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Abstract— Surface flattening has numerous applications in
sheet manufacturing industries, such as garment industryshoe
industry, toy industry, furniture industry and ship indust ry.
Motivated by the requirements of those industries, WireWaping
approach presented in [1] is exploited to generate 2D patteis
with invariant length of feature and boundary curves. Howe\er,
strict length constraints on all feature curves sometimes ause
large distortions on 2D patterns, especially for those 3D staces
which are highly non-developable. In this paper, we presena
flexible and robust extension of WireWarping by introducing a
new type of feature curves namededastic feature, which brings
flexibility to shape control of the resultant 2D patterns. On
these new feature curves, instead of strictly preserving th exact
lengths, only the ranges of their lengths are controlled. Tachieve
this function, a multi-loop shape control optimization framework

is proposed to find the optimized 2D shape among all possible

flattening results with different length variations on those elastic
feature curves, while the lengths of other feature curves &
kept unchanged. Besides, we also present a topology prodess
algorithm on the network of feature curves to eliminate case
that lead to numerical singularity. Experimental results show that

the WireWarping++ can successfully flatten surface patchemto

2D patterns with more flexible shape control and more robust
numerical performance.

Note to Practitioners—The major motivation of this research
is to develop a robust and flexible surface flattening technoby,
which can help sheet manufacturing industries to obtain plaar
pieces for fabrication of products. For example, in garment
industry, after automatically designing a user customizedsuit in
3D according to the scanned human body (ref. [2], [3]), it is &ry
important to keep the length invariant on the predefined featre
curves so as to keep the fitness after sewing the 2D pieces tibgpe.
Moreover, the boundaries of two neighboring patches should
have the same length to prevent unwanted wrinkles when they
are sewn together. Other mesh parameterization (and surfae
flattening) algorithms like [4], [5] and [6] cannot exactly control
the lengths of feature curves during the flattening; thus, tkey are
not suitable for the aforementioned applications. WireWaiping
in [1] can flatten 3D mesh surface into planar pieces while
strictly keeping the lengths of all feature curves and boundries;
however, it generates large unstable distortions on thoseighly

Index Terms— surface flattening, feature curves, length control,
shape optimization, multi-loop optimization.

I. INTRODUCTION

HE products in sheet manufacturing industries are fab-

ricated from planar materials. How to determine the
corresponding 2D pieces from the designed 3D surfaces is
challenging. Ideally, a flattened 2D piece should be an isome
ric mapping from the 3D surface. However, from differential
geometry, we know that only developable surfaces satisfy
this property. The shapes of designed products are, however
rarely developable surface. Researchers in the area afcgurf
flattening (or mesh parameterization) usually solve sucil ki
of problems under a constrained optimization frameworg. (e.
[4], [5], [7]-[19]). Different criteria, such as angle vation,
length variation and area variation, are adopted to mirémiz
the difference between the 3D surface and its corresponding
2D piece. In 3D garment industry, it is very important to keep
the length invariant on some predefined feature curves on the
3D surface, so as to keep the fitness after sewing the 2D pieces
together. Moreover, the boundaries of two neighboringhpegc
should have the same length to prevent unwanted wrinkles
when they are sewn together.

WireWarping method in [1] and its least-norm solution pre-
sented in [20] give a good solution to such kind of problem by
simulating the warping of a given 3D surface into 2D with the
boundaries and feature curves serving as tendon. The Ength
of boundaries and feature curves can be preserved strictly.
make the shape of a 2D piece similar to its corresponding
3D surface, WireWarping minimizes the variation of surface
angles on feature curves during warping. However, when fea-
ture curves pass through highly non-developable 3D regions
strictly preventing their lengths causes unstable distostin
2D (e.g., the quarter-sphere example with two feature urve

non-developable 3D surfaces. The new approach presented infrom [1] — see Fig.1). Moreover, in practical applicatioasly

this paper, WireWarping++, develops a more flexible flattening
technology to obtain better 2D shapes by controlling the legth
variation in a specified range on theelastic feature curves. We
have tested the implementation of the WireWarping++ approah

a few curves among all feature curves whose lengths are quit
important for the shape control of final fabricated prodactd
need to be strictly preserved. We denote such feature curves

on patches of wetsuit sets jeans pants. We have also appliedasrigid feature curves in the rest of our paper. Except these

