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Abstract— Surface flattening has numerous applications in
sheet manufacturing industries, such as garment industry,shoe
industry, toy industry, furniture industry and ship indust ry.
Motivated by the requirements of those industries, WireWarping
approach presented in [1] is exploited to generate 2D patterns
with invariant length of feature and boundary curves. However,
strict length constraints on all feature curves sometimes cause
large distortions on 2D patterns, especially for those 3D surfaces
which are highly non-developable. In this paper, we presenta
flexible and robust extension of WireWarping by introducing a
new type of feature curves namedelastic feature, which brings
flexibility to shape control of the resultant 2D patterns. On
these new feature curves, instead of strictly preserving the exact
lengths, only the ranges of their lengths are controlled. Toachieve
this function, a multi-loop shape control optimization framework
is proposed to find the optimized 2D shape among all possible
flattening results with different length variations on those elastic
feature curves, while the lengths of other feature curves are
kept unchanged. Besides, we also present a topology processing
algorithm on the network of feature curves to eliminate cases
that lead to numerical singularity. Experimental results show that
the WireWarping++ can successfully flatten surface patchesinto
2D patterns with more flexible shape control and more robust
numerical performance.

Note to Practitioners—The major motivation of this research
is to develop a robust and flexible surface flattening technology,
which can help sheet manufacturing industries to obtain planar
pieces for fabrication of products. For example, in garment
industry, after automatically designing a user customizedsuit in
3D according to the scanned human body (ref. [2], [3]), it is very
important to keep the length invariant on the predefined feature
curves so as to keep the fitness after sewing the 2D pieces together.
Moreover, the boundaries of two neighboring patches should
have the same length to prevent unwanted wrinkles when they
are sewn together. Other mesh parameterization (and surface
flattening) algorithms like [4], [5] and [6] cannot exactly control
the lengths of feature curves during the flattening; thus, they are
not suitable for the aforementioned applications. WireWarping
in [1] can flatten 3D mesh surface into planar pieces while
strictly keeping the lengths of all feature curves and boundaries;
however, it generates large unstable distortions on those highly
non-developable 3D surfaces. The new approach presented in
this paper, WireWarping++, develops a more flexible flattening
technology to obtain better 2D shapes by controlling the length
variation in a specified range on theelastic feature curves. We
have tested the implementation of the WireWarping++ approach
on patches of wetsuit sets jeans pants. We have also applied
the prototype system to toy and furniture design. In all these
applications, WireWarping++ shows significant improvements on
the quality of results.
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I. I NTRODUCTION

T HE products in sheet manufacturing industries are fab-
ricated from planar materials. How to determine the

corresponding 2D pieces from the designed 3D surfaces is
challenging. Ideally, a flattened 2D piece should be an isomet-
ric mapping from the 3D surface. However, from differential
geometry, we know that only developable surfaces satisfy
this property. The shapes of designed products are, however,
rarely developable surface. Researchers in the area of surface
flattening (or mesh parameterization) usually solve such kind
of problems under a constrained optimization framework (e.g.,
[4], [5], [7]–[19]). Different criteria, such as angle variation,
length variation and area variation, are adopted to minimize
the difference between the 3D surface and its corresponding
2D piece. In 3D garment industry, it is very important to keep
the length invariant on some predefined feature curves on the
3D surface, so as to keep the fitness after sewing the 2D pieces
together. Moreover, the boundaries of two neighboring patches
should have the same length to prevent unwanted wrinkles
when they are sewn together.

WireWarping method in [1] and its least-norm solution pre-
sented in [20] give a good solution to such kind of problem by
simulating the warping of a given 3D surface into 2D with the
boundaries and feature curves serving as tendon. The lengths
of boundaries and feature curves can be preserved strictly.To
make the shape of a 2D piece similar to its corresponding
3D surface, WireWarping minimizes the variation of surface
angles on feature curves during warping. However, when fea-
ture curves pass through highly non-developable 3D regions,
strictly preventing their lengths causes unstable distortions in
2D (e.g., the quarter-sphere example with two feature curves
from [1] – see Fig.1). Moreover, in practical applications,only
a few curves among all feature curves whose lengths are quit
important for the shape control of final fabricated productsand
need to be strictly preserved. We denote such feature curves
as rigid feature curves in the rest of our paper. Except these
rigid feature curves, the length of other feature curves canbe
varied within a controlled range, and these curves are named
aselastic feature curves. As shown in Fig.1, an improved 2D
shape can be obtained by allowing length variations on elastic
feature curves using the approach presented in this paper.

