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Abstract—This paper addresses the problem of volume 

parameterization that serves as the geometric kernel for design 

automation of customized free-form products. The purpose of 

volume parameterization is to establish a mapping between the 

spaces near to two reference free-form models, so that the shape of 

a product presented in free-form surfaces can be transferred from 

the space around one reference model to another reference models. 

The mapping is expected to keep the spatial relationship between 

the product model and reference models as much as possible. We 

separate the mapping into rigid body transformation and elastic 

warping. The rigid body transformation is determined by anchor 

points defined on the reference models using a least-square fitting 

approach. The elastic warping function is more difficult to 

obtained, especially when the meshes of the reference objects are 

inconsistent. A three-stage approach is conducted. Firstly, a 

coarse-level warping function is computed based on the anchor 

points. In the second phase, the topology consistency is maintained 

through a surface fitting process. Finally, the mapping of volume 

parameterization is established on the surface fitting result. 

Comparing to previous methods, the approach presented here is 

more efficient. Also, benefited from the separation of rigid body 

transformation and elastic warping, the transient shape of a 

transferred product does not give unexpected distortion. At the 

end of this paper, various industry applications of our approach in 

design automation are demonstrated. 

 

Note to Practitioners—The motivation of this research is to 

develop a geometric solution for the design automation of 

customized free-form objects, which can greatly improve the 

efficiency of design processes in various industries involving 

customized products (e.g., garment design, toy design, jewel 

design, shoe design, and glasses design, etc.). The products in the 

above industries are usually composed of very complex geometry 

shape (represented by free-form surfaces), and is not driven by a 

parameter table but a reference object with free-form shapes (e.g., 

mannequin, toy, wrist, foot, and head models). After carefully 

designing a product around one particular reference model, it is 

desirable to have an automated tool for “grading” this product to 

other shape-changed reference objects while retaining the original 

spatial relationship between the product and reference models. 

This is called the design automation of customized freeform object. 

Current commercial 3D/2D Computer-Aided Design (CAD) 

systems, developed for the design automation of models with 

regular shape, cannot support the design automation in this 

manner. The approach in this paper develops efficient techniques 

for constraining and reconstructing a product represented by 

freeform surfaces around reference objects with different shapes, 
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so that this design automation problem can be fundamentally 

solved.  Although the approach has not been integrated into 

commercial CAD systems, the results based on our preliminary 

implementation are encouraging – the spatial relationship between 

reference models and the customized products is well preserved.  

 
Index Terms—Deformation, design automation, free-form 

objects, radial-basis function. 

 

I. INTRODUCTION 

HE design automation functions provided in current 

commercial CAD/CAM/CAE systems are developed for 

products with regular shapes. This kind of design automation is 

usually driven by dimensional parameters, so called parametric 

design [1-3]. However, the products in industries like apparel, 

toy, jewel, shoe, and glasses etc. are usually composed of 

complex geometry represented by freeform surfaces, and with 

their shape adjusted by the reference models “wearing” the 

products. In these industries, after carefully designing a product 

around one particular reference model, it is desirable to have an 

automatic process that can “grade” this product to other 

reference objects with shapes varied while maintaining the 

spatial relationship on the original design. This is called the 

design automation of customized freeform object. The purpose 

of this research is to develop a fundamental technique – volume 

parameterization for supporting this design automation.  

Consider two reference objects aH  and bH , which are 

represented by free-form polygonal meshes, a volume 

parameterization as referred to here is a forward mapping 

ba Ω→ΩΨ :  from any point p  in the space 3ℜ⊂Ωa  

around aH  to a corresponding point p′  in the space 3ℜ⊂Ωb  

around bH . Based on Ψ , a product Μ  originally designed 

around aH , which is also represented by free-form polygonal 

meshes, could be transferred to the shape around bH  by 

mapping the position of every vertex on Μ  into a new position 

in bΩ . In the design automation applications, the mapping Ψ  

is expected to be sensitive to semantic features on the reference 

models, which is usually described by anchor points. Therefore, 

two set of anchor points, aG  and bG , are assigned on aH  and 

bH  – the anchor points are one-to-one mapped which could be 

either automatically extracted or interactively specified. The 

correspondences of the anchor points give the relationship of 
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semantic features on the reference models. Particularly, more 

anchor points are given, more accurate mapping Ψ  could be 

computed. The mapping Ψ  is also expected to provide a 

smooth transition between aΩ  and bΩ  (i.e., the mapping 

)(tΨ  is a smooth function with the transient variable ]1,0[∈t ). 

The mesh connectivity on aH  and bH  are generally 

inconsistent. The previous approaches presented in [4-7], which 

all require consistent connectivity, cannot be directly applied to 

establish the mapping Ψ . Although the meshes on reference 

models are not necessarily the same, they usually have similar 

features. In other words, there is little use of transferring the 

clothes on a human body to a cup. Our volume parameterization 

technique makes use of this characteristic to compute Ψ  on the 

reference models with different meshes. 

