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Abstract—In this paper, we present a fast algorithm for filling
unknown regions in an image using the strategy of exemplar-
matching. Unlike the original exemplar-based method using
exhaustive search, we decompose exemplars into the frequency
coefficients and select fewer coefficients which are the most
significant to evaluate the matching score. We have also developed
a local gradient-based algorithm to fill the unknown pixels in
a query image block. These two techniques bring the ability
of input with varied dimensions to the fast query of similar
image exemplars. The fast query is based on a search-array
data structure, and can be conducted very efficiently. Moreover,
the evaluation of search-arrays runs in parallel maps well on
the modern graphics hardware with Graphics Processing Units
(GPU). The functionality of the approach has been demonstrated
by experimental results on real photographs.

Index Terms—TEC-RST: Image completion, exemplar, DCT,
parallel, GPU

I. INTRODUCTION

THE removal of objects or the recovery of damaged
portion in a given image, known as image completion, is

an important task in photo editing and video post-processing.
Specifically, given an input image I with a missing or un-
known region Ω, we want to propagate structure and texture
information from the known region I \ Ω to Ω. Most of the
existing methods in literature take quite a long time to retouch
one image, which is far from a practical use in an interactive
image processing and editing. The Healing Brush tool in the
commercial software Adobe Photoshop is based on solving
a Partial Differential Equation (PDE) in the unknown region
with the Dirichlet boundary condition [1]. Although it can
reach the interactive speed, it does not give satisfactory results
in the regions with large unknown areas and highly textured
regions. Therefore, Criminisi et al. [2] developed the exemplar-
based image inpainting method to overcome these defects.
However, as the exemplar-based method needs to repeatedly
search the best matched exemplar to fill the unknown regions,
it takes about tens or even hundreds of seconds to process
an image with a moderate resolution (e.g., the photograph in
Fig.1). Different from the image query in texture synthesis, the
input of query in image completion [2] has varied dimensions
during the region filling procedure. We present a fast query
method in this paper to speed up the exemplar-based image
inpainting so that it can speed up the computation on a
consumer level PC equipped with modern graphics hardware.

In literature, many techniques have been developed. They
can be roughly classified into PDE-based, exemplar-based and
statistical-based. PDE-based method in [3], [4] diffuses the
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Fig. 1. Our fast query method speeds up the exemplar-based inpainting
method. For the input image with 538 × 403 pixels (top-left), we can
successfully fill the large removed region (about 27.15% of the whole image
has been blanked out) in 11.56 seconds. Our result is shown in bottom-right.
The algorithm in [2] takes about 133 seconds even after the ANN library [7]
has been employed to compute the best matched candidate exemplar(bottom-
left).

known pixels into the missing regions and smoothly propa-
gates image information from the surrounding areas along the
isophotes direction. The recovered results are highly smooth.
This method works well for small damaged regions. How-
ever, when the reconstructed area is large, it gives an unreal
blurry artifact that lacks texture. Drori et al. [5] incorporated
pyramid image approximation and adaptive image fragment to
achieve impressive results. Nevertheless, all these approaches
are extremely slow due to the high computational complexity.
Statistical-based method [6] uses the context of statistical
learning to fill the missing regions but it also fails in highly
textured photographs and takes a long time to compute the
results.

Recently, more and more researchers have started to con-
sider using exemplar-based methods to complete images with
a large portion removed, which are in fact a combination
of texture synthesis [8] and inpainting. The first attempt to
use exemplar-based synthesis for image completion was made
by Harrison [9] who filled the pixels in the target region by
the level of “textureness” on the neighborhoods of a pixel.
Although the intention sounds good, strong linear structures
are often overruled by nearby noises in his approach. Jia and
Tang [10] presented a technique for filling image regions by
explicitly segmenting the unknown area into different homo-
geneous texture areas with a tensor voting method. However,
their approach requires both an expensive segmentation step
and a difficult choice making on how to stitch the boundary be-
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tween two textures. Criminisi et al. [2] proposed an exemplar-
based image completion algorithm. Their method computes
the priorities of patches to be synthesized through a best-
first greedy strategy which depends on the priority assigned
to each patch on the filling-front, where the patch filling order
is determined by the angle between the isophote direction and
the normal direction of the local filling front. This algorithm
works well in large missing regions and textured regions. Our
proposed algorithm fills the missing region in a similar way
but with a more efficient matching (query) technique. Several
variants were proposed after the approach in [2] was presented.
Priority-BP (BP stands for belief propagation) was posed in
the form of a discrete global optimization problem in [11].
The priority-BP was introduced to avoid visually inconsistent
results; however, it takes a longer computing time than [2]
and needs user guidance. Sun et al. [12] introduced a novel
structure propagation approach to image completion, where
the user manually specifies the important missing structures by
extending a few curves or line segments from a known region
to the unknown. Their approach synthesizes image patches
along these user-specified curves using patches selected around
the curves in the known region. Structure propagation is
formulated as a global optimization problem by enforcing
structure and consistency constraints, which is also very time-
consuming when working on large images.