During the industrial testing on WireWarping, we found
that two special types of topology on the connected feature
curves may make the test fail. One case occurs in a network
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Fig. 1. Surface flattening on a highly non-developable surface – quarter-
sphere. (Left) The given mesh model with two orthogonal feature curves
defined in red. (Middle-left) The flattening result by WireWarping [1] (i.e.,
keeping the lengths of two feature curves and the boundariesinvariant).
(Middle-right) The result obtainted using WireWarping++ approach with the
vertical feature curve beingelastic. (Right) Another result obtainted using
WireWarping++ with two elastic feature curves. The sign of the length
variance represents the status of shrinkage (−) or elongation (+). In all these
flattening examples, the lengths of boundaries are kept unchanged.

of feature curves with hinged feature curves. As the angle
of wire node on the end of such curves is not defined, the
numerical system in WireWarping becomes crispy. Another
case is that poor flattening results are generated when the
3D surface patch to be flattened has separate boundary loops.
These problems are solved by the proposed approach through
a topology processing procedure.

The proposed approach is calledWireWarping++. Com-
paring it with WireWarping, we improve the flexibility on
shape control by introducing the new concept of elastic feature
curves with controlled length variation within a range. We
exploit a multi-loop optimization framework to find the opti-
mal length variations on the elastic feature curves leadingto
optimal 2D shapes, while the lengths of rigid feature curvesare
still strictly preserved. We also propose a topology processing
algorithm on the network of features curves embedded in
the 3D mesh surface to eliminate the cases that may cause
instability to the numerical system.

A. Literature Review

As the fundamental theory of surface flattening, developable
surface from differential geometry [21] has been studied for
many years. A ruled surfaceX(t, v) = α(t) + vβ(t), it is
developable ifβ, β̇ and α̇ are coplanar for all the points
on X(t, v). Another characteristic of a developable surface
is that the Gaussian curvature of all points on the surface
must be zero. Usually a differentiable developable surface
belongs to one of the following types: planes, generalized
cylinder, conical surfaces (away from the apex), or tangent
developable surfaces. Some methods have been investigated
based on modeling [22]–[24] or approximating [25]–[27] a
model with developable ruled surfaces (or ruled surfaces
in other representations, e.g., B-spline or Bézier patches).
However, it is impractical to model freeform surfaces using
these approaches as they can only model quadrangular surface
patches defined on a square parametric domain. Even if
trimmed surfaces are considered in [28], to model freeform
surfaces, these approaches still have very limited ability.

In the area of surface flattening (ref. [7]–[15]) and mesh
parameterization (ref. [4], [5], [15]–[19]), many methodshave
been developed by researchers in the last two decades. An
ideal surface flattening gives an isometric mapping between
a 3D surfaceP and its corresponding 2D pieceD. Unfor-
tunately, only developable surfaces have this property when
being flattened. Therefore, certain criteria (e.g., angles, areas
or lengths) should be adopted to evaluate the error betweenP

andD. A more detailed review can be found in [29]. Recently,
Liu et al. in [6] described a local/global algorithm for mesh
parameterization which tries to preserve the isometric mapping
between 3D surface and 2D planar pieces by a localas-rigid-
as-possible (ARAP) metric. However, this approach does not
address the problem of length control on feature curves.

In literature, researchers have proposed some methods to
preserve lengths of feature curves. Manning in [30] introduced
an isometric tree consisting of feature curves that are mapped
onto the plane isometrically. The main drawback of his work
is that the network in [30] must be a tree topology and feature
curves can only be branches of the tree. The branch curves
are flattened one by one without considering the relationship
among them. Another flattening algorithm driven by curves is
[31], where Bennis et al. mapped isoparametric curves onto
plane followed by a relaxation process to position the surface
between them. They also employed a progressive algorithm to
process complex surfaces; however, the relationship between
these isoparametric curves was not well addressed. Azariadis
and Aspragathos [8] proposed a method for optimal geodesic
curvature preservation in surface flattening with feature curves.
Nevertheless, their method is based on an optimization in
terms of vertex positions, which is highly nonlinear and can
hardly converge to the expected lengths. Besides, the length
preserved curve mapping does also relate to the intrinsic form
of curves discussed in [32].