In order to provide a smooth transition property in Ψ , we 

separate the mapping into two sub-mappings: 1) rigid body 

transformation and 2) elastic warping. The rigid body 

transformation is usually represented by a rotation matrix 

),,( zyxR θθθ  and a translation vector T. We determine 

),,( zyxR θθθ  and T through a least-square fitting process. The 

procedure of computing the elastic warping component in the 

mapping Ψ  is more complex. A three-stage approach is 

developed for this, which starts from computing a coarse-level 

warping function by anchor points. After applying the 

coarse-level warping function on the mesh surface of aH , we 

obtain a warped aH ′ . The shapes of aH ′  and bH  are similar to 

each other such that a surface fitting process can be applied on 

aH ′  to match its connectivity to that of bH . A bijective 

correspondence is therefore established between the surfaces of 

aH  and bH  (this correspondence is also called cross-surface 

parameterization [8, 9]). By the cross-surface parameterization, 

we could finally construct the mapping Ψ  in two manners, 

either using Compactly Supported Radial-Basis Function – 

CSRBF or using polygon driven Free-Form Deformation – 

p-FFD [7].  

As will be discussed in detail, the contribution of our volume 

parameterization framework includes:  

1) The volume parameterization technique proposed in this 

paper provides a geometric framework for the design 

automation of customized free-form products;  

2) The mapping of spaces around reference models is 

established without the restriction of having the same 

connectivity on the reference models; 

3) The mapping of parameterization could be constructed 

both mathematically and algorithmically, where the 

CSRBF description can be repeatedly used for the design 

automation of other products on the same two references 

models, while the p-FFD result needs to be recomputed 

every time when a new product is considered – thus the 

CSRBF-based method presented in this paper is more 

efficient; 

4) Based on the separation of rigid body transformation and 

elastic warping, the mapping Ψ  provides a smooth 

transformation between aΩ  and bΩ , which is important 

for the serials “grading” – so that unwanted distortions are 

avoided on the transient results; 

5) The mapping method described in this paper is compact 

and easy to implement since the mapping is mathematically 

defined instead of complex algorithmic procedures. 

In more detail, comparing the technique presented in this paper 

with our previous work [7], novelties are shown in three aspects: 

• The constraint about the consistent mesh connectivity on 

reference models is overcome, i.e., as long as the reference 

models are with the similar features, the mapping Ψ  

between them can be established. 

• Based on the mathematical mapping function which 

separate the rigid transformation and the elastic 

deformation, a smooth transition can be achieved on )(tΨ  

with the transient variable ]1,0[∈t . 

• Lastly also the most important one is that, the mapping 

defined mathematically by CSRBF is more compact and 

efficient since the same mapping is employed when new 

products are introduced – the mapping needs not to be 

recomputed. 

The rest of this paper is organized as follows. After reviewing 

related techniques, the methodology of constructing a volume 

parameterization is introduced in section III. The details of 

numerical implementation are then presented in the following 

section. Finally, through experimental results and applications, 

we show that the proposed method successfully transfers 

products with free-form surface from one reference model to 

another model while maintaining the spatial relationship in 

between.  

 

II. RELATED WORK 

In this section, we successively review related techniques 

about surface and cross-surface parameterization, free-form 

deformation, and radial-basis functions (RBFs). 

A. Surface and Cross-Surface Parameterization 

The parameterization of mesh surface is actually a process of 

flattening 3D meshes, which provides a bijective mapping 

between the mesh and a planar polygon. If two meshes are 

mapped into the same planar polygon, the bijective mapping 

could also be constructed between 3D meshes. An excellent 

survey of recent advances in mesh parameterization is given in 

[10], see also the references therein. Floater [11] investigated a 

graph-theory based parameterization on tessellated surfaces for 

the purpose of smooth surface fitting; his parameterization 

(actually a planar triangulation) is the solution of linear systems 

based on convex combination. Most recent approaches [12-19] 

of surface parameterization focused on how to construct a 

conformal mapping between the 3D mesh and the planar 

polygon, while trying to minimize the length distortion (i.e., 

isometric mapping is desired). 

The above planar parameterization approaches have the 
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limitation that a closed surface needs to be cut into one or more 

disk-like charts, where each chart is then parameterized 

independently. As mentioned in [9], the cuts break the 

continuity of the parameterization, and make it difficult to 

construct a continuous map between two different mesh 

surfaces. Thus, the cross-surface parameterization without 

cutting is required. The cross-surface parameterization is 

typically computed by registering the model onto a common 

based domain (ref. [20-25], where Alexa [20] gives a detail 

review of cross-parameterization and compatible remeshing 

techniques for three-dimensional morphing). Recently, in [8], 

the authors computed a low-distortion bijective mapping 

between models while satisfying user predefined feature 

constraints – also in the form of anchor points. The approach in 

[9] addressed the same problem but using progressive mesh as 

intermedium.  

Allen et al. [26] used the connectivity of one mesh to 

approximate the connectivity of another, avoiding explicit 

parameterization. Since in design automation, the reference 

models usually have similar shapes, we construct the mapping 

between reference models by a method akin to [26] but with 

faster computation time. So far, all surface parameterization or 

cross-surface parameterization approaches considered only 

points on the given surfaces. In this paper, we address the 

problem of mapping points in the spaces around given mesh 

models, in which there is not much published work found in the 

literature. 