Retouching an image using other resources from database or
Internet is a new strategy which was first researched by [13].
The recent approaches include the usage of large displacement
views in completion [14] and the image database in re-coloring
[15]. However, when there is a large number of candidate
patches, the processing time will become even longer. Here
we focus on the speed-up problem of image completion using
a fast query method which to the best of our knowledge has
not been discussed before.

Some recent researches make the effort on speeding up
the time-consuming image completion procedure. Fang et al.
[16] presented an image completion algorithm using multi-
resolution patch-based directional and non-directional ap-
proach. Although the speed has been improved than [2], it is
slower than ours. For example, the photograph shown in Fig.1,
their method needs 35 seconds to complete. Their approach
spends a lot of time on the training step. Barnes et al. presented
the PatchMatch method, a randomized correspondence algo-
rithm, for structural image editing in [17]. Their approach is
dramatically fast. However, when being applied on the regions
with structural information (e.g., sharp edges), their results in
image completion is not as good as [2] and ours. The guidance
given by sketch input is need in their examples have such
structures. The randomized correspondence algorithm needs
the input query have a fixed dimension, so that it cannot be
applied directly in the procedure of [2].

A. Exemplar-based image inpainting

The procedure of exemplar-based image inpainting [2] is
briefed below. Each pixel p on the given image I has a con-
fidence term such that, during initialization, C(q) is assigned
to C(p) = 1 (∀p ∈ Ω) and C(p) = 0 (∀p ∈ I \ Ω).

After extracting the manually selected initial front ∂Ω0, the
algorithm repeats the following steps until all pixels in Ω have
been filled.

1) Identify the filling front ∂Ωt, and exit if ∂Ωt = ∅.
2) Compute (or update) the priorities of every pixel p on

the filling front ∂Ωt by P (p) = C(p)D(p) defined in an
image block Ψp centered at p. C(p) and D(p) are the
confidence term and the data term respectively defined
as

C(p) =

∑
q∈Ψp∩Ω C(q)

|Ψp| , D(p) =
|∇I⊥np

· np|
α

(1)

where |Ψp| is the area of Ψp, α is the normalization
factor (e.g., α = 255 for a typical grey-level image),
np is the unit normal vector which is orthogonal to the
front ∂Ω at p, and ∇I⊥np

is the isophote at p.
3) Find the patch Ψp̂ which has the maximum priority

among all patches centered at the filling front ∂Ωt.
4) Find the exemplar patch Ψq̂ in the filled region which

best matches the query image block Ψp̂.
5) Copy image data from Ψq̂ to Ψp̂ (∀p ∈ Ψp̂ ∩ Ω).
6) Update C(p) = C(p̂) (∀p ∈ Ψp̂ ∩ Ω).

Note that, in step 2, the pixel which is surrounded by more
confident (known) pixels and is more likely to let the isophote
flow in has a higher priority. To efficiently find a patch Ψp̂

having the maximum priority in step 3, we keep a maximum
heap during the region filling, which can be locally updated
after filling each image block in step 5 and 6. In the original
algorithm proposed by Criminisi et al. [2], the best matched
image block Ψq̂ (in step 4) is a patch in the filled region which
minimizes the Sum of Squared Differences (SSD) between Ψp̂

and Ψq̂ (i.e., d(Ψp̂,Ψq̂)) defined on those already filled pixels.
As explained in [2], d(Ψp̂,Ψq̂) is evaluated in the CIE Lab
color space because of its property of perceptual uniformity.

