stable and robust for different point data, such as noisy 

points and irregular points. However, using this method, the 

sharp features cannot be reconstructed, and there are large 

artifacts on the offset surface where there are no offset points 

from the sharp features on the original model when the offset 

distance is large. On the contrary, our method preserves the 

sharp features and provides highly accurate results even if the 

offset distance is very large. 

III. OVERVIEW 

Given a solid model bounded by oriented two-manifold 

meshes, our goal is to obtain its intersection-free offset surface 

with sharp features preserved. The whole algorithm consists of 

three steps. 

 Firstly, the given model H is embedded into a space Ф 

bounding the model and its offset surfaces.  The space Ф 

is sampled into a narrow-band signed distance-field on 

uniform grids, where the narrow-band region is around the 

offset surface but not the surface of H. Four filters are 

developed to efficiently evaluate the distance-field (see 

section IV).  

 Secondly, the intersections between the grid edges and the 

offset surface are computed. We analyze the possible 

configurations of the intersections, and derive a more 

efficient method to compute the intersections analytically 

whenever possible (see section V). 

 Lastly, a modified intersection-free dual contouring 

algorithm is introduced to extract the mesh of offset 

surfaces (see section VI). Our method is based on convex/ 

concave analysis, which is more robust and efficient.  

Figure 1 gives a 2D illustration of the overall algorithm. Our 

approach is simple and easy to implement. Moreover, as the 

narrow-band distance-field is sampled on uniform grids, the 

minimal distance evaluation and the intersection computation 

can be easily parallelized on PC with multi-core CPUs. 

IV. FILTERS FOR DISTANCE-FIELD CONSTRUCTION 

To construct a signed distance-field of a given model H 

sampled on a uniform grid with n × n × n grid nodes, the most 

 

Fig. 1.  The overview of our algorithm illustrated in 2D: (leftmost) the given model bounded by oriented two-manifold mesh surfaces, (left) the input model is 

embedded in a space that is sampled into uniform grids, (middle) classifying the grid nodes inside/outside the offset surface in a narrow-band manner – nodes 

that are not in the narrow-band region of the offset surface do not need to be considered, (right) intersections between the offset surface and the grid edges are 

computed, and (rightmost) the resultant offset mesh surface is extracted by an intersection-free dual contouring algorithm. 
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straightforward method is to compute the minimal distance 

from these n
3
 nodes to the surface, ∂H, of H represented by 

triangular meshes. The minimal distance from a query point q 

to ∂H can be evaluated by an exhaustive search of all triangles 

on ∂H. After finding the closest point cq of q on ∂H, the sign of 

distance between cq and q is decided by the angle weighted 

pseudonormal on cq [22]. Although the sign of distance can be 

determined very efficiently, the computation of closest point is 

time-consuming – especially when such a distance 

computation is conducted on all n
3
 nodes with a large value of 

n (e.g., n = 513 as shown in our examples in this paper). Four 

filters are introduced in this section to speed up the evaluation. 

A. Swept Sphere Volume Hierarchy (SSVH) Filter 

The SSVH filter is applied to the triangles of ∂H to speed up 

the distance computation between a query point q and the 

triangles on ∂H. The basic idea is to establish a volume 

bounding hierarchy (BVH) of the triangles so that the 

computation on triangles that are far from the query point q 

can be discarded. The Swept Sphere Volume Hierarchy 

(SSVH) presented in [23] is adopted here as it can be easily 

modified to compute the minimal distance between a point and 

a set of polygons. Instead of computing the minimal distance 

between polygons, we employ a fast algorithm in [24] to 

compute the distance between the query point and a triangle, 

where the triangle is defined as  

10),( veuebvut   

with the parametric domain }1],1,0[,:),{(  vuvuvuD . 

The minimal distance is computed by finding the optimal 

parameters Dvu ),(  that lead to the closest point to the 

query point q. Besides the minimal distance from q to ∂H, we 

also record the closest point cq, the triangle holding cq, the 

parameters ),( vu  for cq, and the sign of distance, which will 

be used in the following computations.  

B. Bounding Box Filter 

Although the evaluation of function f(p) using the SSVH 

filter is fast, the construction of a signed distance field is still 

time consuming since there are n
3
 nodes. Running on a PC 

equipped with Intel Core 2 CPU 6600 2.4GHz with 2GB 

RAM, the closest point computation using SSVH for a model 

with 400K triangles (i.e., the vase-lion model shown later in 

Fig.16) can be completed in 1.047ms on average. When 

computing the signed distances on 513 × 513 × 513 grid 

nodes, it takes 513 × 513 × 513 × 1.047ms ≈ 39.26 hr, which 

is impractical. A wiser solution is to construct a narrow-band 

distance field around the offset surface of H.  

Without loss of generality, the offset surface is located in a 

narrow-band region of the grid cells.  

Definition 1 For any grid node, if its position p satisfies 

lrHpdis  ),(                               (2) 

with l being the width of grid boxes, this grid node is adjacent 

to the r-offset surface and defined as valid grid nodes. 

For a grid node not agreeing with Eq.(2), it is called an invalid 

grid node. In the middle figure of Fig.1, only the valid nodes 

are displayed with small cubes. However, directly checking 

whether a grid node is valid also involves the distance 

computation between a point and the given triangular meshes. 

To avoid redundant evaluation, we introduce the bounding box 

filter below. 