In the area of industrial design, there are some works related 

to our research in the name of parametric design of free-form 

models (e.g., [27, 28]), where the work in [27] conducted a 

feature-template matching method to recognize freeform 

features and their parameters, and [28] worked on the dimension 

driven parameterized design of free-form objects where the 

purpose is to obtain a new free-form object similar in shape to 

the old one but with different set of dimension instantiations. 

B. Free-Form Deformation and Warping 

Free-Form Deformation (FFD) [29] and its variants [30-33] 

take an important role in geometric modeling, where a free-form 

object to be deformed are embedded inside a volume which is 

usually parametrically represented. When the volume is 

deformed, the embedded free-form objects are transformed to a 

new shape by keeping the parameters relative to the volume at 

every vertex. FFDs are useful for coarse-scale deformations but 

not finer-scale deformations even if a very dense lattice or 

customized lattice shape is defined. The t-FFD approach [6] 

adopts triangles as deformation primitives so that detail 

deformation control could be achieved. However, as mentioned 

before, t-FFD cannot be directly applied to construct the 

mapping Ψ  for volume parameterization since the consistent 

connectivity on reference models is required. The last step in 

our algorithm-based solution of volume parameterization could 

also adopt a similar approach – p-FFD [7] to finish the elastic 

warping, where polygonal facets of reference models are 

utilized as deformation drivers. 

In [34], Hua and Qin proposed a scalar-field-guided adaptive 

shape deformation technique, where a displacement or velocity 

field is generated upon the deformation of a scalar field 

resulting in a shape deformation of the embedded objects. Their 

approach actually provided an implicit solution for the volume 

parameterization. If two distance-field aD  and bD  are 

computed around aH  and bH  correspondingly, when a 

velocity field is constructed on the deformation from aD  and 

bD , one solution of volume parameterization is given by 

embedding the free-form product Μ  of aH  in the velocity 

field. However, three problems arise: 1) this is an implicit 

solution (i.e., the mapping Ψ  is not explicitly given), which 

leads to a long computing time; 2) every time when a new 

product is considered, the mapping between aH  and bH  

needs to be recomputed – this is definitely inefficient; 3) the 

deformation is not sensitive to rotations on the reference 

models. For the third problem, the authors in [35] separate the 

deformation into a rigid body transformation Γ  and an elastic 

warping Ε  so that smooth transient results could be achieved. 

In this work, we applied a similar separation. However, it is 

found that the order of applying Γ  and Ε  in [33] may affect the 

smoothness in transient results. Thus, an alternative method is 

developed. 

Some others [36, 37] did the research similar to ours in the 

framework of animation. In their approaches, the affine 

transformation is separated from the deformation instead of the 

rigid one. In our approach, since the affine transformation terms 

have been included in the RBF and CSRBF, we only separate 

the rigid transformation out. 

C. Radial-Basis Functions 

Nowadays, radial-basis functions (RBFs) have been widely 

employed in various areas of geometric modeling – for 

example, RBFs based surface reconstruction [38-42], RBFs 

based metamorphosis [35, 43], RBFs based geometry and image 

processing [44], and RBFs based semantic parametric design [5, 

45, 46]. The RBFs could be classified into the ones having 

global effect and the compactly supported RBFs (CSRBFs) with 

local effect. The procedure of determining coefficients in RBFs 

involves the step of solving a linear equation system. The 

sparseness of CSRBFs makes it possible to have a fast solution 

when the number of interpolates is huge. Therefore, in our 

approach, the preliminary warping function at the coarse-level 

adopts global RBFs interpolating anchor points whose number 

is usually few, and CSRBFs are conducted to define the final 

warping function in Ψ  with thousands of interpolates involved. 

 

III. METHODOLOGY 

This section describes the methodology of volume 

parameterization. To construct a mapping Ψ  satisfying the 

requirements listed above, we successively address the issues 

about how to separate the rigid body transformation and the 

elastic warping, how to find the cross-surface correspondences, 

and how to finally establish the integrated mapping with 
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transformation and warping.  

A. Rigid Body Transformation and Anchors Based Warping 

Without loss of general, let us assume that the 

correspondences have been constructed between points in the 

spaces aΩ  and bΩ  of two reference models aH  and bH . The 

simplest transient mapping )(tΨ  between aΩ  and bΩ  is a 

linear blending: ba ttt Ω+Ω−=Ψ )1()(  with ]1,0[∈t . 

However, as demonstrated in Fig. 1, linear blending is not 

sensitive to the orientation of the reference objects where 

unexpected distortion may be obtained. Thus, we partition the 

mapping between aΩ  and bΩ  into a rigid body transformation 

TqRq zyx +≡Γ ),,()( θθθ  and an elastic warping )(LΕ  with 

ba Ω≡ΩΕΓ ))((  and hence, 

tTtttttRt aazyx +ΩΕ+Ω−=Ψ ))()1)((,,()( θθθ .   (1) 

The rotation matrix ),,( zyxR θθθ  and the translation vector T 

can be determined in a least-square sense by minimizing the 

following energy function defined on the anchor points ( aG  

and bG  prescribed on the reference models) 

∑
∈

′−+=

aGq

zyx qTqRJ
2

),,( θθθ ,                (2) 

where bGq ∈′  is the corresponding anchor point of aGq ∈  and 

L  is the Euclidean norm on 3ℜ . 