In the routine of exemplar-based image inpainting, the
most time consuming step is finding the best matched patch
Ψq̂ = argminΨq̂∈I\Ω d(Ψp̂,Ψq̂). Here, one must conduct an
image query with varied dimension on input which foils many
of the existing acceleration schemes (e.g., the KD-tree based
Approximate Nearest Neighbor (ANN) search in [7]). Another
acceleration scheme – the Tree Structured Vector Quantization
(TSVQ) in [8] can be used; however, it gives poorer results
since the searching result does not guarantee to be the best
matched one. Also, the construction time of binary tree in
TSVQ is quite long, which makes it not as efficient as our
approach presented in this paper.

B. Main Contribution

We developed a fast query method for speeding up the
exemplar-based image completion. For the evaluation of
matching score, we decompose exemplars into frequency
domain using Discrete Cosine Transformation (DCT) and de-
termine the best matched patches using fewer coefficients more
efficiently with the help of the search-array data structure. In
order to compute DCT on patches with unknown pixels, their
pixel values are determined by a local gradient-based filling,
which can preserve the continuity of image information better
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than simply filling unknown pixels by the average color of
known pixels. Our approach can greatly reduce the computing
time of exemplar-based image completion from hundreds of
seconds to a few seconds. This is an important feature which
makes this image editing tool practically usable.

II. IMAGE QUERY IN TRANSFORMED DOMAIN

Using exhaustive search to determine the best matched patch
which minimizes SSD in the above algorithm can hardly
reach the speed reported in [2]. Therefore, we tried to employ
the efficient Approximate Nearest Neighbor (ANN) library
[7] which is implemented by KD-tree to search for the best
matched patch Ψq̂ for a given query patch Ψp̂ at the filling
front ∂Ω, where every image block is considered as a high-
dimensional point in the feature space and the distance in such
a feature space is equal to the SSD. However, the unknown
pixels in Ψp̂ change from time to time, thus the dimension
cannot be fixed. Since no description about it has been given
in [2], we used the average color to fill the unknown pixels
so that the dimension of KD-tree is fixed. Surprisingly, same
results are obtained with similar lengths of time – we tested
our implementation in this way on Fig.13 and 15 in [2].

Further study shows that when increasing the dimension
of KD-tree from 20 to more than 200 (e.g., a window size
with 9 × 9 pixels is a point in the space with a dimension
of 9 × 9 × 3 = 243), the performance of KD-tree drops
significantly. Thus, in order to improve the efficiency, we
need a method to approximate the image block using fewer
coefficients than all pixels color value. Naively selecting
several pixels from an image block can never successfully
present (and reconstruct) the information in the whole image
block. We therefore consider this problem in the transformed
domain of images.

A. Comparison of using different transformations

The idea of using fewer m coefficients to approximate
a given n × n image (i.e., m ¿ n2) are stimulated by
the image compression techniques in [18] and the image
query metric in [19]. Therefore, Principal Component Anal-
ysis (PCA) [20], [21], Fast Fourier Transform (FFT) [22],
Discrete Cosine Transformation (DCT), standard and non-
standard Haar wavelet decomposition [23], [24] are considered
as candidate transformation strategies for our fast query.

Principal Component Analysis (PCA) is powerful in di-
mensional reduction as it allows us to discard vectors with
insignificant variance, thus it is widely used in data analysis.
It works well in human body modeling [25]. Different body
parameters highly relate to each other, such as bodies with
larger hip girth than the average are likely to have larger thighs.
PCA is very useful in dealing with these kinds of redundancy.
Nevertheless, there may not be such kinds of redundancy in
image blocks. Take a highly textured 8×8 image block shown

below as an example.



19 179 94 67 195 64 2 208
180 237 119 147 59 242 95 249
60 175 128 223 149 76 229 219
101 144 231 15 117 40 81 21
68 97 52 112 219 92 152 86
211 161 86 21 168 188 76 60
253 92 146 143 90 179 32 81
165 104 124 137 88 178 99 250




After PCA, the vector containing the percentage of the total
variance explained by each principal component is as follows:
{

35.48 32.80 13.48 10.47 5.66 1.77 0.34 0
}

If we want to keep 90% of accuracy, at least 4 vectors, i.e. 32
coefficients in total are needed to be retained, which means
50% of coefficients must be kept. In this case, the efficiency
of reduction is quite low. Since our target is to keep 10% or
even fewer coefficients of the whole image block, PCA is out
of our consideration.