Another relevant thread of research is the modeling of de-
velopable (or flattenable) surfaces in 3D instead of computing
a surface flattening mapping. The authors in [33] processed a
given mesh surface by locally fitting a conical surface at every
vertex so that the expected normal vectors can be determined.
After that, a deformation process is applied to adjust the posi-
tion of surface vertices to follow the given normal vectors,but
the resultant surface can only be approximately developable.
The resultant surface approximates a conical surface locally.
More generally, Wang and Tang in [34] adopted discrete
definition of Gaussian curvature to define the measurements
of the developability on given polygonal mesh surfaces. A
constrained optimization approach was conducted to deform
mesh surfaces to improve their discrete developability. Liu et
al. in [35] presented a novel PQ mesh, which can be used to
model developable surface in strips. Recently, Wang presented
a FL mesh modeling scheme in [36], which can model
developable mesh surfaces with more complicated shapes. Of
course, if a given mesh surfaceP is developable, the length of
feature curves is not changed during flattening. However, itis
never easy to modify any of these approaches so that they can
process a surface from non-developable to developable while
preserving the length of feature curves. Another interesting
work, described in [37], models a developable surface by
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Fig. 2. Illustration of wire-patches: (left) the given piecewise linear surface,
(middle-left) the wires, (middle-right) the wire-patchesthat are displayed in
different colors, and (right) wire-nodes on the wire-patches where the wire-
nodes belonging to different wire-patches are shown in different colors.

fitting a set of 2D quad pieces to the original surface. Again,
this approach can hardly preserve the length of feature curves
and has a relatively long computing time.

B. Main Contribution

The main contribution of the work in this paper is summa-
rized as follows.

• A multi-loop surface flattening framework is proposed
to optimize the 2D shape of flattened planar pieces while
having the ranges of length variation controlled on elastic
feature curves and the strictly invariant lengths on rigid
feature curves.

• To improve the stability of numerical system in our sur-
face flattening approach, a topology processing algorithm
is proposed to eliminate the hinged feature curves and the
separate boundary loops on a given 3D surface.

These techniques lead to a new surface flattening approach,
WireWarping++, the robustness and flexibility of which have
been significantly improved. To the best of our knowledge,
this is the first surface flattening approach that can provide
such kind of robust, flexible and accurate length control.

II. OPTIMIZATION BASED SURFACE FLATTENING

In this section, the basic concept of WireWarping is briefed.
Then, the multi-loop optimization framework of length-
controlled surface flattening is introduced. Afterwards, we
present an analysis of shape error function, which is important
to the validity and convergence of optimization.

A. Length Preserved WireWarping

For a piecewise linear surfaceP to be flattened, we define
its feature curves by the connected polygonal edges onP . All
feature curves together with the boundaries are calledwires to
segment the patchP into several regions calledwire-patches.
For each wire-patchPi, we record its boundary nodes named
aswire-nodes shown in Fig.2.

The length preserved WireWarping approach tries to flatten
the given surfaceP onto plane while retaining all the lengths

of wires and minimizing the surface angle variation on wires.
A constrained optimization as follows is applied to wire-
patches,

minθi

∑
i

1
2 (θi − αi)

2

s.t. npπ −
∑np

b=1 θΓp(b)
≡ 2π (∀p = 1, ...,m)∑np

b=1 lb cosφb ≡ 0 (∀p = 1, ...,m)∑np

b=1 lb sinφb ≡ 0 (∀p = 1, ...,m)∑
qk∈v θk ≡ 2π (∀v ∈ Φ),

(1)

whereΦ represents the collection of vertices on feature curves,
θi is the 2D angle associated with the wire-nodeqi, αi

representsqi’s 3D surface angle, andlb denotes the length of
an edge on wires. To simplify the expression, a permutation
functionΓp(b) is defined for returning the global index of wire-
node qi on the wire-patchPp with the local indexb. The
computation is taken in the angle space by setting the angle
variations as soft constraints in the objective function. Hard
constraints are assigned to prevent self-intersection (the first
constraint in Eq.(1)), preserve the closeness of wires on wire-
patches (the second and the third constraints), and ensure the
compatibility of wire-patches sharing the same vertex (thelast
constraint in Eq.(1)).

Newton’s method is adopted in [1] to solve this constrained
optimization problem. However, the magnitude of update vec-
tor is not controlled in Newton’s method, numerical vibration
is easily generated (especially when the variable vector isclose
to the optimum). In order to make the optimization system
more stable, Wang in [20] linearized the constraints in Eq.(1)
by changing the variables fromθi to the angle estimation error
ei = θi − βi, whereβi is the current angle on a wire-nodeqi
and θi is the optimal angle to be computed. The constrained
optimization is then reformulated into a formula that can be
solved by a least-norm solution, which is more numerically
robust than conventional Newton’s method. Details can be
found in [20].