After determining the rigid body transformation )(LΓ , the 

elastic warping )(LΕ  also needs to be computed.  A 

coarse-level warping function is expected to be a nonlinear 

transformation 33:
~

ℜ→ℜΕ  such that 

)()(
~ 1 qq ′Γ=Ε −     ( aGq ∈  and bGq ∈′ )              (3) 

with ))(,,()(1 TqRq zyx −′−−−≡′Γ− θθθ . Since the anchor 

points in bG  have been transformed backwards by )(1
q′Γ−  to 

have the same center and orientation with the points in aG , the 

elastic function determined by Eq.(3) will not be affected by the 

change in orientations of the reference models. The hybrid of 

)(LΓ  and )(
~
LΕ  is expected to map corresponding anchor 

points exactly. This is in fact a multivariable scattered data 

interpolation problem, which we propose to solve by using 

radial basis functions. The determined mapping based on 

anchor points is denoted by Ψ
~

. The implementation details will 

be presented in the A and B parts of section IV. 

B. Cross-surface Correspondences 

The elastic warping function determined by interpolating 

anchor points only accurately controls the warping near anchor 

points. For the space between anchor points, the warping is not 

well defined. For example in Fig. 2, after applying the 

transformation and warping (generated by anchor points) on the 

surface of aH , the surface obtained is still somewhat different 

from the surface of bH . In order to have a more accurate 

mapping, we need to increase the number of corresponding 

points on the surfaces of aH  and bH . This is achieved through 

a procedure of surface fitting. 

 

Fig. 1.  The transient results of linear blending (top row) have unwanted 

distortion – the model becomes very thin and narrow (the 2nd and the 3rd model 

at the top row), i.e., the model between the first and the last models is even 

thinner than themselves, which is not reasonable; the results from the mapping 

with rigid body transformation and elastic warping (bottom row) are smooth. 

  

 
Fig. 2.  After applying the transformation and warping (generated by anchor 

points) on the surface of reference model Ha, the result surface is still 

somewhat different from the surface of Hb. 
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Surface fitting is performed by minimizing an energy 

function defined by the differences between the surfaces of 

)(
~

aHΕ  and bH ′  (with )(1
bb HH −Γ=′ ) and the smoothness 

term on the resultant surface. In fact, the surface fitting process 

is an evolution of )(
~

aHΕ  to obtain a deformed model aH ′ , 

which has its shape approximates bH ′  and maintains the same 

mesh connectivity on aH . The numerical scheme for this step 

is detailed in the part C of section IV. 

C. Volume Parameterization 

With the help of aH ′ , a finer-level correspondences between 

points on the surfaces of aH and bH ′  is obtained. Therefore, an 

accurate mapping )(tΨ  defined in Eq.(1) for volume 

parameterization can be established by computing an accurate 

elastic function )(LΕ  based on the position of vertices on aH  

and aH ′ . The elastic function )(LΕ  is then evaluated in the 

manners of CSRBF. To compare with our previous work, 

p-FFD is also conducted to define )(LΕ  implicitly.  

For the CSRBF-based solution, we determine the coefficients 

of compactly supported radial-basis functions (CSRBFs) by 

solving the linear equation system describing the position 

correspondences of vertices on aH  and aH ′ . The compact 

supporting property of CSRBFs makes the linear equation 

system very sparse, so that it can be solved efficiently. Details 

see the part D in section IV. 

)(LΕ  could also be defined (but implicitly) using p-FFD. 

Every vertex on Μ  around aH  is first encoded by its 

coordinates relative to the local coordinate frames on its 

k-nearest polygons on aH . These coordinates are stored and 

used for mapping to a new position when the shape on aH ′  is 

applied instead of aH . The distances from a vertex to the 

centers of the corresponding polygons serve as weights. This is 

called p-FFD since the geometry of Μ  is deformed in the FFD 

sense but with polygons on aH  and aH ′  as deformation 

primaries. The implementation detail (see the part E of section 

IV) is more or less similar to our previous work [7]. 

 

IV. NUMERICAL IMPLEMENTATION 

The numerical implementation details of our volume 

parameterization approach are presented in this section.  

A. Rigid Body Transformation 

We determine the rotation matrix ),,( zyxR θθθ  and the 

translation vector T  by the anchor points in aG  and bG . 

According to Arun et al. [47], if the solution of Eq.(1) is R̂  and 

T̂ , bG  and TGR a +ˆ  have the same centroid, Eq.(1) can be 

simplified by introducing a transfer of coordinate: 

)(  , aiaii Gqcqp ∈−=  and )(  , bibii Gqcqp ∈′−′=′       (4) 

where ac  and bc  are the centroids of aG  and bG , and there 

are N anchor points. Thus, Eq.(2) can be rewritten as 

∑
=

′−=′
N

i

ii ppRJ

1

2
ˆ                             (5) 

since TcRc ab
ˆˆ +≡ . As long as 3>N , let 

0ˆ =∂′∂ RJ                                      (6) 

the 33×  matrix R̂  can be solved by the singular value 

decomposition method (SVD) [48], and the translation vector 

TT ˆ=  is determined by TcRc ab
ˆˆ +≡ . Note that the R̂  

determined by Eq.(3) is a global minimum since the objective 

function J ′ is in the quadratic form. The SVD determined R̂  

needs to be first converted into a quaternion )],,(,[ zyxw . The 

components of the quaternion are then normalized by 

setting 12222 =+++ zyxw . Finally, the Euler angles xθ , 

yθ , and zθ  can be separated from the normalized quaternion so 

that the rotation matrix ),,( zyxR θθθ  is finalized. Details of 

this conversion are stated in [49]. Once ),,( zyxR θθθ  and T are 

determined, the rigid body transformation )(LΓ  is defined. 