the prototype system to toy and furniture design. In all theg
applications, WireWarping++ shows significant improvemeits on
the quality of results.
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rigid feature curves, the length of other feature curvestman
varied within a controlled range, and these curves are named
aselagtic feature curves. As shown in Fig.1, an improved 2D
shape can be obtained by allowing length variations onielast
feature curves using the approach presented in this paper.
During the industrial testing on WireWarping, we found
that two special types of topology on the connected feature
curves may make the test fail. One case occurs in a network
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In the area of surface flattening (ref. [7]-[15]) and mesh
parameterization (ref. [4], [5], [15]-[19]), many methdusve
been developed by researchers in the last two decades. An
ideal surface flattening gives an isometric mapping between
a 3D surfaceP and its corresponding 2D piec®. Unfor-
tunately, only developable surfaces have this propertyrwhe
being flattened. Therefore, certain criteria (e.g., ancgesas
or lengths) should be adopted to evaluate the error betéeen
and D. A more detailed review can be found in [29]. Recently,
Liu et al. in [6] described a local/global algorithm for mesh
Fig. 1. Surface flattening on a highly non-developable serfa quarter- Parameterization which tries to preserve the isometricpirap
sphere. (Left) The given mesh model with two orthogonal tetcurves between 3D surface and 2D planar pieces by a lasalgid-

defined in red. (Middle-left) The flattening result by Wirekpimg [1] (i.e., ; ; ;
keeping the lengths of two feature curves and the boundamieaiant). as-possble (ARAP) metric. However, this approach does not

(Middle-right) The result obtainted using WireWarping+ppaoach with the address the problem of length control on feature curves.
vertical feature curve beinglastic. (Right) Another result obtainted using In literature, researchers have proposed some methods to

WireWarping++ with two elastic feature curves. The sign bé tlength ; ; ;
variance represents the status of shrinkaggdr elongation 4-). In all these pre_serve le_ngths of fea}tu_re curves. Manning in [30] intieztl
flattening examples, the lengths of boundaries are keptanyz. an isometric tree consisting of feature curves that are epp
onto the plane isometrically. The main drawback of his work
is that the network in [30] must be a tree topology and feature
of feature curves with hinged feature curves. As the angterves can only be branches of the tree. The branch curves
of wire node on the end of such curves is not defined, tlase flattened one by one without considering the relatignshi
numerical system in WireWarping becomes crispy. Anothamong them. Another flattening algorithm driven by curves is
case is that poor flattening results are generated when [B&], where Bennis et al. mapped isoparametric curves onto
3D surface patch to be flattened has separate boundary loghane followed by a relaxation process to position the sarfa
These problems are solved by the proposed approach throbighween them. They also employed a progressive algorithm to
a topology processing procedure. process complex surfaces; however, the relationship legtwe
The proposed approach is callaétireWarping++. Com- these isoparametric curves was not well addressed. Azsriad
paring it with WireWarping, we improve the flexibility on and Aspragathos [8] proposed a method for optimal geodesic
shape control by introducing the new concept of elastiauf@at curvature preservation in surface flattening with features.
curves with controlled length variation within a range. Weélevertheless, their method is based on an optimization in
exploit a multi-loop optimization framework to find the opti terms of vertex positions, which is highly nonlinear and can
mal length variations on the elastic feature curves leatting hardly converge to the expected lengths. Besides, theHengt
optimal 2D shapes, while the lengths of rigid feature cuares preserved curve mapping does also relate to the intrinsio fo
still strictly preserved. We also propose a topology preires of curves discussed in [32].
algorithm on the network of features curves embedded inAnother relevant thread of research is the modeling of de-
the 3D mesh surface to eliminate the cases that may cawus®pable (or flattenable) surfaces in 3D instead of computi
instability to the numerical system. a surface flattening mapping. The authors in [33] processed a
given mesh surface by locally fitting a conical surface argve
vertex so that the expected normal vectors can be determined
After that, a deformation process is applied to adjust the&-po
As the fundamental theory of surface flattening, developatilon of surface vertices to follow the given normal vectdnst
surface from differential geometry [21] has been studied fthe resultant surface can only be approximately develapabl
many years. A ruled surfac& (¢,v) = «(t) + vG(¢), it is The resultant surface approximates a conical surfaceljocal
developable if3, 3 and & are coplanar for all the points More generally, Wang and Tang in [34] adopted discrete
on X (t,v). Another characteristic of a developable surfacgefinition of Gaussian curvature to define the measurements
is that the Gaussian curvature of all points on the surfaoé the developability on given polygonal mesh surfaces. A
must be zero. Usually a differentiable developable surfacenstrained optimization approach was conducted to deform
belongs to one of the following types: planes, generalizedesh surfaces to improve their discrete developability. éfi
cylinder, conical surfaces (away from the apex), or tangealt in [35] presented a novel PQ mesh, which can be used to
developable surfaces. Some methods have been investigatediel developable surface in strips. Recently, Wang pteden
based on modeling [22]-[24] or approximating [25]-[27] @ FL mesh modeling scheme in [36], which can model
model with developable ruled surfaces (or ruled surfacdgvelopable mesh surfaces with more complicated shapes. Of
in other representations, e.g., B-spline or Bézier pachecourse, if a given mesh surfaéeis developable, the length of
However, it is impractical to model freeform surfaces usinfgature curves is not changed during flattening. Howevés, it
these approaches as they can only model quadrangulareurfaever easy to modify any of these approaches so that they can
patches defined on a square parametric domain. Evenpiibcess a surface from non-developable to developableewhil
trimmed surfaces are considered in [28], to model freeforpreserving the length of feature curves. Another intemgsti
surfaces, these approaches still have very limited ability work, described in [37], models a developable surface by