FFT is not considered as well because the imaginary part
is not useful in image querying. Similar to other multimedia
applications, such as a compact version of FFT, DCT is more
appropriate than FFT in image querying since its computation
is simpler and faster in general. Here, we consider the two-
dimensional normalized type-II DCT which is widely used
in image compression (e.g., JPEG) and select the standard
and non-standard Haar wavelet decomposition as candidate
transformations because they are all linear and their basic
functions are orthonormal.

Lemma If the basic functions of transformation are or-
thonormal, squared L2 error of the transformed coefficient
differences between two image blocks Ψp and Ψq are the
same as the squared L2-norm difference between two images
on pixel values.
Proof. See Appendix.

From the above lemma, we know that the difference be-
tween image blocks can be measured by the difference in
their transformed coefficients in DCT, the standard and non-
standard Haar wavelet decomposition. Now the problem left is
that which transformation can reconstruct the original image
with the fewest number of coefficients – especially in highly
textured regions.

Our first try is to use m coefficients at the upper-left
corner of the transformed image block. In DCT and wavelet
transformations, these coefficients are the lower frequency
components. The heuristic to do this is based on the reason that
human eyes are more sensitive to noises in low frequency com-
ponents than in high frequency ones [26]. Other coefficients
are truncated to zero. However, the images reconstructed from
these retained coefficients using Inverse DCT and the standard
and non-standard Haar wavelet reconstruction are far from the
input when working on highly textured images (as the example
texture images shown in Fig.2). In other words, it is not easy
to use these m coefficients to distinguish the original textured
images from the reconstructed ones.
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Fig. 2. Study the query performance of m selected coefficients in the transformed domain by their ability to reconstruct the highly textured input image – the
better the original image is reconstructed, the more accurate the image difference error is reflected by these m coefficients. Using m significant coefficients
on DCT gives the best performance.

To improve the performance on textured images, we use
m significant coefficients (i.e., the m coefficients with the
largest magnitude) in the second test. After checking the
reconstruction performance (which in fact measures the query
performance) on the same set of textured images in the right
of Fig.2, it is not difficult to find that using m significant
coefficients on DCT works best. Therefore, we conducted the
strategy of using m significant DCT coefficients in our fast
query algorithm.

B. Gradient-based filling

For computing DCT coefficients on image blocks with
unknown pixels, if the unknown pixels are filled with average
color of known pixels, the DCT coefficients do not reflect the
texture or the structural information in the block very well. For
example, if the missing region Ω is located at the center of an
image block with progressive color change from left to right,
filling Ω with average color is not a good approximation. For
a smooth image, the gradient at pixels will be approximately
equal to zero. Based on this observation, we developed a
gradient-based filling method to determine the unknown pixels
before computing DCT.

In detail, for each unknown pixel pi,j , letting the discrete
gradient at this pixel be zero will lead to linear equations

Fig. 3. Filling unknown pixels by (left) the average color of known pixels
vs. (right) the gradient-based filling. Top four image blocks shows the query
and filled results using SSD based metric, where (A) is the query result by
filling unknown pixels by the average color and (B) is by the gradient-based
filling. Bottom left and bottom right are the query and filled results using the
truncated m-dominant DCT coefficients.

relating pi,j to its left/right and top/bottom neighbors – pi±1,j

and pi,j±1 – using the forward difference or the backward
difference. Therefore, for l unknown pixels, we can have
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k linear equations with k > l which is actually an over-
determined linear system. The optimal values of unknown
pixels can then be computed by the Least-Square solution
which minimizes the norm of gradients at unknown pixels.
Figure 3 gives a comparison of an image block with unknown
pixels filled by average color versus gradient-based filling.
The queries are taken by using both the conventional SSD
and the truncated m-dominant DCT coefficients (i.e., method
presented in above section). It is not difficult to find that a
better matched exemplar image block is found when filling the
unknown pixels in a query image block using the gradient-
based method. More specifically, the matched image blocks
given by an input with gradient-based filling usually have
better compatibility across the boundary between the known
and the unknown pixels.