B. RBF-based Elastic Function 

A coarse-level elastic function is defined as a function )(
~

qΕ  

to map every anchor point aGq∈  exactly onto the position 

)(1 q′Γ−  with bGq ∈′  (see Eq.(3)). As mentioned above, this is 

a multivariable interpolation problem, where RBFs are the most 

efficient candidate to formulate )(
~

qΕ . Thus, an elastic warping 

function of the following form is considered 

∑
=

−++=Ε
N

i

ii qqgAqq

0

0 )()(
~

βα .                (7) 

where 0α  and A controls the affine transformation of points, 

and the third term in )(
~

qΕ  defined the rest nonlinear warping. 

Here the L  denotes the Euclidean norm on 3ℜ , and 

TA ),,( 321 ααα= . The coefficients 3ℜ∈iβ  ( ni ≤≤1 ) and 

3ℜ∈lα  ( 30 ≤≤ l ) are unknowns to be determined by the 

following interpolation constraints: 

))(,,()()(
~ 1 TqRqq izyxii −′−−−=′Γ≡Ε − θθθ ,     Ni ,,1 L= , (8) 

The form of )(Lg  needs to be determined first. As analyzed, in 

the coarse-level elastic function we expect to have a global 

effect, so that 3)( rrg =  following [35, 42, 50] is adopted. 

There are 3(N+4) unknowns but with only 3N conditions on the 

above interpolation requirements (i.e., Eq.(8)). To avoid this 

uncertainty, the following compatibility conditions are usually 
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The system is symmetric and positive definite unless all iq s are 

coplanar, which seldom happens in practice. Based on this 

constraint, the number of anchor points should be more than 3 

and they must not be coplanar. Therefore, there exists a unique 

solution of )(
~

qΕ  [51]. The number of anchor points usually is at 

the level of tens, so that Gaussian elimination [48] is adopted to 

solve Eq.(10) directly. 

C. Surface Fitting 

To seek a fine-level correspondences of points on the 

surfaces of aH and )(1
bb HH −Γ=′ , we fit the mesh of aH  

onto the geometry of bH ′ . To accomplish the fitting, an 

optimization framework similar to [26] is employed. Each 

vertex iv  in the mesh surface of aH  is influenced by a 

transition vector iT . We wish to find a set of transition vectors 

that move all vertices on aH  to a deformed surface aH ′ , such 

that aH ′  matches well with bH ′ . 

The first objective of a good match is that aH ′  should be as 

close as possible to the target shape bH ′ . For this purpose, our 

objective function holds a term measuring the sum of squared 

distances between each vertex on aH  and the reference surface 

bH ′ . Simply moving each vertex on aH  to its closest point on 

bH ′  may not result in an attractive mesh since neighboring parts 

of aH  could be mapped to disparate parts of bH ′ , and 

vice-versa. A smoothness term is necessary during the 

optimization to avoid this disparity. Our smoothness term tries 

to minimize the difference between the transition vectors on 

neighboring vertices. In summary, the objective function is 

defined as: 

∑∑
∈=

−+−=
)}(),(|,{

2

1

2
0

aji Hedgesvvji

ji

m

i

iif TTTTE          (11) 

where 0
iT  is the transition vector moving the vertex iv  to the 

closest compatible point on bH ′  and m is the number of vertices 

on aH . As mentioned in [26], a point on aH  and a point on 

bH ′  is compatible if the surface normals at each point are no 

more than o90  apart so that the front-facing surfaces will not be 

matched to the back-facing surfaces. The iT s that minimize 

fE  should satisfy 

0)(

)(

0 =−+−=
∂

∂
∑
Π∈ ij vv

jiii

i

f
TTTT

T

E
,                (12) 

which leads to a linear equation system 

0

)(

)1( i

vv

ji TTTn

ij

=−+ ∑
Π∈

                          (13) 

where )( ivΠ  contains the one-ring neighborhood vertices of 

iv , and n is the number of vertices in )( ivΠ . Equation (13) 

satisfies the convergence condition of Gaussian-Seidal method 

for linear equation system [48], so the optimized iT s could be 

determined iteratively through the update 

)(
1

1

)(

0 ∑
Π∈

+
+

=

ij vv

jii TT
n

T .                       (14) 

Since Eq.(11) is in a quadratic form, the optimum determined by 

this update is global. 