Tolerance on length variance: [-20%, 20%]

A. Literature Review
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SE. of wires and minimizing the surface angle variation on wires
f - A constrained optimization as follows is applied to wire-
B patches,
! ming, 3, 5(0; — a;)?
% st. npm =37 0p,, =21 (Vp=1,..,m)
Ges 4 Sk lycosgp =0 (Vp=1,...,m) Q)
bt Sk, lysin gy, = 0 (Vp=1,....,m)
Y%v Dgeew O =21 (Vv € D),
\;P : where® represents the collection of vertices on feature curves,
v 0; is the 2D angle associated with the wire-noge «;

representg;’s 3D surface angle, anid denotes the length of
an edge on wires. To simplify the expression, a permutation
Fig_agl- l”'fttlsttrhation_ of Wife_-[?;tch??t(lfﬁ) the givetﬂ hp;ﬁse |in§_ar lSUffzc_e, functionI",,;) is defined for returning the global index of wire-
((i?flereﬁt E(zzo)lorse,3 :Q:je?iéml) wi?er-lgod)es ?Jr¥vtlfr18erﬁl’i}-p&&ﬁ\;ﬁerles?hiysvirgj node g; 9” the ere-patcth with the local mde,Xb' The
nodes belonging to different wire-patches are shown irendfit colors. computation is taken in the angle space by setting the angle
variations as soft constraints in the objective functiomrdd
constraints are assigned to prevent self-intersectiom ftist
fitting a set of 2D quad pieces to the original surface. Agaigonstraint in Eq.(1)), preserve the closeness of wires oa-wi
this approach can hardly preserve the length of featureesurypatches (the second and the third constraints), and ersaire t
and has a relatively long computing time. compatibility of wire-patches sharing the same vertex (ds¢
constraint in Eq.(1)).
Newton’s method is adopted in [1] to solve this constrained
) o ) ) . optimization problem. However, the magnitude of update vec
_ The main contribution of the work in this paper is SuMMgy; js not controlled in Newton’s method, numerical viboati
rized as follows. is easily generated (especially when the variable vecitipise
« A multi-loop surface flattening framework is proposego the optimum). In order to make the optimization system
to optimize the 2D shape of flattened planar pieces whilgore stable, Wang in [20] linearized the constraints in Bq.(
having the ranges of length variation controlled on elastig, changing the variables frof to the angle estimation error
feature curves and the strictly invariant lengths on rigig, = 9, — 3;, wherep; is the current angle on a wire-noge
feature curves. and#; is the optimal angle to be computed. The constrained
« To improve the stability of numerical system in our surpptimization is then reformulated into a formula that can be
face flattening approach, a topology processing algorithgalved by a least-norm solution, which is more numerically
is proposed to eliminate the hinged feature curves and fghust than conventional Newton's method. Details can be
separate boundary loops on a given 3D surface. found in [20].
These techniques lead to a new surface flattening approacHnce the 2D angles on wire-nodes are determined, we can
WreWarping++, the robustness and flexibility of which haveeasily locate the vertices on wires by the method in [1].
been significantly improved. To the best of our knowledgdhe positions of the remaining vertices not lying on wires
this is the first surface flattening approach that can providee determined by the shape preserved mesh parameterizatio
such kind of robust, flexible and accurate length control. method in [38]. The least-norm solution of length preserved
WireWarping can robustly and efficiently generate goodltesu
Il. OPTIMIZATION BASED SURFACE FLATTENING in most cases. However, the strict constraints on the iamari