The grid cells are grouped into cubic bounding boxes with a 

larger size, where each bounding box consists of m × m × m 

grid boxes (i.e., including (m+1)
3
 grid nodes). The uniform 

grids become      mnmnmn )1()1()1(   bins. 

Remark 1 For a sphere with radius δ, if the minimal distance 

from its center sc to the boundary surface of H satisfies 

 lrHsdis c ),( ,                         (3) 

all grid nodes in this sphere must be invalid. 

The radius of the circumsphere for a bounding box is 23ml , 

therefore we can use the above remark to detect whether the 

grid nodes in a bounding box are invalid with 23ml .  

Checking remark 1 directly needs to compute the signed 

distances on all bounding boxes. To speed up the computation, 

in the bounding box filter, we compute the unsigned distance, 

undis(sc, ∂H), between the center of the circumsphere of a 

bounding box and the surface ∂H. If the circumsphere of a 

bounding box agrees with  

 ldHsundis c ),(  

where d = | r |, its corresponding signed distance must satisfy 

Eq.(3) – such a bounding box is named as invalid bounding 

box; otherwise, it is called valid bounding box. 

Remark 2 All grid nodes in an invalid bounding box must be 

invalid, but the grid nodes in the valid bounding box could be 

either valid or invalid. 

Figure 2 gives an illustration of the bounding box filter. Note 

that, the grid nodes around both the grown and the shrunk 

offset surfaces remain after applying this filter. 

C. Signed Distance Filter 

To retain only the bounding boxes around the grown offset 

 

Fig. 2.  Illustration of the bounding box filter in 2D with d = | r |. The bold 

black line represents the surface of the given mode, and the two bold red lines 

refer to the grown and the shrunk offset surfaces. The grid nodes in a 

bounding box, the center of circumsphere that does not fall in the purple 

regions, are invalid grid nodes – illustrated by empty circular dots. The black 

circular dots are candidates of valid grid nodes. 
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surface (or the shrunk surface), we check the signed distance 

dis(sc, ∂H) of the valid bounding boxes by a signed distance 

filter using the remarks below.   

Remark 3a For the distance-field for a grown offset surface 

(r > 0), the grid nodes in a bounding box satisfying 

 ),min(,),(   ldldldHsdis c      (4) 

are invalid, where d = | r | and sc is the center of the bounding 

box‟s circumsphere.  

Remark 3b For the distance-field for a shrunk offset surface 

(r < 0), if a bounding box satisfies 

   ldldldHsdis c ),,max(),( ,     (5) 

all grid nodes in it are invalid.  

Here, the invalidity of a grid node refers to the inability to 

satisfy Eq.(2) in Definition 2. The min(…) and max(…) 

functions in remark 3 are caused by the configuration that the 

two band regions overlap when the offset distance d is very 

small. Figure 3 shows two configurations when applying the 

signed distance filter for the grown offsetting.  

D. Octree Filter 

The bounding box filter and the signed distance filter 

introduced above can fast recognize many invalid grid nodes. 

However, when choosing a large bounding box size, many 

invalid grid nodes survive since they are enclosed by a valid 

bounding box (see Fig.4(a) for an example). To further 

exclude the invalid grid nodes from the narrow-band signed 

distance-field, an octree filter is introduced. Starting from a 

retained bounding box, we recursively subdivide the bounding 

box into eight sub-boxes. For each sub-box B, the signed 

distance disB from the center of its circumsphere to ∂H is 

computed. If the signed distance disB agrees with Eq.(3), the 

recursive subdivision on this sub-box is stopped, and all grid 

nodes in this sub-box are classified as invalid. Those grid 

nodes located on the interface of several sub-boxes are marked 

as invalid if the signed distance from any center of these sub-

boxes‟ circumspheres agrees with remark 3.  Figure 4(b) gives 

the illustration of octree filtering on a retained bounding box. 

V. SURFACE INTERSECTIONS ON GRID EDGES 

After applying the above four filters, we can efficiently 

construct a narrow-band signed distance-field around the offset 

surface f(p) = r. The signed distances are only evaluated on the 

valid grid nodes. By the local signed distances, we can detect 

the grid cells intersecting with the offset surface.  

Definition 2 For a grid edge e on the signed distance field 

with two valid grid nodes p1 and p2, if p1 and p2 satisfy 

0)()( 21 pfpf                                 (6) 

with f(p) being the function defined in Eq.(1), the grid edge is 

named as an intersected edge. 

To extract the mesh surface from the implicitly defined offset 

surface, we apply a modified dual contouring (DC) algorithm 

that can automatically reconstruct sharp features and can be 

parallelized easily. The DC algorithm on uniform grids needs 

the intersection points between the intersected edge and the 

implicit surface, as well as the surface normal vectors at these 

intersection points. The intersection on an intersected edge e is 

the solution of α for the following equation 

0))1(( 21  ppf  ,                           (7) 

which is nonlinear since the signed distance function dis(…) in 

f(…) is nonlinear (ref. Eq.(1)). A straightforward way to find 

the root of Eq.(7) is by the bisection search, which however is 

slow. 

In this section, we introduce a hybrid method which 

combines the analytical solution (whenever is applicable) with 

the bisection search to compute the intersections.  

A. Feasibility of Analytical Solution 

Definition 3 For a query point q, cp(q) denotes the closest 

point to q on the surface ∂H of the given model H. 

The analytical solution is obtained when cp(q) ( eq ) 

 

Fig. 3.  Two configurations when applying the signed distance filter to grown 

offsetting – two band regions are (a) separated and (b) overlapped. 