An iteration algorithm is conducted to match vertices of  aH  

onto the target surface bH ′ : 

1) The iteration starts by moving every vertex ai Hv ∈  to the 

position )(
~

ivΕ ;  

2) The 0
iT  of every vertex iv  is evaluated; 

3) Determine iT s for iv s which minimizes fE  by the 

iterative update scheme defined in Eq.(14); 

4) Move vertex iv  to a new position ii Tv + ; 

5) Evaluate 0
iT s of all iv s, if any ε>0

iT  (where ε  is a 

terminal threshold, e.g., 5
10

−=ε ), go back to step 3; 

6) Move vertex iv  to its closest position 0
ii Tv +  on bH ′ . 

In this algorithm, the most time-consuming step is the 

evaluation of 0
iT s. A voxel-based method is employed to speed 

up this evaluation. We subdivide the bounding space of bH ′ : 

],[],[],[ maxminmaxminmaxmin zzyyxx ××  

into NML ×× sub-regions with uniform width ∆ , where each 

sub-region 3),,( ℜ⊂ℜ kji  is defined as 

)})1(,[

),)1(,[

),)1(,[|),,{(),,(

minmin

minmin

minmin
3

∆++∆+∈

∆++∆+∈

∆++∆+∈ℜ∈=ℜ

kzkzz

jyjyy

ixixxzyxkji

(15) 

A polygonal face bHf ′∈  is considered as contributing to a 
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sub-region ),,( kjiℜ  if its bounding box )( fB  satisfies 

φ≠∩ℜ )(),,( fBkji  

Pointers to contributed triangles are held by each sub-region 

),,( kjiℜ . With this space subdivision, locating the points 

closest to a vertex aHv∈  in ),,( nmlℜ  only require searching 

in the regions ],[ ττ +−∈ lli , ],[ ττ +−∈ mmj , and 

],[ ττ +−∈ nnk . We start searching from 1=τ , if there is no 

triangle in the indexed sub-regions, τ  is increased 

incrementally until some triangle is found. 

After surface fitting, the refined point correspondences 

between the shapes of aH and bH ′  are constructed. We then 

use the correspondences to formulate a detail elastic function 

)(LΕ to establish the mapping Ψ  for volume parameterization. 

D. CSRBF approach for Volume Parameterization 

The refined elastic function )(LΕ  could be defined in a 

mathematical manner so that every vertex ai Hv ∈  is mapped 

to a new position ai Hv ′∈′ . This is similar to the anchor point 

interpolations for computing the coarse-level elastic function. 

Thus, RBFs is also used to determine the )(LΕ . However, as 

the number of interpolates is significantly increased here 

(usually in the level of thousands or even tens of thousand), 

using a global RBFs, will require solving a very huge linear 

equation system which is computationally expensive. Although 

the fast multipole method (e.g., [52]) can reduce the quadratic 

solution time into neatly linear, the compactly supported 

radial-basis functions (CSRBFs) discussed below is easy to use. 

CSRBFs with relatively small effective distance λ  will make 

the linear equation system very sparse. It can thus be solved with 

linear time complexity. The refined elastic function is 

formulated as 

∑
=

−++=Ε
m

i

ii vvAvv

0

0 )()( ϖβα ,               (16) 

where )16)(
3

35
()1()(

26 ++−=
λλλ

ϖ
rrr

r  for λ<r , or 

0)( =rϖ  for λ≥r . This CSRBF is originally introduced by 

Buhmann in [53] and has been proved to give a nonsingular 

solution of interpolation problem. By setting 

ii vv ′=Ε )( ,                                   (17) 

together with the compatibility conditions, the detail elastic 

function )(vΕ  could be determine by the biconjugate gradient 

method (ref. [48]). In order to solve the linear equation system 

efficiently, the authors in [44] sorted the vertices according to 

the distances between them. However, in our tests, the elastic 

function )(LΕ  could be determined at almost the same speed 

with or without sorting when using the biconjugate gradient 

method proposed in [48]. By this )(LΕ  and the previously 

obtained )(LΓ , the mapping Ψ  for volume parameterization 

is explicitly defined as Eq.(1). 

E. p-FFD for Volume Parameterization 

Another alternative way to calculate )(LΕ  is through an 

implicit method – the p-FFD introduced in [7]. Every polygon 

ai Hf ∈  has a local coordinate frame constructed at its center 

if
c . For a vertex iµ  on the product Μ  around aH , the 

shortest distance, minl , from iµ  to all 
if

c s is first computed. 

Then, all polygons on aH  with the distance from its center to 

iµ  less than min
2

3
l  are located and stored in a collection Ρ . 

The local coordinates ),,( ppp wvu  of iµ  relative to the pth 

polygon pf  in Ρ  is computed and stored together with a 

weight pς . The weight pς  measures the ‘strength’ of the local 

frame on pf  relative to other polygons in Ρ , and is defined as 

5.12228
)(10

1

ppp

p
wvu +++

=
−

ς .                   (18) 

Every polygon ap Hf ∈  has a corresponding face ap Hf ′∈′ . 

Using the local frame on pf ′ s and ),,( ppp wvu  of iµ , the new 

position 
p

iµ  of iµ  around aH ′  can be determined. In general, 

the 
p
iµ s are not consistent. Thus, the final mapping point iµ ′  of 

iµ  around aH ′  is calculated through a weighted blending with 

the weight pς s (ref. [6, 7]). The correspondences of iµ s and 

iµ ′ s actually give an implicit discrete )(LΕ . Comparing to the 

above CSRBF based approach, this implicit discrete elastic 

function could be computed faster. However, this function is 

case dependent. Using different products around the same 

reference model, different correspondences (i.e., different 

implicit elastic functions) have to be recomputed. 