. . . . ... length of wires may result in a largely distorted 2D shape. To
In this section, the basic concept of WireWarping is briefe . o
Then, the multi-loop optimization framework of Iength-%everCOme such a problem, we propose a multi-loop optimiza

A tion approach to bring flexibility of controlled length varice
controlled surface flattening is introduced. Afterwards w, PP g y gih varn

i . L to those elastic feature curves, thus improving the shape of
present an analysis of shape error function, which is ingoart P 9 P

- S flattened pieces.
to the validity and convergence of optimization. P

B. Main Contribution

B. Multi-loop Optimization Framework

A. Length Preserved WreWarping We present the key component of WireWarping++ here.
For a piecewise linear surfade to be flattened, we define The surface flattening results are computed under a malg-lo
its feature curves by the connected polygonal edgeB.oAll  optimization framework. A shape error function is defined in
feature curves together with the boundaries are caliegsto the outer-loop to find an optimal length variation on the &tas
segment the patcPR into several regions calledire-patches. feature curves. The selection of shape error function isequi

For each wire-patctP;, we record its boundary nodes nameimportant to numerical stability and convergence in theeput

aswire-nodes shown in Fig.2. loop optimization, and, it is discussed in the next subsecti
The length preserved WireWarping approach tries to flattenFrom the knowledge of differential geometry, only devel-

the given surface® onto plane while retaining all the lengthsopable surfaces can retain the isometric property betwegn a
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two points on it. For a given patcl® which is far from active constraints, which ensures that the optimiheid not
developable, a length preserved WireWarping flattening magyond the tolerance of length variation. The optimization
cause a large distortion on the flattened 2D pattern if tisgarts from an initial guesk’, and ends when a minimized
feature curves lie on those highly non-developable regions(h) is achieved. In the quasi-Newton approach, an approx-
In this case, the stretch energy can hardly be releasediraate Hessian matrix is updated in each iteration by using
the feature curves are strictly constrained. Other flatgenithe Broyden Fletcher Goldfarb Shanmo (BFGS) method. In
algorithms focusing on minimizing angle error (or surfacaddition, we conduct a line-search algorithm with constsai
stretch) can improve the shape in these cases but hasas@enalty terms [39] to make the outer-loop optimizatiomeno
length control on feature curves and boundaries. Thergfise numerically stable. Pseudo-code of the optimization atigar
propose a method to optimize the shape with controlled kengs shown in Algorithm 1.
variation in a defined range on the elastic feature curvedewh
still preserving the invariant lengths on rigid featurevas.  Algorithm 1 Multi-loop Optimization for Flattening

We introduce a new variable vecthr where the dimension 1: Initialize h° of a given mesh patch;
nn is the number of elastic feature curvés.c h represents 2: ComputeE(y(h)) andV, E, and let the Hessian matrix
the ratio of length variation on thieth elastic feature curvey. be I;
The length variation range foFy is specified by a positive 3: Let 6) = —V,E(h°), and empty the set of active con-
coefficiente; as h; € [—e;, €. If we usel) to denote the straintsQ,.¢;
original length of feature curves, arigdto denote the varied 4: for i =1 to m do
length, h; can be represented as 5. Find the update vectodj of h and the Lagrange

multiplier A\ by the quasi-Newton method;

6: Using thepenalty line-search algorithm [39] to find a
proper scalar € [0,1] to let
E((h'~! +ad})) < E(p(h);
hi =h'~! + ad);

1,19
hi = =
k2

(Vi=1,...,n),
with —¢; < h; < ¢;. In other words, we have
li = (14 h)L}. @

By a fixed vectoh, we can substitute the new lengths, into 8
the least-norm solution of WireWarping to obtain a 2D patter 9:
according to the varied lengths of elastic feature curveseN 10:
that, the lengths of rigid feature curves are kept invariast 11

the flattening resulty of this approach depends én we can

considery as a function oth, and usey(h) to denote it. 12:

We define a shape error functiafi(¢(h)) based on the

it [[8,]l < 71 or | E(¢(hi)) — E(%(h~1))| < 7 then
return;

end if

Update the set of active constraints by checking whether

every inequality constraint is satisfied lat;

Update the approximate Hessian matrix by BEGS

method,;

WireWarping flatteningy(h).How to find a good flattening 13: end for _
now becomes a constrained optimization problem as 14: Get the final 2D pattern by using the length preserved
. WireWarping with the optimah;
ming {B( (1))} P P

15: return;
s.t. —¢€; < hl < €;. (3)

For each inequality—e; < h; < ¢;, we can rewrite it into  Note that the active set method cannot completely ensure
two inequalities as; +¢; > 0 and—h; + ¢ > 0. Therefore, that the resultant value of; falls in the range of—¢;, ¢;].
we have2n;, inequality constraints in total, and the activerherefore, a post verification step is employed to see if the

set method (ref. [39]) is adopted to introduce them into th@sultanth; is in the range. If noth; must be projected back
optimization. In short, the inequality constraints aretiianed into the interval to guarantee length control.

into an active set and an inactive set — only the constraints i
the active set are added into the numerical system as gqudlit Shape Error Function

constraints, which can be solved by quasi-Newton methdd (re The shape error functiof(1)(h)) measures the distortion
[40]). on flattened planar patterns generated by WireWarping with a

When using the quasi-Newton method to solve a constraingifen length variatiorh on the elastic feature curves. Several
optimization problem, the objective functidi(y(h)) should functions, such as angle variation, edge length variatioea
be 2nd order continuous with respect to the variahlelt difference and signed area difference, are studied. Haweve
should also be noted that, the selection of a shape erroicmetjone of them is sensitive enough to the global shape distorti
E(---) will affect the optimized 2D shape and the convergengfiven on the planar pattern compared with the 3D shape of
of numerical computation. This problem is discussed in mofge given surface patch. In other words, the convergingdspee
detail in the next subsection. of optimization is slow.

In summary, the surface flattening algorithm, which allows The best shape error function found in our tests isahe
controlled length variation on elastic feature curvesnisact  rigid-as-possible (ARAP) metric defined in [6]. The function
under a multi-loop optimization framework. In the inneofd  measures the distortions on all triangles as
a WireWarping flattening in terms of length variatidn is T 9
computed by the least-norm approach [20]. In the outersloopg — lz ZCOt(ei)H(ui —uith) — L,(vi —viTH|12, (@)

a quasi-Newton method iteratively minimizé§h) under the 2=
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Fig. 3. The continuity study of shape error functidhdefined in Eq.(4) on different example patches from a wet$tp) a chest patch, (middle) a knee
patch, and (bottom) a collar patch, where the chest patcleasiyndevelopable and the remaining two are highly non{dgable.

wherevi andu! are the 3D and the 2D coordinates of thila  A. Processing on Hinged Feature Curves
vertex in trianglet, and ¢! is the angle opposite to the edge
vivitlin 3D. L,(- - -) is a rigid transformation matrix to map .
the trianglet onto plane. Note that, not only the vertices on
feature curves but also other vertices are evaluated here. Definition 1 For a feature curvé” defined in the network
Another matter of our optimization approach is how td’, if any portion of the curve has its left and right regions
determine the initial guesh’. We apply theasrigid-as- belonging to the same wire-patch, such a portionfofis

possible mesh parameterization in [6] to obtain a flatteningefined as dinged wire.
D for a given patchP. The length variations betwed and  \jenices ocated on the hinged wires are callédged wire-

P on the elastic feature curves are then employed as the ini%d&e When using WireWarping++ to compute flattened sur-

0
valueh®. ) o faces, the surface angles on wire-nodes formed by adjacent
Now we need to verify the continuity of the shape erroLyqes on the wires are computed in the inner loop of opti-

function employed in our approach to see if its second ordgf; aion. However, such surface angles are not defined on the
differentiation (in terms of length variation vecth) around pinqeq wire-nodes, thus crashing the numerical solvereNot
the initial guess is continuous. Although it is hard to prévat hinged wires are different from darts, which are pafts o

analytically, the trial tests conducted on all kinds of 868 1, ,,qaries of the given patdh and have well defined surface
patches verify that the shape error function presented it(4£d 5ngle. Hinged wires must be processed to vanish the hinged
satisfies this requirement. The continuity analysis on S8ve,,i-a_nodes.