Note that, the gradient filling may generate smoother images
at those unknown pixels when the known pixels are highly
textured. This will be overcome by a revision of the Criminisi
et’s method [2]. We find more than one matched patches
(actually 0.1% of the toal exemplars), among which the one
with the highest SSD score on the known pixels is finally
selected. Furthermore, using m-dominant DCT coefficients in
selection will also reduce the effect led by the pixels filled in
this step.

III. FAST IMAGE QUERY ALGORITHM

We developed a fast query algorithm to search among a set
of m̂ exemplar patches Ψqk

(k = 0, · · · , m̂ − 1) in the filled
region to find the best matched exemplar patch Ψq̂ for the
query image block Ψp̂. More specifically, we need to find

ΨM
q̂ = argminΨq̂∈I\Ωd(Ψp̂,Ψq̂) (2)

with d(Ψp̂,Ψq̂) being the Sum of Squared Differences (SSD)
which is actually the squared L2 norm as

d(Ψp̂,Ψq̂) =
∑

(i,j)

‖pi,j − qi,j‖2 (∀pi,j ∈ Ψp̂,qi,j ∈ Ψq̂)

(3)
where the color at each pixel pi,j (and qi,j) is a vector of
three components in CIE Lab color space.

As aforementioned, we transform the exemplar image
blocks and the query image block into their frequency domain
by DCT. Then, only m significant coefficients are retained
for each color channel of every image while other coefficients
are truncated to zero. In the rest of this paper, we use p̂t

i,j

to denote the truncated DCT coefficient at (i, j) in the image
block Ψp̂ for the color channel t (t = L, a, b). The positions of
m significant coefficients change during the image completion
routine. Therefore, if we simply use ANN to find the best
matched image Ψq̂ of the query image block Ψp̂ by the SSD
on truncated DCT coefficients as

d̃(Ψp̂,Ψq̂) =
∑
t

∑

(i,j)

(p̂t
i,j − q̂t

i,j)
2, (4)

we still need to have the KD-tree of n2 dimensions – the
computation cannot be sped up.

A. Efficient Scoring Images

To avoid evaluating the Euclidean distance in the n2-
dimension space, we first simplify Eq.(4) and then employ
the search array data-structure to evaluate dt(Ψp̂,Ψq̂) more
efficiently.

Expanding Eq.(4) and eliminating the zero terms, we have

d̃(Ψp̂,Ψq̂) = d̃p̂ + d̃q̂ − 2d̃p̂q̂ (5)

with

d̃p̂ =
∑
t

∑

p̂t
i,j

6=0

(p̂t
i,j)

2,

d̃q̂ =
∑
t

∑

q̂t
i,j

6=0

(q̂t
i,j)

2,

d̃p̂q̂ =
∑
t

∑

q̂t
i,j

6=0, p̂t
i,j

6=0

q̂t
i,jp̂

t
i,j .

In practice, the value of d̃p̂ for a given query image block
will not change; therefore, the metric for scoring the similarity
between Ψp̂ and Ψq̂ can be further simplified to

S(Ψp̂,Ψq̂) = d̃q̂ − 2d̃p̂q̂, (6)

whose value is the smaller the better. The amount of arithmetic
computation for evaluating S(Ψp̂,Ψq̂) is only 2m+1 multipli-
cations plus one subtraction for each color channel in the worst
case, while n2 subtractions and n2 multiplications are needed
for the evaluation of the original d(Ψp̂,Ψq̂) in all cases. The
worst case happens when all nonzero coefficients in Ψp̂ have
a corresponding nonzero coefficient in Ψq̂. In general, there
are fewer overlapped nonzero coefficients in them. Moreover,
the values of d̃q̂ for all exemplar image blocks can be pre-
computed and stored so that during the scoring process, only
d̃p̂q̂ has to be computed.

To efficiently evaluate d̃p̂q̂, we should have a fast method to
check if neither q̂t

i,j nor p̂t
i,j are zero. We employ the search-

array data structure, which was used in [19] for image query.
Arrays are constructed in the initialization step for a color
channel. For example, let Dt denote the search-array for the
color channel L, each element Dt[i, j] of the array contains a
list pointing to all images having a nonzero DCT coefficients
at (i, j) in the t color channel. Dt[i, j][k] represents the kth
image stored at the element Dt[i, j], whose truncated DCT
coefficient at (i, j) is nonzero. Dt[i, j][k].ID and Dt[i, j][k].α
are the global index of the exemplar image block and its
nonzero DCT coefficient at (i, j) respectively.