 

V. RESULTS AND APPLICATIONS 

Our first example is the design automation of apparel product 

– also called made-to-measure. As shown in Fig. 3, the dress M 

is originally designed on the reference human body Ha that is 

scanned and reconstructed from a fashion-model A. If a client B 

wants to buy this dress which does not fit for her body, the dress 

has to be customized for the body of B. First, the human body Hb 

for B is scanned and reconstructed using the approach in [54]. 

The volume parameterization technique is then applied to 

construct a new dress Mnew for the client B. Finally, the 3D 

model of Mnew is cut into pieces and flattened into 2D patterns 

(using the approach of [18] or [19]) which will be used for 

fabricating the dress. In this example, the anchor points are 

automatically extracted by a feature-based approach [55]. Of 

course, they can also be interactively specified. 
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In the mapping )(tΨ  of volume parameterization defined in 

Eq.(1), we inverse the order of applying )(LΕ  and )(LΓ  as 

described in [35], where the rigid body transformation is first 

applied and then followed by an elastic warping as 

)),,()()1(()( tTtttRttt azyx +ΩΕ+Ι−=Ψ ′ θθθ .  (19) 

In our investigation, we find that the rotation is not linear for the 

warping function defined in Eq.(19) (i.e., the order in [35]). 

This is because the elastic term )(LΕ  is determined relative to 

azyx tttR Ω),,( θθθ  but not aΩ  so that the )(LΕ  is also 

sensitive to the Euler angles, zyx θθθ ,, . When t is changed, the 

rotation in )(tΨ′  is changed proportionally to ),,( zyx tttR θθθ  

multiplied by the rotation in )(LΕt  (i.e., nonlinearly). In our 

method (the )(tΨ  defined in Eq.(1)), the )(LΕ  is insensitive to 

the Euler angles such that the rotation is changed linearly in 

)(tΨ  with t. This effect is shown in the example of Fig. 4 where 

the rotation is changed linearly with )(tΨ , but nonlinearly with 

)(tΨ′ . 

The anchor points in our volume parameterization are not 

necessary to be on the surface of the reference models, more 

anchor points could also be added in aΩ  and bΩ  to achieve 

 

Fig. 3.  Using the volume parameterization technique to automatically design 

a customized dress for the human body Hb., where the dress M is originally 

designed on the body of Ha; the connectivities on Ha and Hb are inconsistent 

(the top row); after applying the mapping of volume parameterization on M, a 

customized product Mnew for Hb has been reconstructed (the middle row); the 

bottom row gives the 2D patterns for M and Mnew, which can be applied in 

manufacturing; the black nodes on the human body (the middle row) are 

anchor points. 

  

 

Fig. 4.  The investigation about the order of applying the rigid transformation 

and the elastic warping. For the order of rigid transformation followed by 

elastic warp, the rotation is nonlinear (a), while the rotation is linear by our 

mapping defined in Eq.(1) (result in (b)). 

 

 

Fig. 5.  Anchor points can be added in the space around reference models; the 

example space warping without (top) vs. with (bottom) corner anchor points 

are compared. 
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finer control of space warping. See in Fig. 5, eight anchor points 

at the corner of the bounding box of Ha and Hb are added to 

achieve a better control of space warping. 

In the following, we compare the results from the 

CSRBF-based volume parameterization and the p-FFD based 

parameterization. In CSRBFs, an effective distance λ  needs to 

be specified. For any vertex on the product M around Ha, if its 

distance to the vertices on Ha is not less than λ , no radial-basis 

function )( ivv −ϖ  will affect its position in )(LΕ ; i.e., its 

position is deformed in )(LΕ  only by A  and 0α . Benefited 

from this property, the dress reconstructed by the CSRBF-based 

volume parameterization on Hb maintains a straight profile 

around the thighs (see Fig. 6(a)). However, considering the 

reconstructed dress by the p-FFD based parameterization, since 

it tries to maintain the distance of every vertex to the reference 

model, the parts near thighs show some unwanted distortion 

although they are far from the thighs. This difference will not be 

shown if the distance from every vertex on the product M to the 

vertices of Ha is less than λ . This is because the vertices are 

tightly tied on the surface of Ha by the radial-basis function 

)( ivv −ϖ s (see Fig. 6(b)). The computational statistic is 

shown in Table 1, from which it is not difficult to find that the 

CSRBF approach is a little bit slower (because of the time 

required for solving a huge linear equation system). In our tests, 

the value of λ  is chosen to be proportional to the diagonal 

distance of Ha’s bounding box.  

In the apparel industry, the patterns for clothes are usually 

designed on a standard size (e.g., size 36 for female); then, the 

patterns are graded into other sizes. In current CAD systems for 

the garment industry, the grading is performed in 2D via 

offsetting related operations, which cannot guarantee the 

fitness. The volume parameterization technique developed in 

this paper provides a powerful tool for 3D grading on 

mannequins which ensures fitness. As shown in Fig. 7, the set of 

clothes in example II is graded spatially onto the bodies having 

the same height – 165cm but with hip girth increasing from 

88cm to 112cm. The models are generated by the parametric 

design technique of mannequins in [54]. 