examples is given in Fig.3. To conclude, the function in Ep.(

reflects the shape error quite well and is suitable for tHeefinition 2 For the network of feature curvet defined
optimization. on a given surface patcR, if there is a vertex € P that

has only one adjacent edge & the vertexv € P is defined
as atail node.

The definition of hinged wires is first given below, and then
e processing method used to eliminate them is presented.

Ill. TOPOLOGYPROCESSING

Using WireWarping++ method to flatten mesh surfaces habe e_Iiminatio_n of hinggd wires can be_ achieved by extending
certain requirements on the topology of the network of wird8€ hinged wires starting from the tail nodes. The steps of
(i.e., the feature curves and boundaries). There are twestgp {0P0logy processing on hinged features are detailed asnsll
topology that make the numerical system of WireWarping++ 1) Firstly, we detect all the tail nhodes on the network of
unstable: 1) the network with hinged feature curves and 2) feature curves)Y. To eliminate the hinged wires, we
the patch with separate boundary loops. To enable flattening need to find a surface curve path, which starts from the
of surface patches with such a topology, we develop the tail nodes and finally intersects another feature curve or
following two algorithms to process the topology of feature boundary. The regions on the left and right sides of a
curves networkY'. hinged wire are then separated into two wire-patches.
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Fig. 5. Topology processing on separate boundary loopsremie newly
added feature curves are set as "super” elastic.

8

Definition 4 Two boundary loops are defined as separate if
there is no feature curve linking them.

As there is no feature curve (i.e., wire) linking them, the
Fhig-h‘}- gorJology rl)roceshsing Og hinged featurg‘_ Cur'vessi' étwmﬂdfing two separate boundary loops (wires) are decoupled in the
the hinged curves along their endpoint tangent directionsliscrete surface . H : :
geodesic curves. Step 2: apply the CDT to convert surfaceesuinto numerical system of W”ewarp'”Q' which Iegds to adegeaer_at
triangle’s edges. Step 3: flatten the surface by WireWarpingith the newly result. We develop an automatic connecting method which
added feature curves (in yellow) being "super” elastic. is akin to the virtual cutting scheme proposed in [43]. The

algorithm consists of three steps:

e’L) After detecting all separate boundary loops, we select
one with no feature curve connectefl;. The shortest
path from the vertices o ; to the vertices on other
boundary loops passing through the edges of triangles
is determined by the multi-source Dijkstra’s algorithm
[44]. The zipzag shortest path is further smoothed by an
iterative refinement procedure to approximate a geodesic
curve [41].

2) If the above curve starts from; on L;, we find the

farthest vertex fromv, on L;, vy. Then, the shortest

path fromv to the boundary vertices on other boundary
loops is generated by the single source Dijkstra’s algo-
rithm [44] and refined by [41]. To get better results, two
more such curves can be added starting from the vertices
betweenv,-v; or those betweews-v,. Therefore, of
total of four curves are added.

3) Repeat the above two steps until all boundary loops join
with more than one feature curves. After that, the newly
added feature curves are triangulated into edges using
CDT, and are assigned as super elastic feature curves.

The surface path, that extends the hinged feature curv
along its tangent vector at the tail node and goes along
the geodesic direction o, is a good choice. For a
piecewise linear surfack, the piecewise linear geodesic
curve on it along a given direction can be incrementally
computed by ensuring that the curve always has the
equal left and right surface angles dh Details can

be found in [41] and [42]. Fig.4 shows an example of
such an extension.

2) Secondly, we need to modify the topology of the orig-
inal mesh surface according to the extended geodesic
curve paths found in the previous step.Gbdnstrained
Delaunay Triangulation (CDT) is employed to carry out
the triangulation to make the newly added surface curves
into triangle edges (see step 2 in Fig.4).