 

 

Fig. 4.  Using an octree filter to further detect the validity of grid nodes in the 

retained bounding boxes: (a) the bounding box is valid but the enclosed grid 

nodes are invalid, and (b) invalid grid nodes are excluded recursively in the 

octree filter. 
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belongs to the same triangle T on ∂H. This configuration 

happens frequently when the grid edges are short enough. 

Remark 4 For an intersected edge e with two ends p1 and p2, 

cp(p1) and cp(p2), being in the same triangle T is the necessary 

condition for ]1,0[,))1(( 21   Tppcp . 

For an intersected edge which does not satisfy the necessary 

condition given in remark 4, the bisection search method is 

used to find the solution of Eq.(7). Note that, to detect whether 

cp(p1) and cp(p2) are in the same triangle, the configurations 

when any of them is on the boundary of a triangle must be 

further evaluated. This is because cp(p1) and cp(p2) reported 

by the closest point query may not belong to the same triangle, 

but could be any of the configurations below. 

 cp(p1) is inside the triangle t1, and cp(p2) is on an edge e 

of triangle t2 adjacent to t1 and e is also an edge of t1. 

 cp(p1) is inside the triangle t1, and cp(p2) is on a vertex v 

of triangle t2 and t1 is one of the triangles incident to v. 

 cp(p1) and cp(p2) are on two edges that are adjacent to a 

common triangle. 

 cp(p1) is on the edge e of a triangle t1 and cp(p2) is on the 

vertex v of a different triangle t2, but there is a common 

triangle incident to e and v. 

 cp(p1) and cp(p2) are on the vertices of different triangles, 

but these two vertices are incident to a common triangle. 

Symmetric cases of above configurations must also be 

considered.  

When the necessary condition is satisfied, we conduct the 

analytical solution described below to find the solution of 

Eq.(7) – α0. After that, a verification step is performed by 

checking whether  

  rHppdis )),)1(( 2010              (8) 

is satisfied, where ε=10
-5

 is the error tolerance. If the distance 

difference is not less than ε, the bisection search method is 

further applied to find the root of Eq.(7). Note that, the 

terminal criterion of the bisection search is also Eq.(8) and 

with the same value of ε. Moreover, during the subdivision of 

bisection search, if the searched line segment satisfies the 

necessary condition of using an analytical scheme (i.e., 

Remark 4), we will compute the analytical solution – this can 

further speed up the computation of intersection points. 

After finding the intersection point p, the normal vector at p 

can be easily assigned to (p-cp(p))/||p-cp(p)|| for grown 

offsetting and (cp(p)-p)/||p-cp(p)|| for shrunk offsetting. 

B. Analytical Solution 

For an intersected edge e with two ends p1 and p2, if the 

closest points from all the points on e to ∂H are located in the 

same triangle T on ∂H and f(p1)f(p2)<0, we will find a point p 

on e which has f(p)=0.  

After analysis, we find that when a query point q is located 

in different regions around a triangle T, its closest point cp(q) 

on T should be inside the face, on the edges, or on the vertices 

respectively. In general, the space around the triangle T is 

classified into seven regions (see regions 0-6 in Fig. 5(a)), 

which are separated by the triangle‟s bounding planes.  

Definition 4 For a region around the triangle T, if the 

closest point of any point q in this region is  

1) not on the boundary of T – the  region is defined as a face 

region of T; 

2) on the unique edge ei (i=1,2,3) of T – the region is called an 

edge region of ei on T; 

3) on the unique vertex vj (j=1,2,3) of T – this region is named 

as a vertex region of vj on T. 

As illustrated in Fig. 5(a), region 0 is a face region, regions 1-3 

are edge regions, and regions 4-6 are vertex regions. Based on 

this classification, we develop the following method to find the 

intersection point (i.e., the solution of Eq.(7)) analytically.  

Remark 5 For a line segment p1p2, if all points on the 

segment fall in the face region around the triangle T, the 

solution of 0))1(( 21  ppf   is 

))()(()( 211 pfpfpf  .                       (9) 

An illustration of remark 5 has been given in Fig.5(b). For the 

segment whose points all fall in an edge region, the solution of 

Eq.(7) is not obvious. As shown in Fig.5(c), suppose p is the 

intersection point on p1p2 that we are going to find, we first 

project p, p1 and p2 onto the plane of T to get q’, q’1 and q’2. 

Then, q’, q’1 and q’2 are projected onto the line segment of the 

edge that defines the edge region – q, q1 and q2 are obtained. 

Because of the two projections, we have the following ratio 

between the line segments held. 

1122

11

2211

11

qqqq

qqqq

nqpnqp

nqpnqp

TT

TT









          (9) 

By this, we could have 

TTT nqpnppnqp  1121 )( ,            (10) 

(a)

(b) (c) (d)  

Fig. 5.  Illustration of finding the analytical solution of intersection points on 

the intersected grid edge: (a) space around a triangle T is subdivided into 

seven regions by the bounding planes (represented by dash lines in the 

figures), (b) the configuration of a segment in a face region, (c) the segment 

is fully in an edge region, and (d) at a vertex region. 
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111122 )( qqqqqqqq   .             (11) 

Thus, the value of α can be determined by the function 

  222
rqqnqp T  .                       (12) 

Remark 6 For a line segment p1p2, if all points on the 

segment fall in an edge region of the triangle T, any α 

determined by Eq.(12) with ]1,0[  is a valid solution of 

Eq.(7). 