Once the 2D angles on wire-nodes are determined, we can
easily locate the vertices on wires by the method in [1].
The positions of the remaining vertices not lying on wires
are determined by the shape preserved mesh parameterization
method in [38]. The least-norm solution of length preserved
WireWarping can robustly and efficiently generate good results
in most cases. However, the strict constraints on the invariant
length of wires may result in a largely distorted 2D shape. To
overcome such a problem, we propose a multi-loop optimiza-
tion approach to bring flexibility of controlled length variance
to those elastic feature curves, thus improving the shape of
flattened pieces.

B. Multi-loop Optimization Framework

We present the key component of WireWarping++ here.
The surface flattening results are computed under a multi-loop
optimization framework. A shape error function is defined in
the outer-loop to find an optimal length variation on the elastic
feature curves. The selection of shape error function is quite
important to numerical stability and convergence in the outer-
loop optimization, and, it is discussed in the next subsection.

From the knowledge of differential geometry, only devel-
opable surfaces can retain the isometric property between any
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two points on it. For a given patchP which is far from
developable, a length preserved WireWarping flattening may
cause a large distortion on the flattened 2D pattern if the
feature curves lie on those highly non-developable regions.
In this case, the stretch energy can hardly be released as
the feature curves are strictly constrained. Other flattening
algorithms focusing on minimizing angle error (or surface
stretch) can improve the shape in these cases but has no
length control on feature curves and boundaries. Therefore, we
propose a method to optimize the shape with controlled length
variation in a defined range on the elastic feature curves, while
still preserving the invariant lengths on rigid feature curves.

We introduce a new variable vectorh, where the dimension
nh is the number of elastic feature curves.hi ∈ h represents
the ratio of length variation on thei-th elastic feature curveF e

i .
The length variation range forF e

i is specified by a positive
coefficient ǫi as hi ∈ [−ǫi, ǫi]. If we use l0i to denote the
original length of feature curves, andli to denote the varied
length,hi can be represented as

hi =
li−l0i

l0
i

(∀i = 1, ..., n),

with −ǫi ≤ hi ≤ ǫi. In other words, we have

li = (1 + hi)l
0
i . (2)

By a fixed vectorh, we can substitute the new lengths,lis, into
the least-norm solution of WireWarping to obtain a 2D pattern
according to the varied lengths of elastic feature curves. Note
that, the lengths of rigid feature curves are kept invariant. As
the flattening resultψ of this approach depends onh, we can
considerψ as a function ofh, and useψ(h) to denote it.

We define a shape error functionE(ψ(h)) based on the
WireWarping flatteningψ(h).How to find a good flattening
now becomes a constrained optimization problem as

minh{E(ψ(h))}
s.t. − ǫi ≤ hi ≤ ǫi.

(3)

For each inequality,−ǫi ≤ hi ≤ ǫi, we can rewrite it into
two inequalities ashi + ǫi ≥ 0 and−hi + ǫi ≥ 0. Therefore,
we have2nh inequality constraints in total, and the active
set method (ref. [39]) is adopted to introduce them into the
optimization. In short, the inequality constraints are partitioned
into an active set and an inactive set – only the constraints in
the active set are added into the numerical system as equality
constraints, which can be solved by quasi-Newton method (ref.
[40]).

When using the quasi-Newton method to solve a constrained
optimization problem, the objective functionE(ψ(h)) should
be 2nd order continuous with respect to the variableh. It
should also be noted that, the selection of a shape error metric
E(· · ·) will affect the optimized 2D shape and the convergence
of numerical computation. This problem is discussed in more
detail in the next subsection.

In summary, the surface flattening algorithm, which allows
controlled length variation on elastic feature curves, is in fact
under a multi-loop optimization framework. In the inner-loop,
a WireWarping flattening in terms of length variationh is
computed by the least-norm approach [20]. In the outer-loop,
a quasi-Newton method iteratively minimizesE(h) under the

active constraints, which ensures that the optimizedh is not
beyond the tolerance of length variation. The optimization
starts from an initial guessh0, and ends when a minimized
E(h) is achieved. In the quasi-Newton approach, an approx-
imate Hessian matrix is updated in each iteration by using
the Broyden Fletcher Goldfarb Shanmo (BFGS) method. In
addition, we conduct a line-search algorithm with constraints
as penalty terms [39] to make the outer-loop optimization more
numerically stable. Pseudo-code of the optimization algorithm
is shown in Algorithm 1.