3) Finally, we set every newly added feature cuileas
a super elastic feature curve with uncontrolled variant
length. The range of length variatién is not controlled
by the rangg—e¢;, ¢;] any more. Instead, we simply set
1+h; > 0 to ensure that the length of an elastic feature
curve is positive. When applying WireWarping++ algorithm to such processed

After fixing all hinged wires, the WireWarping++ can pesurface patches with separate boundary loops, the satisfac

applied to flatten the surface patch. The flattening result #gttening results can be obtained. Figure 5 shows an example
a patch after fixing all hinged wires is shown in Fig.4. of flattening a surface patch with separate boundary loops.

B. Connecting Separate Boundary Loops IV. EXPERIMENTAL RESULTS AND APPLICATIONS

WireWarping++ method works well on surfaces with a disk-
like topology. However, it has problems when flattening
surface with separated boundary loops.

We have implemented the proposed algorithm into a proto-
@/pe program by C++. SuperLU [45] wrapped by OpenNL
is conducted as the numerical computation kernel. All the
Definition 3 A boundary loop of a surface patc¢his a set of examples presented in this paper are tested on a PC with Intel
connected boundary vertices where each pair of neighboridgGHz Quad-Core CPU and 2GB RAM running Windows
vertices is connected by a boundary edge. Vista operating system.
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A. Metrics

Several metrics are adopted to verify the distortion of
flattening results.

Edge-Length Variation The length variation of each edge
e on the feature curve is measured by

”lg - le H
= lg ’ (5) WireWarping

£y

wherel! is the length of the edgein 3D, andl. is its length
in 2D.

Global Aspect Ratio The aspect ratidz, is proposed by
Azariadis and Sapidis in [46] to measure the distortion on
the results of surface flattening. The ideal valuefhfis one,
which is shown only on isometric mappings. In our test result 3-0%(3-%
we display the color map of the aspect ratio on every face.

L. i WireWarping++Q
ARAP Energy We also compute the as-rigid-as-possible

energy defined in [6] as rl
2
Ea= 2 ;COt(ez)”(u; - ut+1) = Ly(vy — Vt+1)H27 (6)

on every triangle face. The value of this function measures t
stretch from 3D surface to 2D pattern. We also display a colo

mapltm terms ofF4 to illustrate the distortion per face in our WireWarping++\Q
results.

. Fig. 8. Surface flattening of a collar pattern of a wetsuitip(row) the
B. Experimental Results result obtained from WireWarping, the color maps of the espatio E,.

. . . d the as-rigid-as-possible enerdys; (middle row) the result obtained
The first example tested here is a model of Jeans parﬁﬂﬁn WireWarping++ with a length variation tolerance 20%; and (bottom

from the garment industry. After designing a 3D model foiw) the flattening result generated by WireWarping++ witleragth variation

a user as the shape shown in the top-left corner of Fig.6, tRgrance of5.0%.

corresponding 2D patterns for fabrication need to be com-

puted. Our results are compared with those generated by the

state-of-the-art in literature (i.e., the results geretdty the @ planar pattern. After specifying two feature curves astiela
angle based flattening (ABF++) [5], the as-rigid-as-pdesibfeature curves, we first flatten the 3D collar patch with a
parameterization (ARAP) [6], and WireWarping [1]). Notath length variation tolerance:3.0%. The resultant 2D pattern
ABF++ does not preserve the scale of a flattening, so we sc&town in the second row of Fig.8 is much better. In addition,
the flattening result by the longest edge length in 3D. Frofie color maps of the aspect ratig. and the as-rigid-as-
Fig.6, it is obvious that ABF++ and ARAP cannot preserve tHeossible energy=, also verify the improvement of flattening
lengths on feature curves and boundaries. This is a signific§eSults on distortion. If we further broaden the allowedgkn
disadvantage when applying them in the sheet manufacturh‘ﬁg'atIon range fromt3.0% to +5.0%, the flattening result
industries. Although the WireWarping method can preser¥éll be even better (see the last row of Fig.8). The actual
the lengths on all feature curves and boundaries, it givee lalength variations on the two elastic feature curves an
distortions on some triangles (see the color map&pfand and4.3% respectively.

E 4 in the second row of Fig.6). The WireWarping++ approach We also test the approach on an upper body of a wetsuit
proposed in this paper gives superior results than Wireivgrp (see Fig.9). After selecting a few feature curves as thdielas
on the aspect ratid5, and the as-rigid-as-possible stretctones with tolerance:5.0%, the flattened 2D patterns with a
metric E4. The shape of the jeans pants fabricated from ttew aspect ratio erro,. and low as-rigid-as-possible energy
patterns generated by WireWarping++ is also better (see@igE/4 are generated by the WireWarping++ method proposed in
and 7). this paper.