When all points of a segment fall in a vertex region, the 

spherical equation is used to obtain the root of Eq.(7) – see the 

illustration in Fig.5(d). 

Remark 7 For a line segment p1p2, if all points of it are in the 

vertex region for a vertex q on T, any α determined by  

22

21)1( rppq                       (13) 

with ]1,0[  is a valid solution. 

Although the above analytical solution can fast evaluate 

accurate intersection point on an intersected edge e, the edge 

in practice usually passes through more than one region. In 

order to apply the above analytical solution to find the 

intersection point on e, we need to subdivide the segment of e 

into several segments where each is in a unique single face, 

edge or vertex region around T. For a sub-segment with two 

endpoints sp1 and sp2, if it satisfies f(sp1)f(sp2)>0, we simply 

neglect it. For the sub-segments satisfying f(sp1)f(sp2)<0, the 

first root of Eq.(7) will be employed as the intersection point 

in the grid edge.  

In our implementation, we compute the sub-segment in a 

faster way. By knowing the region where the first endpoint of a 

grid edge e falls in, we can sort the bounding planes of the 

triangle T in either clockwise or anti-clockwise order and then 

calculate the intersections between e and the boundary planes 

progressively. Therefore, the sub-segments are found one by 

one. Before going to the next sub-segment, we check whether 

this segment‟s two endpoints lead to the sign-flip on the 

function f(…). If they do, Remark 5-7 are employed to find the 

analytical root; and the rest sub-segments are not considered 

any more. 

VI. CONTOURING: AN INTERSECTION-FREE METHOD 

The purpose of the work presented in this section is to 

investigate a more efficient approach than [8] for generating 

intersection-free iso-surface from the uniformly sampled grids 

using dual contouring (DC). Crack-free mesh surface can be 

generated by DC, and DC is able to reconstruct sharp features 

when Hermite data (i.e., intersection points equipped with 

surface normal vectors) are available. However, surfaces 

produced by dual contouring are rarely intersection-free (see 

Fig.2 in [8]). The only work existing in literature to address 

the problem of geometric intersection on the mesh surface 

generated by DC is [8], which combines the primal and dual 

contouring. Some necessary conditions have been derived in 

[8] to try to reduce the number of triangles. However, although 

the conditions in [8] are sufficient, the detection involves the 

detection of polygon-edge intersection which is neither as 

robust nor as efficient as our new approach based on 

convex/concave detection.  

Basically, when applying the dual contouring algorithm to 

volumetric data sampled on uniform grids, the isosurface can 

be generated by linking vertices generated in boundary grid 

cells. A grid cell with its eight grid nodes having inconsistent 

inside (or outside) configurations is a boundary grid cell. In 

each boundary cell c, a vertex vc on the resultant mesh surface 

is created and located at the position minimizing the Quadratic 

Error Function (QEF) defined by the Hermite data samples on 

the grid edges of c. For each cell edge e that contains a sign 

change – with one end inside but the other outside, two 

triangles will be constructed to link four vertices in the cells 

around it. However, the mesh surface constructed in this way 

is rarely intersection-free.  

A hybrid approach of a primal and dual method is 

developed in [8]. As illustrated in Fig.6, a triangle fan with 

eight triangles is generated around a cell edge e with sign 

change in the hybrid approach, where each triangle connects 

the edge vertex ve on e, the face vertex vf on a cell face f 

containing e and the cell vertex vc in a cell c sharing f. The 

authors of [8] then proved that the hybrid approach generates 

intersection-free triangles if each cell vertex, face vertex and 

edge vertex lies interior to the corresponding cell, face or 

edge. The envelope Ee at a grid edge e is defined as the union 

of eight tetrahedra, each of which is formed by the edge e, the 

face vertex vf and the cell vertex vc (see Fig.6). It has proven 

that the envelopes Ee of different edges e are disjoint, and the 

triangles generated by the hybrid method around e are 

contained in separate tetrahedron of the envelope Ee. 

Therefore, the triangulated surface is guaranteed to be 

intersection-free. To reduce the number of triangles generated 

by the hybrid method, three rules are defined in [8] for 

contouring an octree grid. The rules are based on the detection 

of polygon-edge intersections. However, when contouring 

uniform grids, a simpler and more robustness method based on 

convex/concave analysis can be developed as follows, which is 

one of the major contributions in this paper. 

First of all, as long as all cell vertices are located in their 

corresponding cell boxes, the intersection between the cell 

face fpq of two neighboring cells cp and cq (containing cell 

vertices vp and vq) and the line segment vpvq is always in the 

face fpq when contouring uniform grids. Thus, the face vertices 

in the hybrid method of [8] are not needed. By removing face 

 

Fig. 6.  (a) Triangle fans generated by the hybrid method at a grid edge e with 

sign change, and (b) the envelope Ee of triangles formed by the union of 

tetrahedra. 
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vertices, the envelope Ee around e is then formed by four 

tetrahedra. 

Definition 5 An envelope Ee around an edge e that does not 

have volume overlap with other edge envelopes is formed by 

four tetrahedra: vp-vq-v
+

e-v
-
e, vq-vr-v

+
e-v

-
e, vr-vs-v

+
e-v

-
e and vs-

vp-v
+

e-v
-
e, where vp, vq, vr and vs are cell vertices in cells cp, cq, 

cr and cs around e, and v
+

e and v
-
e are two vertices at the end of 

e. 