Algorithm 1 Multi-loop Optimization for Flattening

1: Initialize h
0 of a given mesh patch;

2: ComputeE(ψ(h)) and∇hE, and let the Hessian matrix
be I;

3: Let δ0
h

= −∇hE(h0), and empty the set of active con-
straintsΩact;

4: for i = 1 to m do
5: Find the update vectorδi

h
of h and the Lagrange

multiplier λi
c by the quasi-Newton method;

6: Using thepenalty line-search algorithm [39] to find a
proper scalarα ∈ [0, 1] to let
E(ψ(hi−1 + αδi

h
)) < E(ψ(hi−1));

7: h
i = h

i−1 + αδi
h

;
8: if ‖δi

h
‖ < τ1 or ‖E(ψ(hi))−E(ψ(hi−1))‖ < τ2 then

9: return ;
10: end if
11: Update the set of active constraints by checking whether

every inequality constraint is satisfied ath
i;

12: Update the approximate Hessian matrix by theBFGS
method;

13: end for
14: Get the final 2D pattern by using the length preserved

WireWarping with the optimalh;
15: return ;

Note that the active set method cannot completely ensure
that the resultant value ofhi falls in the range of[−ǫi, ǫi].
Therefore, a post verification step is employed to see if the
resultanthi is in the range. If not,hi must be projected back
into the interval to guarantee length control.

C. Shape Error Function

The shape error functionE(ψ(h)) measures the distortion
on flattened planar patterns generated by WireWarping with a
given length variationh on the elastic feature curves. Several
functions, such as angle variation, edge length variation,area
difference and signed area difference, are studied. However,
none of them is sensitive enough to the global shape distortion
given on the planar pattern compared with the 3D shape of
the given surface patch. In other words, the converging speed
of optimization is slow.

The best shape error function found in our tests is theas-
rigid-as-possible (ARAP) metric defined in [6]. The function
measures the distortions on all triangles as

E =
1

2

T∑

t=1

2∑

i=0

cot(θi
t)‖(u

i
t − u

i+1
t ) − Lt(v

i
t − v

i+1
t )‖2, (4)
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Fig. 3. The continuity study of shape error functionE defined in Eq.(4) on different example patches from a wetsuit: (top) a chest patch, (middle) a knee
patch, and (bottom) a collar patch, where the chest patch is nearly developable and the remaining two are highly non-developable.

wherevi
t andu

i
t are the 3D and the 2D coordinates of thei-th

vertex in trianglet, andθi
t is the angle opposite to the edge

v
i
tv

i+1
t in 3D. Lt(· · ·) is a rigid transformation matrix to map

the trianglet onto plane. Note that, not only the vertices on
feature curves but also other vertices are evaluated here.

Another matter of our optimization approach is how to
determine the initial guessh0. We apply theas-rigid-as-
possible mesh parameterization in [6] to obtain a flattening
D for a given patchP . The length variations betweenD and
P on the elastic feature curves are then employed as the initial
valueh

0.
Now we need to verify the continuity of the shape error

function employed in our approach to see if its second order
differentiation (in terms of length variation vectorh) around
the initial guess is continuous. Although it is hard to provethat
analytically, the trial tests conducted on all kinds of surface
patches verify that the shape error function presented in Eq.(4)
satisfies this requirement. The continuity analysis on several
examples is given in Fig.3. To conclude, the function in Eq.(4)
reflects the shape error quite well and is suitable for the
optimization.

III. T OPOLOGYPROCESSING

Using WireWarping++ method to flatten mesh surfaces has
certain requirements on the topology of the network of wires
(i.e., the feature curves and boundaries). There are two types of
topology that make the numerical system of WireWarping++
unstable: 1) the network with hinged feature curves and 2)
the patch with separate boundary loops. To enable flattening
of surface patches with such a topology, we develop the
following two algorithms to process the topology of feature
curves networkΥ.

A. Processing on Hinged Feature Curves

The definition of hinged wires is first given below, and then
the processing method used to eliminate them is presented.

Definition 1 For a feature curveF defined in the network
Υ, if any portion of the curve has its left and right regions
belonging to the same wire-patch, such a portion ofF is
defined as ahinged wire.

Vertices located on the hinged wires are calledhinged wire-
nodes. When using WireWarping++ to compute flattened sur-
faces, the surface angles on wire-nodes formed by adjacent
edges on the wires are computed in the inner loop of opti-
mization. However, such surface angles are not defined on the
hinged wire-nodes, thus crashing the numerical solver. Note
that hinged wires are different from darts, which are parts of
boundaries of the given patchP and have well defined surface
angle. Hinged wires must be processed to vanish the hinged
wire-nodes.

Definition 2 For the network of feature curvesΥ defined
on a given surface patchP , if there is a vertexv ∈ P that
has only one adjacent edge onΥ, the vertexv ∈ P is defined
as atail node.

The elimination of hinged wires can be achieved by extending
the hinged wires starting from the tail nodes. The steps of
topology processing on hinged features are detailed as follows.