These search-arrays can be constructed in the initialization
step before the main routine of exemplar-based image com-
pletion. First of all, all exemplar image blocks in the known
region, I \ Q, are decomposed into the frequency domain
by DCT. The DCT coefficients are then truncated by only
retaining the m significant ones, and are filled into the search-
arrays. Another array, B, named as base-score array, is also
established during the initialization. B[k] stores the value of
d̃q̂ of the kth exemplar image block Ψp̂.

By the base-score array and the search arrays, the matching
scores of all exemplar images, Ψqk

(k = 0, · · · , m̂ − 1), to
the query image block, Ψp̂, can be updated by scanning the
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elements, Dt[i∗, j∗] (∃p̂t
i∗,j∗ 6= 0), of search arrays. Details

can be found in Algorithm 1 FindBestMatch (with kmin being
the ID of the best matched exemplar).

Algorithm 1 FindBestMatch
1: Initialize scores[k] = B[k] for all k;
2: for each color channel t do
3: for each nonzero DCT coefficient p̂t

i∗,j∗ do
4: for each element e of Dt[i∗, j∗] do
5: k = Dt[i∗, j∗][e].ID;
6: scores[k]− = 2(Dt[i∗, j∗][e].α ∗ p̂t

i∗,j∗);
7: end for
8: end for
9: end for

10: Find kmin = argmink scores[k];

After scoring the exemplar image blocks, we select 0.1%
of the total exemplars with smallest scores as candidate
exemplars. Among them, the one gives smallest SSD value
to Ψp on the known pixels is selected as the best matched
image block Ψq̂.

B. Parallel Implementation on GPU

The algorithm presented above maps well on modern graph-
ics hardware, which provides highly parallel computational
power. We conducted the CUDA library from nVidia [27] for
our parallel implementation. In Algorithm 1 FindBestMatch,
parallel implementation of the first step and the most inner
loop is trivial when using the technique of General-Purpose
computation on Graphics Processing Units (GPGPU). The last
step in Algorithm 1 FindBestMatch is a standard reduction
problem in GPGPU, and it can be computed highly in parallel
as well. The basic idea of parallel reduction is to build a
balanced binary tree on the input data and sweep it to the
root to compute the minimum (or maximum). Details can be
found in [28]

The initialization step can also be parallelized to run on
GPU. For the exemplar image blocks, we first parallel compute
and truncate the DCT coefficients of all image blocks. Then,
the entry of the base-score array, B, is also generated in
parallel. Afterwards, for each nonzero coefficient q̂t

i∗,j∗ of the
exemplar Ψq̂k

, we let

Dt[i∗, j∗][k].ID = k

and

Dt[i∗, j∗][k].α = q̂t
i∗,j∗ .

This parallel assignment is also trivial to implement. Lastly,
the empty entries at each element Dt[i∗, j∗] of the search-array
are removed by the parallel compaction operation.

Basically, such parallel compaction has three steps (ref.
[28]):

1) Initialization: We generate a temporary vector where the
elements whose values of ID in the list are nonzero are
set to one and the other element are set to zero.

2) Scanning: Scanning is conducted on the temporary vec-
tor by building a balanced binary tree on the vector and

Fig. 4. An example of removing a bungee jumping man: (left) the input
image (206× 308 pixels), (middle) the result of Criminisi’s method (in 12.5
sec.), and (right) our result (in 0.9 sec.).

Fig. 6. An example of damaged ellipses: (left) the input image (200× 150
pixels), (middle) the result of Criminisi’s method (in 10.36 sec.), and (right)
our result (in 0.67 sec.).

sweep it to and from root to compute the prefix sum. The
result of scanning then contains the destination address
for that element in the output vector.

3) Scattering: The input elements are scattered to the output
vector using the address generated by the scan.

All these operations have been recently integrated as primitive
elements in the CUDPP library [29], which are easy to use in
our image completion program.