Figure 7 gives an illustration of the four tetrahedra that form 

the intersection-free envelope Ee around the edge e. Note that 

the indices p, q, s and r are circularly used here. 

Definition 6 For the cell vertex vc forming the intersection-

free envelope Ee around an edge e, if any of the edges vc-v
+

e or 

vc-v
-
e is concave, it is defined as a concave envelope vertex of 

Ee; otherwise, it is named as a convex envelope vertex. 

Remark 8 The edge vp-v
+

e is concave if vp is below the plane 

defined by the oriented triangle vs-vq-v
+

e, and the edge vp-v
-
e is 

concave if vp is below the plane defined by the oriented 

triangle vq-vs-v
-
e. 

Figure 8 gives an illustration of Remark 8. 

Proposition 1 For two cell vertices vs and vq in two non-

neighboring cells cs and cq, the tetrahedron Tsqe formed by the 

cell vertice vs and vq and the edge e can only intersect three of 

the four cells around e. 

Proof can be found in [25]. 

Since all points in cp will be above the oriented planes vs-vq-

v
+

e and vq-vs-v
-
e when the tetrahedron Tsqe intersects cr (see 

Fig.9), by Remark 8 and Proposition 1, we can conclude the 

following remark. 

Remark 9 A cell vertex vp in the cell cp will NOT be a 

concave envelope edge if the tetrahedron Tsqe formed by its 

previous cell vertex vs, its latter cell vertex vq and the edge e 

does not intersect the volume of cell cp. 

Proposition 2 For four cell vertices vp, vq, vr and vs around 

an edge e, if no concave envelope vertex is found, all the four 

triangles: vp-vq-vr, vp-vr-vs, vp-vq-vs and vq-vr-vs are enclosed by 

Ee. 

Proposition 3 For four cell vertices vp, vq, vr and vs around 

an edge e, if only vp is a concave envelope vertex, triangles vp-

vq-vr and vp-vr-vs will be enclosed by the envelope Ee, whereas 

some part of the triangles vp-vq-vs and vq-vr-vs will NOT be 

enclosed by Ee. 

Proofs can be found in [25]. 

Remark 10 For four cell vertices vp, vq, vr and vs around an 

edge e, only one or two vertices can be concave envelope 

vertices, and these two vertices must be in the adjacent cells. 

If vp is a concave envelope vertex, the tetrahedron Tsqe formed 

by vs, vq and the edge e can only intersect cp, cs and cq but not 

the cell cr (by Proposition 1). Therefore, vr cannot be a 

concave envelope vertex (by Remark 9). Also, if vq is a 

concave envelope vertex, vs cannot be a concave envelope 

vertex. 

Remark 11 If two vertices are concave envelope vertices, 

none of the triangles vp-vq-vr, vp-vr-vs, vp-vq-vs and vq-vr-vs is 

enclosed by Ee. 

If vp is a concave envelope vertex (or vr is a concave envelope 

vertex), the edge vs-vq is outside Ee; and the edge vp-vr is 

outside Ee when vq (or vs) is outside Ee. Figure 10 shows an 

example of that. If two vertices are concave envelope vertices, 

we have to further split them into four triangles by adding an 

edge vertex ve on e to ensure that Ee encloses all the triangles. 

Robust and Efficient Implementation:  Our convex/concave 

analysis based approach is more robust and efficient 

comparing with the intersection-free approach presented in [8], 

which is based on the edge-polygon intersection tests. In 

general, 4 to 6 edge-triangle intersection tests are needed for 

constructing two triangles for an intersected cell edge. 

 

Fig. 7.  Four tetrahedra form the intersection-free envelope Ee around the edge 

e. 

  

 

Fig. 8.  Two cases that vp becomes a concave envelope vertex: (left) the edge 

vp-v
-
e is concave and (right) the edge vp-v

+
e is concave. 

 

 

Fig. 9.  The tetrahedron formed by two cell vertices in diagonal cells and the 

edge e can only intersect three of the four cells around e. 

 

 

Fig. 10.  An example with two concave envelope vertices: (left) location of 

vertices around edge e and (right) the triangulation by inserting an edge 

vertex ve. 
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According to the fastest algorithm of edge-triangle intersection 

test in literature (ref. [26]), each edge-triangle intersection test 

needs 3 cross-products and 3 (or 4) dot-products. Therefore, 

totally 18 cross-products and 24 dot-products are required in 

the worst case. In our convex/concave analysis, we only need 

to detect whether the four vertices are concave envelope 

vertices. Specifically, detecting whether a vertex vp is below 

the oriented triangle vs-vq-v
+

e can be efficiently done by 

checking if the scalar triple product below satisfies 

(vp – v
+

e) · ((vs - v
+

e) × (vq - v
+

e)) < 0. 

In the worst case, 8 cross-products and 8 dot-products are 

needed. When computing scalar triple product by using 

determination, the computation can be further reduced. 

Moreover, if vp is found to be a concave envelope vertex, the 

detection of vr can be neglected (by Remark 11). The detection 

on vq and vs can be simplified in the same way. Practical tests 

and comparisons with [8] can be found in the following section 

(section VII-B). 

In the aspect of robustness, the detection based on edge-

polygon intersection test is suffered from the extreme cases 

(e.g., intersection occurs on the edge or vertex of the triangle). 

To ensure not missing any possibility of self-collision, some 

nearly intersected (but not really intersected) cases may be 

classified as intersection, which leads to more triangles on the 

resultant mesh surfaces by the unnecessary triangulation. Our 

detection that is based on convex/concave analysis does not 

have such a problem. 