1) Firstly, we detect all the tail nodes on the network of
feature curves,Υ. To eliminate the hinged wires, we
need to find a surface curve path, which starts from the
tail nodes and finally intersects another feature curve or
boundary. The regions on the left and right sides of a
hinged wire are then separated into two wire-patches.
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Fig. 4. Topology processing on hinged feature curves. Step 1: extending
the hinged curves along their endpoint tangent directions by discrete surface
geodesic curves. Step 2: apply the CDT to convert surface curves into
triangle’s edges. Step 3: flatten the surface by WireWarping++ with the newly
added feature curves (in yellow) being ”super” elastic.

The surface path, that extends the hinged feature curve
along its tangent vector at the tail node and goes along
the geodesic direction onP , is a good choice. For a
piecewise linear surfaceP , the piecewise linear geodesic
curve on it along a given direction can be incrementally
computed by ensuring that the curve always has the
equal left and right surface angles onP . Details can
be found in [41] and [42]. Fig.4 shows an example of
such an extension.

2) Secondly, we need to modify the topology of the orig-
inal mesh surface according to the extended geodesic
curve paths found in the previous step. AConstrained
Delaunay Triangulation (CDT) is employed to carry out
the triangulation to make the newly added surface curves
into triangle edges (see step 2 in Fig.4).

3) Finally, we set every newly added feature curveFj as
a super elastic feature curve with uncontrolled variant
length. The range of length variationhj is not controlled
by the range[−ǫj , ǫj] any more. Instead, we simply set
1+hj > 0 to ensure that the length of an elastic feature
curve is positive.

After fixing all hinged wires, the WireWarping++ can be
applied to flatten the surface patch. The flattening result of
a patch after fixing all hinged wires is shown in Fig.4.

B. Connecting Separate Boundary Loops

WireWarping++ method works well on surfaces with a disk-
like topology. However, it has problems when flattening a
surface with separated boundary loops.

Definition 3 A boundary loop of a surface patchP is a set of
connected boundary vertices where each pair of neighboring
vertices is connected by a boundary edge.

Fig. 5. Topology processing on separate boundary loops, where the newly
added feature curves are set as ”super” elastic.

Definition 4 Two boundary loops are defined as separate if
there is no feature curve linking them.

As there is no feature curve (i.e., wire) linking them, the
two separate boundary loops (wires) are decoupled in the
numerical system of WireWarping, which leads to a degenerate
result. We develop an automatic connecting method which
is akin to the virtual cutting scheme proposed in [43]. The
algorithm consists of three steps:

1) After detecting all separate boundary loops, we select
one with no feature curve connected,Lj . The shortest
path from the vertices onLj to the vertices on other
boundary loops passing through the edges of triangles
is determined by the multi-source Dijkstra’s algorithm
[44]. The zipzag shortest path is further smoothed by an
iterative refinement procedure to approximate a geodesic
curve [41].

2) If the above curve starts fromvs on Lj, we find the
farthest vertex fromvs on Lj , vf . Then, the shortest
path fromvf to the boundary vertices on other boundary
loops is generated by the single source Dijkstra’s algo-
rithm [44] and refined by [41]. To get better results, two
more such curves can be added starting from the vertices
betweenvs-vf or those betweenvf -vs. Therefore, of
total of four curves are added.

3) Repeat the above two steps until all boundary loops join
with more than one feature curves. After that, the newly
added feature curves are triangulated into edges using
CDT, and are assigned as super elastic feature curves.

When applying WireWarping++ algorithm to such processed
surface patches with separate boundary loops, the satisfactory
flattening results can be obtained. Figure 5 shows an example
of flattening a surface patch with separate boundary loops.

IV. EXPERIMENTAL RESULTS AND APPLICATIONS

We have implemented the proposed algorithm into a proto-
type program by C++. SuperLU [45] wrapped by OpenNL
is conducted as the numerical computation kernel. All the
examples presented in this paper are tested on a PC with Intel
2.4GHz Quad-Core CPU and 2GB RAM running Windows
Vista operating system.
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A. Metrics

Several metrics are adopted to verify the distortion of
flattening results.

Edge-Length Variation The length variation of each edge
e on the feature curve is measured by

EL =
‖l0e − le‖

l0e
, (5)

wherel0e is the length of the edgee in 3D, andle is its length
in 2D.

Global Aspect Ratio The aspect ratioEr is proposed by
Azariadis and Sapidis in [46] to measure the distortion on
the results of surface flattening. The ideal value ofEr is one,
which is shown only on isometric mappings. In our test results,
we display the color map of the aspect ratio on every face.