IV. RESULTS AND DISCUSSION

We have implemented the proposed algorithm and the
one suggested by Criminisi et al. in [2] using Visual C++,
and tested them on various examples on a PC with Intel
Core 2 Quad CPU Q6600 2.4GHz CPU equipped with a
consumer level graphics card – GeForce GTX295. Basically,
the proposed fast query method can recover photographs more
efficiently than the original exemplar-based approach [2]. All
the computations are conducted in the CIE Lab color model.
When implementing the original algorithm in [2], we adopt
the ANN library [7] to find the best matched patch in each
step. Although our method’s quality in principle should be
worse than that of the original method as we use fewer
coefficients, our method is robust and shows better results
in some cases. It is because selecting the most significant
coefficients in the frequency domain has a denoising effect
[30]. Specifically, by the matching method presented in [2], the
selected patches to fill may be highly incompatible between
the known and the unknown pixels. In our approach, since
m-dominant DCT coefficients are used and the unknown
pixels are filled smoothly, our matching results are much more
compatible and also reflect global visual effect in terms of
block instead of pixel.
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Fig. 5. An example of removing the unwanted words: (left) the input image with annoying words (438 × 279 pixels), (middle) the result of Criminisi’s
method (in 62.21 sec.), and (right) our result (in 7.4 sec.).

Fig. 7. An example of removing the unwanted drawing: (left) the input image with annoying drawing (628× 316 pixels), (middle) the result of Criminisi’s
method (in 47.14 sec.), and (right) our result (in 3.68 sec.).

Fig. 8. An example of removing the unwanted building: (left) the input image (700× 386 pixels), (middle) the result of Criminisi’s method (in 76.36 sec.),
and (right) our result (in 1.64 sec.).

The patch size of exemplars is critical to the final comple-
tion result. The bigger size results in less similar patches, and
the smaller size leads to more repeated patterns in filled un-
known regions. In order to balance the quality and efficiency,
after testing with different examples, we found that the patch
size of 9× 9 is suitable for most cases. This is also the patch
size selected in [2]. For some special cases, like Fig.5, which
have small details, a patch size of 5×5 is chosen. Meanwhile,
users can also adjust the patch size to fit their needs.

Our first example shown in Fig.1 can be completed in 11.56
seconds by our method but takes about 133 seconds when
using our implementation of [2]. More examples are shown
in Fig.4-10. It is easy to find that our method can generate
similar results as [2] but in a much shorter time. The last
example (in Fig.11) is employed to demonstrate that the result
of image completion can be improved by specifying the region
of searching for candidate exemplars to fill the removed region.
Both the quality and speed can be improved by such a simple
interactivity.

To verify the efficiency of our method and the quality of
resultant images, we compared our results to the state-of-the-
art approaches. Our first trial is to employ TSVQ in the patch

query. Examples generated by this way are shown in Fig.12,
where both balanced and unbalanced binary trees in TSVQ are
tested. The speed of using TSVQ is faster than [2] but still
slower than ours. The results generated are not as good as ours
because that the resultant codeword may not be the optimal
one since only part of the tree is traversed for the query.

Considering the algorithm presented in [16], it has reported
the results on two common examples as ours – the one shown
in Figs.1 and 4. The qualities of results from theirs and ours
are similar; however, their method takes 35 seconds (on the
baby image - Fig.1) and 8 seconds (on the bungee example -
Fig.4). Ours needs only 11.56 and 0.9 seconds respectively.

Lastly, the recently presented random Patch-Match approach
[17] is conducted to test the examples shown in this paper
without user specified guidance (i.e., the strokes given in the
demos of [17]). The image completion in [17] is based on the
method of Wexler et al. in [31]. Their method with the help
of random Patch-Match [17] can generate results in a very
fast speed, and the results in general are acceptable if there
is no significant structural edges. Nevertheless, when applying
such completion to the images with structural edges, e.g., the
bungee example and the damaged ellipses example, the quality
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Fig. 9. An example of removing the unwanted microphone: (left) the input image (480× 640 pixels), (middle) the result of Criminisi’s method (in 67.98
sec.), and (right) our result (in 2.48 s.).

Fig. 10. An example of removing the unwanted words: (left) the input image with annoying words (700 × 438 pixels), (middle) the result of Criminisi’s
method (in 127.25 sec.), and (right) our result (in 4.18 sec.).

of their results is poorer than ours (see Fig.13). Another similar
example is given in Fig.14. Although applying more iterations
can somewhat improve the result, the computation does not
lead to the straight edge as our approach (rightmost of Fig.14).
The image completion results using the random Patch-Match
based approach [17] on other two examples (given previously
in Fig.1 and 11) are shown in Fig.15.