VII. EXPERIMENTAL RESULTS AND DISCUSSION 

The proposed approach has been implemented in Visual 

C++ plus OpenMP. OpenMP is employed to parallelize the 

computation on the PC with multi-core CPUs, which is quite 

common on consumer-level PCs.  

A. Experimental Tests 

Our implementation has been tested on a variety of models 

to generate grown or shrunk offset surfaces in different offset 

values (as shown in Figs.11-19). The computational statistics 

in terms of time are shown in Table I. The input mesh models 

are with different number of triangles varying from 7.1k to 

400k. Offset surfaces for these models can be generated in less 

than 40 seconds. The statistics in this paper are all tested on a 

PC with two Intel Xeon Quad E5440 CPUs at 2.83GHz + 8GB 

RAM. All the offset distances are described as relative values 

to the diagonal lengths of bounding boxes for the given 

models. Table II gives the statistics on computing time for 

generating the offset surfaces (r = 0.02) on a chair model (see 

Fig.17) with different numbers of triangles. From the statistical 

data, it is easy to find that our approach scales quite well with 

the increase of grid resolution and the number of triangles. The 

increase of computing time is approximately linear to the 

increase of resolution, which outperforms other volumetric 

approaches on uniform or adaptive grids. The computing time 

increases less than linear ratio compared with the increment of 

(a) (b) (c)

(d)

 
Fig. 11.  Offset surfaces generated by our approach on a carved-cube model:  

(a) the given model, (b) the shrunk offset surface with distance -0.04, (c) the 

grown offset surface with distance 0.05, and (d) the zoom-in view of the 

shrunk offset surface – it is easy to find that sharp features are well 

reconstructed on the offset surface. 

TABLE I 

COMPUTATIONAL STATISTICS (IN SECOND) 

Model Fig. F# Offset Ts Td Tc Ttol 

Carve-

cube 
11 7.1k 

-0.04 
0.06 

13.2 15.7 28.96 

0.05 13.8 17.8 31.66 

Anchor-

plate 
12 9k 

-0.041 

0.06 

6.4 13 16.96 

0.013 7.2 13.9 21.16 

0.2 16.15 18.13 34.33 

Octa-

flower 
13 15.8k 

-0.05 
0.15 

4.95 13.45 18.55 

0.1 12.2 16.2 28.55 

Dragon 14 49.4k 
-0.02 

0.45 
8.16 13.65 22.26 

0.03 13.8 15.37 29.62 

Vase-

lion 
15 

 

400k 

-0.02 
4.2 

15.8 15.5 35.5 

0.04 17 17.2 38.4 

Rabbit 21 134k -0.03 1.3 5.6 13.5 20.4 

F#: number of triangles for the given model 

Ts: time for construction SSVH 

Td: time for generating the narrow-band signed distance field 

Tc: time for surface contouring 

Ttol: the total time for offset surface generation 

 

TABLE II 

OFFSETTING TIME ON GRIDS WITH DIFFERENT RESOLUTION (IN SECOND) 

Res. 65×65×65 129×129×129 257×257×257 513×513×513 

F#: 40k 0.53 0.98 3.34 21.6 

F#: 400k 4.6 5.3 8.4 28.7 

F#: number of triangles on the chair model. 

 
TABLE III 

COMPUTING TIME FOR DIFFERENT OFFSET VALUES (IN SECOND) 

Rocker-

arm 

r 0.01 0.02 0.04 0.08 0.16 0.32 

Ttol 19.8 20.7 22.4 26 31.7 50.7 

Terracotta

-warrior 

r -0.02 -0.01 0.01 0.02 0.04 0.08 

Ttol 18.6 19.2 19.7 21.2 23.1 26.6 

Filigree 
r -0.005 0.005 0.01 0.02 0.04 0.08 

Ttol 26.8 29.5 30.6 33.5 37.4 49.2 

r: offset value 

Ttol: the total time for offset surface generation 

*The results can be found in Figs.17-19. 
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triangle numbers. Another study is the computing time of our 

approach on generations with different offset values (see Table 

III). Again, the increment of computing time is less than linear 

ratio compared with the increment of offset values. In short, 

our approach scales well on models with different triangles, 

different offset values, and different grid resolutions. 

To study the performance of the filters proposed in this 

paper, we test the reduction in the number of closest point 

     
(a) The given model (b) The shrunk offset surface with distance -0.041 (c) The grown offset surface with distance 0.2 

Fig. 12.  The anchor-plate model and its offset surfaces. 

 

     
(a) The given model (b) The shrunk offset surface with distance -0.05 (c) The grown offset surface with distance 0.1 

Fig. 13.  The octa-flower model and its offset surfaces. 

  

     
(a) The given model (b) The shrunk offset surface with distance -0.02 (c) The grown offset surface with distance 0.03 

Fig. 14.  The offset surfaces for the dragon model. 

 

     
(a) The given model (b) The shrunk offset surface with distance -0.02 (c) The grown offset surface with distance 0.04 

Fig. 15.  The offset surfaces for the vase-lion model. 