ARAP Energy We also compute the as-rigid-as-possible
energy defined in [6] as

EA =
1

2

2∑

i=0

cot(θi
t)‖(u

i
t − u

i+1
t ) − Lt(v

i
t − v

i+1
t )‖2, (6)

on every triangle face. The value of this function measures the
stretch from 3D surface to 2D pattern. We also display a color
map in terms ofEA to illustrate the distortion per face in our
results.

B. Experimental Results

The first example tested here is a model of jeans pants
from the garment industry. After designing a 3D model for
a user as the shape shown in the top-left corner of Fig.6, the
corresponding 2D patterns for fabrication need to be com-
puted. Our results are compared with those generated by the
state-of-the-art in literature (i.e., the results generated by the
angle based flattening (ABF++) [5], the as-rigid-as-possible
parameterization (ARAP) [6], and WireWarping [1]). Note that
ABF++ does not preserve the scale of a flattening, so we scale
the flattening result by the longest edge length in 3D. From
Fig.6, it is obvious that ABF++ and ARAP cannot preserve the
lengths on feature curves and boundaries. This is a significant
disadvantage when applying them in the sheet manufacturing
industries. Although the WireWarping method can preserve
the lengths on all feature curves and boundaries, it gives large
distortions on some triangles (see the color maps ofEr and
EA in the second row of Fig.6). The WireWarping++ approach
proposed in this paper gives superior results than WireWarping
on the aspect ratioEr and the as-rigid-as-possible stretch
metricEA. The shape of the jeans pants fabricated from the
patterns generated by WireWarping++ is also better (see Figs.6
and 7).

The second example is a collar pattern of a wetsuit, the
shape of which is like the skin of a human body. Therefore,
it is highly non-developable. The flattening result generated
by the WireWarping approach [1], [20] gives large distortions
with ”S” shape boundaries (see the first row of Fig.8). This
is unacceptable by the fashion industry as it will generate
many unwanted bumps on the wetsuit fabricated from such

Fig. 8. Surface flattening of a collar pattern of a wetsuit: (top row) the
result obtained from WireWarping, the color maps of the aspect ratio Er

and the as-rigid-as-possible energyEA; (middle row) the result obtained
from WireWarping++ with a length variation tolerance of3.0%; and (bottom
row) the flattening result generated by WireWarping++ with alength variation
tolerance of5.0%.

a planar pattern. After specifying two feature curves as elastic
feature curves, we first flatten the 3D collar patch with a
length variation tolerance±3.0%. The resultant 2D pattern
shown in the second row of Fig.8 is much better. In addition,
the color maps of the aspect ratioEr and the as-rigid-as-
possible energyEA also verify the improvement of flattening
results on distortion. If we further broaden the allowed length
variation range from±3.0% to ±5.0%, the flattening result
will be even better (see the last row of Fig.8). The actual
length variations on the two elastic feature curves are3.4%
and4.3% respectively.

We also test the approach on an upper body of a wetsuit
(see Fig.9). After selecting a few feature curves as the elastic
ones with tolerance±5.0%, the flattened 2D patterns with a
low aspect ratio errorEr and low as-rigid-as-possible energy
EA are generated by the WireWarping++ method proposed in
this paper.

A computer-aided design system for modeling high quality
user customized wetsuit has been developed. Surface flattening
is one of the most important functions in the system without
which the final patterns used for fabrication can never be
computed accurately. The length control on feature curves
and boundaries has been proved to be a very good method
to control the quality of the final fabricated wetsuit according
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Fig. 6. Surface flattening of a pair of jeans pants. (Top row) The left-most one is the 3D given surface with feature lines and cutting lines (boundaries)
defined. The flattening results obtained from the angle basedflattening approach (ABF++ in [5]) is shown in the middle, andthe result generated by the
as-rigid-as-possible (ARAP) parameterization [6] is shown in the right. The colors on the curves indicate the length variation on the feature curves and
boundaries. (Middle row) The surface flattening results generated by WireWarping [1], where the lengths on all feature curves are invariant. The color maps
show the distribution of the aspect ratioEr (in the left) and the as-rigid-as-possible energyEA on all triangles. (Bottom row) The resultant patterns generated
by WireWarping++ are shown, where length variations only occur on the specified elastic feature curves (in yellow), and both the aspect ratioEr and the
as-rigid-as-possible energyEA on the 2D patterns are reduced compared with the results obtained from WireWarping. The maximum length variation range
is set to5.0%. The jeans pants fabricated from the 2D patterns generated by WireWarping and WireWarping++ are also shown in the middleand the bottom
rows respectively.

to its 3D design. The interface of our CAD system and a
fabricated wetsuit are shown in Fig.10.