The second example is a collar pattern of a wetsuit, theA computer-aided design system for modeling high quality
shape of which is like the skin of a human body. Thereforaser customized wetsuit has been developed. Surface fiaten
it is highly non-developable. The flattening result geredatis one of the most important functions in the system without
by the WireWarping approach [1], [20] gives large distanso which the final patterns used for fabrication can never be
with "S” shape boundaries (see the first row of Fig.8). Thisomputed accurately. The length control on feature curves
is unacceptable by the fashion industry as it will generatend boundaries has been proved to be a very good method
many unwanted bumps on the wetsuit fabricated from sutdcontrol the quality of the final fabricated wetsuit acaogd
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| ABF++

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 6. Surface flattening of a pair of jeans pants. (Top rowg Teft-most one is the 3D given surface with feature lineg amtting lines (boundaries)
defined. The flattening results obtained from the angle béisttening approach (ABF++ in [5]) is shown in the middle, atheé result generated by the
as-rigid-as-possible (ARAP) parameterization [6] is show the right. The colors on the curves indicate the lengthatian on the feature curves and
boundaries. (Middle row) The surface flattening resultsegated by WireWarping [1], where the lengths on all featureves are invariant. The color maps
show the distribution of the aspect ratlo. (in the left) and the as-rigid-as-possible enefgy on all triangles. (Bottom row) The resultant patterns getest
by WireWarping++ are shown, where length variations onlguncon the specified elastic feature curves (in yellow), aath lthe aspect rati@, and the
as-rigid-as-possible energy 4 on the 2D patterns are reduced compared with the resultinebitérom WireWarping. The maximum length variation range
is set t05.0%. The jeans pants fabricated from the 2D patterns generatétlifeWarping and WireWarping++ are also shown in the midathel the bottom
rows respectively.

to its 3D design. The interface of our CAD system and A new type of feature curves namethstic feature curves

fabricated wetsuit are shown in Fig.10. are introduced to achieve the flexibility of shape contra. T
obtain the optimal 2D shape with length variation on elastic
C. Other Applications feature curves, we propose a multi-loop optimization frame

Besides th tindustrv. the techni s tn the inner loop, the 3D surface is flattened by a least-norm
esides the garment industry, Ine technique proposedsn IireWarping with a certain length variation, while the aute

paper in fact can also be applied to other industries as IengIf’i‘op minimizes a shape error function to estimate the shape

their products are fa_bricated by assgmbling 2D pieces intoef”l’or of each flattening. To control the length variation, we
3D shape (e.g., fabric toys and furniture covered by leathe,

. . ; X §pecify a maximum length variation range on each elastic
Examples of using our approach in these industries are ShQPgQ\ture curve, and set it as a constraint in the outer loop
in Fig.11. '

of optimization. Compared with the original WireWarping
approach in [1], the 2D shape of the flattened patches has
significant improvement. To improve numerical stability of

In this paper, we present a surface flattening technologyjreWarping++, we conduct topology processing on the net-
WireWarping++, with a flexible and robust length control.

V. CONCLUSION
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Fig. 7.

WireWarping

WireWarping++

Photos of the jeans pants fabricated from the pattgemerated by WireWarping versus those generated by Wipsga+. The one generated by

WireWarping++ fits the back waist band and the back yoke mwteb— this is the comment made by a fashion specialist.

T

B o005

mos
E Woo Eslloo

Fig. 9. An example of flattening an upper body of a wetsuitoffrithe left to right) The 3D surface of an upper body with featocurves and cutting curves
defined, the flattening results, the color maps of the aspict £,-, and the color maps of the ARAP energys

work of feature curves to eliminate hinged feature curveg] A. Sheffer, B. Lévy, M. Mogilnitsky, and A. BogomyakoV:ABF++:
and we add super elastic feature curves to connect separate Fast and robust angle based flatteningCM Transactions on Graphics,

boundary loops. The experimental results in this papefyeri 6
the performance of this new approach. Our future research
focuses on how to conduct the length control on feature csurv?

;

to generate patterns for compression garments.
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