 

TABLE IV 

NUMBER OF TIMES OF DISTANCE COMPUTATION BY APPLYING DIFFERENT FILTERS  

Offset 

Dist.  
BB BB + SD BB + OT BB + SD + OT 

BB8 BB16 BB32 BB64 BB8 BB16 BB32 BB64 BB128 BB128 

-0.04 5,767k 2,982k 2,023k 1,583k 3,670k 1,737k 1,110k 556k 585k (159k) 120k (41k) 

-0.02 5,243k 2,785k 1,790k 1,322k 4,194k 2,228k 1,307k 819k 620k (152k) 240k (72k) 

-0.01 5,243k 2,654k 1,638k 1,196k 4,981k 2,294k 1,397k 943k 625k (129k) 325k (89k) 

0.01 5,505k 2,785k 1,818k 1,269k 5,505k 2,785k 1,818k 1,269k 642k (136k) 476k (122k) 

0.02 6,029k 3,113k 2,073k 1,506k 6,029k 3,113 2,073k 1,506k 775k (169k) 534k (139k) 

0.04 6,291k 3,899k 2,699k 2,017k 6,291k 3,899k 2,699k 2,018k 750k (203k) 630k (170k) 

0.08 10,224k 5,833k 4,227k 2,668k 10,224k 5,833k 4,104k 2,668k 865k (240k) 858k (234k) 

0.16 16,777k 11,239k 7,258k 4,248k 16,777k 11,239k 7,258k 4,248k 1,410k (389k) 1,410k (389k) 

0.32 40,370k 26,116k 15,667k 8,847k 40,370k 26,116k 15,667k 8,847k 2,846k (797k) 2,846k (797k) 

Values in the bracket are the number of times of distance computation for testing valid and invalid bounding boxes during filtering. 
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query conducted in the construction of narrow-band signed 

distance field. The terracotta-warrior model with 60k triangles 

and the uniform grid with resolution 513×513×513 are 

employed in these tests. Four classes of cases are tested here: 

1) bounding box filter BBm with m denoting the number of 

grid cells in the bounding box in one direction, 2) bounding 

box filter plus the signed distance filter SD, 3) bounding box 

filter plus the octree filter OT, and 4) BBm + SD + OT. Table 

IV lists the statistical data. It is not difficult to find that by 

applying BBm + SD + OT together, around 97% – 99.9% of 

the unnecessary distance computations on grid nodes can be 

removed.  

The efficiency of our hybrid model for intersection-point 

computation on intersected edges is also studied. We count the 

number of intersected edges that can have the intersection 

point been found on the terracotta-warrior model with different 

     
(a) The given model (b) 64×64×64 (c) 128×128×128 (b) 256×256×256 (b) 512×512×512 

Fig. 16.  The chair model with 40k triangles and its offset surfaces generated with different grid resolutions. 

 

     
(a) The given model (b) r = 0.01 (c) r = 0.02 (d) r = 0.04 (e) r = 0.08 

Fig. 17.  The rocker-arm model with 20k triangles and its offset surfaces using different r. 

  

     
(a) the given model (b) r = -0.02 (c) r = -0.01 (d) r = 0.01 (e) r = 0.02 

Fig. 18.  The terracotta warrior model with 200k triangles and its offset surfaces using different r. 

 

     
(a) the given model (b) r = -0.005 (c) r = 0.005 (d) r = 0.01 (e) r = 0.02 

Fig. 19.  The filigree model with 260k triangles and its offset surfaces using different r. 

 



IEEE Transactions on Automation Science and Engineering 

 

12 

resolutions – with 60k, 200k and 600k triangles. The similar 

test is also conducted on the same terracotta-warrior model 

(with 60k triangles) but with different offset values and on 

grids with different resolutions. All statistical data are listed in 

Table V. It is easy to conclude that the analytical solution can 

be found on more than 90% of the intersected edges after six 

times of subdivision; whereas, the bisection search based 

method can find intersection points on less than 7% of the 

intersected edges after six times of subdivisions. In short, our 

hybrid method greatly reduces the time of intersection 

computation.  

The resultant models of offsetting are required to be self-

intersection-free in general. Figure 20 gives an example of 

some successfully removing self-intersected triangles on the 

offset surface of the anchor-plate model which has been 

previously shown in Fig.12(b). 

Our offsetting approach is volumetric which is immune to 

self-intersection, and the offset surface is defined by a signed 

distance function (Eq.(1)) so that it guarantees the uniform 

wall thickness – which is important for generating the 

hollowed model in rapid prototyping. A rabbit fabricated from 

the hollowed model generated by our method is shown in 

Fig.21. It is easy to find that the wall thickness is uniform and 

the sharp features are preserved on the inner surface of the 

hollowed model. 

B. Discussions 

To verify the performance of our algorithm, we test the 

Buddha model with 1M triangles used in [5] on our 

implementation with the same offset value (2% of the diagonal 

length of the bounding box) and the same resolution (512
3
). 

Moreover, to fairly conduct the comparison, we turn off the 

parallel speedup in our implementation – in other words, only 

one core of the CPU is employed. When using one core (i.e., 

no speed optimization using parallel computing), the offset 

surface can be generated in 180.5 seconds where we spend 9 

seconds on SSVH construction (Ts), take 114.5 seconds in 

generating the signed distance fields in narrow-based (Td) and 

TABLE V 

STATISTICS OF HYBRID METHOD FOR INTERSECTION POINT ON EDGES   

Tests on the Terracotta-warrior Model with Different Number of Triangles 

F# IntE# 
Hybrid Bisect. 

Sd = 0 Sd = 1 Sd = 2 Sd ≤ 6 Sd ≤ 6 

60k 85032 71.5% 15.4% 7% 99.5% 6.4% 

200k 85032 51.3% 20.6% 13.3% 98.8% 6.4% 

600k 85032 34.7% 20.3% 17.7% 97.6% 6.4% 

Tested on Terracotta-warrior Model with 60k Trgl. with Diff. Off. Dist. 