C. Other Applications

Besides the garment industry, the technique proposed in this
paper in fact can also be applied to other industries as long as
their products are fabricated by assembling 2D pieces into a
3D shape (e.g., fabric toys and furniture covered by leather).
Examples of using our approach in these industries are shown
in Fig.11.

V. CONCLUSION

In this paper, we present a surface flattening technology,
WireWarping++, with a flexible and robust length control.

A new type of feature curves namedelastic feature curves
are introduced to achieve the flexibility of shape control. To
obtain the optimal 2D shape with length variation on elastic
feature curves, we propose a multi-loop optimization frame.
In the inner loop, the 3D surface is flattened by a least-norm
WireWarping with a certain length variation, while the outer
loop minimizes a shape error function to estimate the shape
error of each flattening. To control the length variation, we
specify a maximum length variation range on each elastic
feature curve, and set it as a constraint in the outer loop
of optimization. Compared with the original WireWarping
approach in [1], the 2D shape of the flattened patches has
significant improvement. To improve numerical stability of
WireWarping++, we conduct topology processing on the net-
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Fig. 7. Photos of the jeans pants fabricated from the patterns generated by WireWarping versus those generated by WireWarping++. The one generated by
WireWarping++ fits the back waist band and the back yoke much better – this is the comment made by a fashion specialist.

Fig. 9. An example of flattening an upper body of a wetsuit. (From the left to right) The 3D surface of an upper body with feature curves and cutting curves
defined, the flattening results, the color maps of the aspect ratio Er, and the color maps of the ARAP energyEA

work of feature curves to eliminate hinged feature curves
and we add super elastic feature curves to connect separate
boundary loops. The experimental results in this paper verify
the performance of this new approach. Our future research
focuses on how to conduct the length control on feature curves
to generate patterns for compression garments.
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design,” Computer-Aided Design, vol. 34, no. 7, pp. 511–527, 2002.

[25] H.-Y. Chen, I.-K. Lee, S. Leopoldseder, H. Pottmann, T.Randrup, and
J. Wallner, “On surface approximation using developable surfaces,”
Graphical Models and Image Processing, vol. 61, no. 2, pp. 110–124,
1999.

[26] M. Peternell and T. Steiner, “Reconstruction of piecewise planar objects
from point clouds,”Computer-Aided Design, vol. 36, no. 4, pp. 333–342,
2004.

[27] M. Peternell, “Recognition and reconstruction of developable surfaces
from point clouds,” inGMP ’04: Proceedings of the Geometric Modeling
and Processing 2004, Washington, DC, USA, 2004, p. 301, IEEE
Computer Society.

[28] C.C.L. Wang, Y. Wang, and M.M.F. Yuen, “On increasing the developa-
bility of a trimmed nurbs surface,”Engineering with Computers, vol.
20, no. 1, pp. 54–64, 2004.

[29] M.S. Floater and K. Hormann, “Surface parameterization: A tutorial
and survey,”Advances in Multiresolution for Geometric Modelling, pp.
157–186, 2005.

[30] J. Manning, “Computerized pattern cutting methods based on an
isometric tree,” Computer-Aided Design, vol. 12, no. 1, pp. 43–47,
1980.

[31] C. Bennis, J.M. Vezien, and G. Iglesias, “Piecewise surface flattening
for non-distorted texture mapping,”Computer Graphics, vol. 25, no. 4,
pp. 237–246, 1991.

Fig. 11. The applications of our technique in (a) toy industry and (b) furniture
industry. Again, the yellow feature curves are assigned as elastic.

[32] A. W. Nutbourne, P. M. McLellan, and R. M. L. Kensit, “Curvature
profiles for plane curves,”Computer-Aided Design, vol. 4, no. 4, pp.
176–184, 1972.

[33] P. Decaudin, D. Julius, J. Wither, L. Boissieux, A. Sheffer, and M. Cani,
“Virtual garments: A fully geometric approach for clothingdesign,”
Computer Graphics Forum, vol. 25, no. 3, pp. 625–634, 2006.

[34] C.C.L. Wang and K. Tang, “Achieving developability of apolygonal
surface by minimum deformation: A study of global and local optimiza-
tion approaches,”The Visual Computer, vol. 20, no. 8-9, pp. 521–539,
2004.

[35] Y. Liu, H. Pottmann, J. Wallner, Y.-L. Yang, and W. Wang,“Geometric
modeling with conical meshes and developable surfaces,”ACM Trans.
Graph., vol. 25, no. 3, pp. 681–689, 2006.

[36] C.C.L. Wang, “Towards flattenable mesh surfaces,”Computer-Aided
Design, 2007.
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