The third example shows an application of our technique on 

the design automation of glasses, where the new shape of a 

glass-frame can be automatically constructed (see Fig.8). The 

fourth example demonstrates the design automation of a glove 

on hand models (see Fig.9). Our last example gives the 

application of our volume parameterization technique in the 

shoe industry – the spaces around Ha and Hb are parameterized 

so that the new shoe around Hb is automatically created 

following the shape of foot Hb (see Fig.10), where the spatial 

relationship between the shoe and Ha is retained while 

reconstructing the shoe on Hb. 

VI. LIMITATIONS 

The current implementation of our approach shows several 

limitations: 

• One is that our approach is a forward optimization 

approach, i.e., the bijective mapping between the spaces 

aΩ  and bΩ  is not given. Thus, the mapping Ψ  cannot 

guarantee that there is no self-intersection during shape 

deformation. Recently, in the computer graphics area, some 

volume-grid or also called shell-based approaches [56, 57] 

 

Fig. 8.  Example III: an application for design automation of glasses on two 

head models with different connectivities. 

 

 

Fig. 9.  Example IV: an example of hand and glove; the two reference models 

are with anchor points defined interactively (top right) and with inconsistent 

mesh connectivity (top left); after designing a glove on Ha (bottom left), the 

glove is automatically constructed on Hb (bottom right) by our volume 

parameterization. 

 

 

Fig. 10.  Example V: an example in shoe industry. 
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have been developed for the similar purpose of space 

mapping. They are in fact still mesh-based approaches. 

Although claiming intersection-prevented, they actually 

cannot really guarantee non-self-intersection if the grids 

intersect each other in the global sense (e.g., the space 

around hand intersect the space around thigh on a human 

body).  

• Secondly, the topology consistency of our Ψ  will be 

broken if the anchor points on reference models are 

wrongly matched. For example in Fig.9, if an anchor point 

on the thumb of  Ha is mapped to one on the ring-finger of 

Hb, unexpected distortions will be shown in Ψ . 

• Only points served as semantic features are considered in 

our approach. Although edges and patches can be thought 

as a collection of points, the extension of our current 

implement onto models with feature edges and patches is 

not straightforward. 

• Lastly, our current approach lacks metrics to measure the 

quality of a mapping. All results are visually measured. 

 

TABLE I 

COMPUTATIONAL STATISTIC 

Example Figures 
Parameterization 

method 

Computing 

time  

Surface fitting 

time 

Ha node 

no. 

Ha face 

no. 

Hb node 

no. 

Hb face 

no. 

M node 

no. 

M face 

no. 

3 & 6a CSRBF (l=10) 17.0s 
I 

6a p-FFD 0.3s 
22.0s 2,000 3,936 11,072 11,040 1,900 3,643 

6b CSRBF  (l=10) 19.0s 

6b p-FFD 0.2s 
7.8s 1,960 3,916 2,232 4,460 1,986 3,771 

II 

7 CSRBF  (l=10) 19.0s 24.3s 1,960 3,913 11,520 11,488 1,986 3,771 

III 8 CSRBF  (l=5) 8.5s 22.7s 1,399 2,794 6,093 12,182 608 1,224 

IV 9 CSRBF  (l=8) 6.1s 8.0s 1,982 3,960 2,169 4,334 1,457 2,780 

V 10 p-FFD 1.3s 14.3 7,026 14,044 1,610 3,216 2,171 3,636 

aAll tests are performed on a PC with AMD Althon XP-M 2400+ CPU (1.6GHz) + 512MB RAM. 

 

 
Fig. 6.  Comparison of the results from the CSRBF-based volume parameterization and the p-FFD based volume parameterization. 

 

 
Fig. 7.  On design automation of clothes on the human bodies with hip/height ratio changed (height: 165cm). 
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VII. CONCLUSION 

In this paper, we present a technique called volume 

parameterization which serves as the geometric kernel for the 

design automation of customized free-form products. Volume 

parameterization is in fact a problem about how to establish a 

mapping between the spaces around two reference models. With 

the help of this mapping, a free-form product specified around 

one reference model can be transferred onto other reference 

models. The mapping is separated into a rigid body 

transformation and an elastic warping. To determine the 

mapping, a three-stage approach is developed. In the first stage, 

the rigid body transformation and the coarse-level warping are 

computed by using anchor points which are considered as 

feature constraints. A surface fitting process is then applied to 

the coarsely warped model to construct the correspondences 

between reference models with inconsistent meshes. Finally, the 

space mapping Ψ  for volume parameterization is defined 

mathematically and algorithmically.  

Based on the limitations of our approach, in the future, we 

would like to develop some mesh-free method to achieve a 

bijective mapping so that the property of non-self-intersection 

could be elegantly preserved during the design automation of 

customized free-form products. Introducing a mechanism to 

adaptively add anchor points is under our research plan. 

Considering about anchor points in the current approach – all 

are with the same importance, this may not reflect the practice. 

Therefore, developing a mapping method with weighted anchor 

points could be another possible further research direction. 
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