Offset 

Dist. 
IntE# 

Hybrid Bisect. 

Sd = 0 Sd = 1 Sd = 2 Sd ≤ 6 Sd ≤ 6 

-0.04 16646 64.8% 15.2% 9.5% 99.2% 6.9% 

-0.02 34952 52% 19.8% 13.4% 98.8% 6.6% 

-0.01 49208 44.3% 22.7% 15.8% 98.7% 6.9% 

0.01 77356 59.1% 21.5% 10.7% 99.4% 6.6% 

0.02 85032 71.5% 15.4% 7% 99.5% 6.4% 

0.04 101458 82.1% 9.5% 4.5% 99.7% 6.6% 

0.08 139356 89.6% 5.5% 2.5% 99.8% 6.5% 

0.16 229504 94.8% 2.7% 1.2% 99.9% 6.6% 

0.32 463838 97.6% 1.2% 0.6% 99.9% 6.4% 

Tested on Terracotta-warrior Model with 60k Trgl. with Diff. Grid Res. 

Grid 

Res. 
IntE# 

Hybrid Bisect. 

Sd = 0 Sd = 1 Sd = 2 Sd ≤ 6 Sd ≤ 6 

64 1268 6.2% 15.5% 27% 97.7% 0.8% 

128 5520 20.4% 25.5% 22.2% 93.4% 1.5% 

256 21030 47.6% 24.7% 14.8% 99.3% 3% 

512 85032 72.1% 14.9% 7% 99.5% 6.4% 

*The percentages shown here describe the number of intersected edges 

that have found the intersection points after Sd times of subdivision. 

 

   

Fig. 20.  Self-intersection on triangles can be successfully removed on our 

modified intersection-free dual contouring algorithm. The surface is an offset 

of the anchor-plate model given in Fig.12. 

 

     

  

Fig. 21.  Hollowing a rabbit model: (top) the rabbit and its hollowed model, 

and (bottom) the fabricated model by a Fused Deposition Modeling (FDM) 

RP machine. 

 

      

Fig. 22.  Offset surface generating on a Buddha model with 1M triangles: 

(left) the given model and (right) the offset surface with offset value equaling 

to 2% of the diagonal length of the bounding box. 
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use 57 seconds for surface contouring (Tc). The computing 

time reported in [5] is more than 3,000 seconds. We consider 

this as a significant speed up (with more than 20 times). When 

eight cores on our test-bed are all used, the time for offsetting 

the surface can be further reduced into 51.1 seconds with Ts = 

9 sec., Td = 22.8 sec. and Tc = 19.3 sec. – more than 50 times 

speed up. Figure 22 shows our offsetting result. 

The self-intersection detection approach proposed in section 

VI is also compared with the method presented in [8]. The 

testing results agree with our analysis – around two times of 

speed up can be achieved. Furthermore, as ours is more robust 

from numerical errors, less triangles are generated. The 

computational statistics on several examples can be found in 

Table VI. 

The precision analysis on the resultant model is given in 

Table VII, where the average distance errors and the maximal 

distance errors with reference to the offset value have been 

listed. Generally, the average distance errors are small but the 

maximal distance errors are relative big in some examples. 

This is because that the surface contouring is limited by the 

highest resolution of distance and may generate some triangle 

edges that have high shape approximation error. This 

considered as the first limitation of our approach.  

The second major limitation of our approach is a common 

problem of all approaches when using a fixed resolution to 

sample the problem domain. The features whose size is less 

than the sampling distance may be missed during the 

reconstruction step. This may result in an offset mesh surface 

which is not topologically homeomorphic to the actual offset 

surface. Although the surface reconstruction for guaranteeing 

the topology is important, the homeomorphic requirement can 

be released in some applications (e.g., rapid prototyping, CNC 

manufacturability analysis), where our approach can be 

employed. An adaptive sampling based approach like [27] can 

be considered to preserve the topology. This is one of our 

possible future works.  

Another limitation of our current implementation is that 

some sharp features whose size is less than the sampling 

distance between neighboring grid nodes may be harmed 

during the intersection-free reconstruction. The shape of such 

features however can be recovered by the original dual 

contouring [7]. One of our near future works is to develop an 

incremental algorithm to recover the shape of these small 

sharp features while preventing self-intersection. 

VIII. CONCLUSION 

In this paper, we present a fast offset surface generation 

approach to construct intersection-free offset surfaces from a 

solid bounded by triangular mesh surfaces. Sharp features are 

preserved on the resultant models. The basic spirit of our 

algorithm is to sample a signed distance field in a narrow-band 

from the input model on a uniform grid and then employ a 

contouring algorithm to build the resultant offset mesh surface 

from the signed distance field. Four filters are developed to 

generate the distance-field around the offset surface in a very 

efficient way by neglecting the redundancies in the regions far 

from the offset surfaces. In our approach, the resultant mesh 

surfaces are generated by a modified dual contouring which 

relies on accurate intersections between the grid edges and the 

isosurfaces. A hybrid method is developed to prevent the 

expensive bisection search in the configurations where the 

analytical solutions exist. Our modified intersection-free dual 

contouring is based on convex/concave analysis, which is more 

robust and efficient. The quality and performance of our 

approach have been demonstrated by a number of tests on 

various models and the comparisons with the state-of-the-arts.  
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