V. CONCLUSION

We developed a fast query method under the framework
of an exemplar-based image completion in this paper. The
exemplars are decomposed into the frequency coefficients and
among them a few significant ones are selected to evaluate
the matching score. Moreover, a local gradient-based filling
algorithm was developed to fill the unknown pixels in a
query image block, which improves the accuracy of finding
the best matched exemplar. Our new algorithm using the
search-array to score the candidate exemplars maps well on
the modern graphics hardware with GPU. Experimental tests
proved the effectiveness and efficiency of our approach in
various photographs.
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APPENDIX A

Lemma If the basic functions of transformation are or-
thonormal, squared L2 error of the transformed coefficient
differences in two image blocks Ψp and Ψq is the same as
the squared L2-norm of differences between two images on
pixel values.
Proof. Without loss of generality, we use pi,j and qi,j to
represent the pixel values in two images, and F p

u,v and F q
u,v to

represent their transformed coefficients. They can be expressed
as a weighted sum of basis functions

F p
u,v = Σn−1

i=0 Σ
n−1
j=0 pi,jφi,j(u, v) = Σn2−1

k=0 pkφk(u, v), (7)

F q
u,v = Σn−1

i=0 Σ
n−1
j=0 qi,jφi,j(u, v) = Σn2−1

k=0 qkφk(u, v). (8)

The square of L2 on F p
u,v and F q

u,v can be represented as
the inner product of two vectors formed by the components
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Fig. 11. An example of removing unwanted shadow: (top-left) the original
image (350×257 pixels), (top-right) the unwanted shadow has been blanked
out, (bottom-left) the result of Criminisi’s method (in 2.14 sec. by searching
exemplars in the region circled by dashed lines) and (bottom-right) our result
of image completion (in 0.41 sec.).

Examples Unbalanced TSVQ Balanced TSVQ
Bungee 5.68 sec. 4.97 sec.
Ellipse 1.35 sec. 0.93 sec.
Carriage 18.3 sec. 16.9 sec.

Fig. 12. Results by replacing the exemplar searching step with the TSVQ
technique [8]. The completion results using both the unbalanced (left) and
the balanced (right) trees in TSVQ are shown, where the unbalanced TSVQ
gives better results but takes longer time. The computational statistics in time
are listed in the table.

{F p
u,v} and {F q

u,v}, where {· · ·} means to span the indices
u, v = 0, · · · , n− 1.

L2(F p
u,v, F

q
u,v) = Σn−1

u=0Σ
n−1
v=0 (F

p
u,v − F q

u,v)
2

= ‖{F p
u,v} − {F q

u,v}‖2
=< {F p

u,v} − {F q
u,v}, {F p

u,v} − {F q
u,v} >

=< {Σn2−1
k=0 (pk − qk)φk(u, v)}, {Σn2−1

l=0 (pl − ql)φl(u, v)} >

= Σn2−1
k=0 Σn2−1

l=0 (pk − qk)(pl − ql) < φk(u, v), φl(u, v) >

As the basis functions φk(u, v) are orthonormal (i.e.,
φk(u, v)φl(u, v) = 1 only when k = l, and φk(u, v)φl(u, v) =

Fig. 13. Results by using the random Patch-Match [17]: (left) the bungee
jumping example (in 0.2 sec.), and (right) the damaged ellipses shown in
Fig.6 (in 0.12 sec.). As the Patch-Match is a randomized approach, we try
several times and show the best result here.

Fig. 14. Results of completing a damaged straight edge: (leftmost) the white
region is to be filled (middle-left) the result by random Patch-Match with
5 iterations (in 0.09 sec.), (middle-right) applying more iteration steps (20
iterations in total here) can give better result by Patch-Match, and (rightmost)
our method can reconstruct the straight edge (in 0.2 sec.).

1 for any other k 6= l), we have

L2(F p
u,v, F

q
u,v) = Σn2−1

k=0 (pk − qk)
2. (9)

The right-side of the above equation is the squared L2-norm of
differences between two images Ψp and Ψq on pixel values.
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