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Abstract—Actuators using soft materials feature a large num-
ber of degrees of freedom. This tremendous flexibility allows a
soft actuator to passively adapt its shape to the objects under
interaction. In this paper we propose a novel proprioception
method for soft actuators during real-time interaction with
priorly unknown objects. Firstly, we design a color-based sensing
structure that instantly translates the inflation of a bellow
into changes in color, which are subsequently detected by a
miniaturized color sensor. The color sensor is small and thus
multiple of them can be integrated into soft pneumatic actuators
to reflect local deformations. Secondly, we make use of a Feed-
forward Neural Network (FNN) to reconstruct a multivariate
global shape deformation from local color signals. Our results
demonstrate that deformations of the actuator during interaction,
including sigmoid-like shapes, can be accurately reconstructed.
The accurate shape sensing represents a significant step towards
closed-loop control of soft robots in unstructured environments.

Index Terms—Shape Prediction, Color Sensor, Pneumatic Ac-
tuator, Sensor Fusion, Soft Robotics

I. INTRODUCTION

DUE to their intrinsic compliance, actuators made from
soft materials have shown their great potential in many

tasks such as grasping. The flexibility of soft materials allows
the actuator to passively adapt its shape in response to physical
contacts with objects. The control of soft robot actuators is
typically performed in open loop. For grasping objects with
known geometry, the curvature of a pneumatic actuator can
be controlled through the applied pressure and mechanical
programming (e.g., [1], [2]). However, for precise operations
in unstructured environments and dexterous manipulation [3],
mechanical programming becomes ineffective and closed-
loop control is needed. A fundamental step towards feedback
control of soft actuators is the development of proper propri-
oception methods [4], [5].

Our work focuses on soft pneumatic actuators. This type of
actuators is commonly used in soft robotics. It uses pressurized
air to inflate chambers. The asymmetry in the geometry of in-
ternal chambers or physical properties of constituent materials
drives the shape to the intended deformation [6]. Specifically,
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downward bending can be realized through pressurization of
an air chamber with an extensible top layer and an inextensible
bottom layer [7]. In this paper, we present a novel method
to accurately sense and reconstruct the bended shape of soft
pneumatic actuators during real-time interaction with objects.

A. Related Work
1) Sensing in soft actuators: The use of exteroceptive

sensing devices such as visual tracking systems has been
reported in soft robotics (e.g., [8], [9], [10]). However, propri-
oceptive sensing approaches have the potential to create more
compact sensing systems and further improve the autonomy
of soft robots. This requires sensors that can be embedded in
soft actuators. Ideally such sensors shall be bendable and/or
stretchable, and thus do not prevent the deformation of soft
actuators. An overview of sensing principles for soft actuators
can be found in [11], [12], [13].

A commonly used approach to realize position sensing
in soft robots is through embedded channels filled with
conductive inks [14], [15] or liquid metals [16], [17] that
change electrical resistance upon deformation. Other resistive
sensors make use of conductive polymers that can be directly
3D-printed [18], [19], or off-the-shelf flex sensors [20]. An
overview of resistive flex sensors is given by Saggio et al. [21].
An alternative use of electrical properties includes highly
flexible capacitive sensors built from conductive fabrics and
silicone [22] or aluminum and silver layers on an elastomer
surface [23].

Some contactless sensors have also been developed, using
optics [24] or magnetics [25]. For instance, Zhao et al.
developed stretchable optical waveguides in soft prosthetic
hands to feel the shape and softness of objects [26], [27].

Many of existing sensors suffer from elastic hysteresis,
fabrication complexity and compromise in compliance, or can
hardly be extended for the integration of multiple sensors
throughout the actuator, which is necessary for reconstruct-
ing complex global deformation. Our color-based sensing
approach overcomes all these difficulties.

2) Actuator model: Besides the development of accurate
sensors, the actuator model which describes the global defor-
mation and to which the sensing is calibrated is important for
feedback control. Existing algorithms for shape reconstruction
of soft robots are oversimplified, and do not address complex
/ local deformations [12]. The global deformation of soft
actuators is typically described by using a simple descriptor
such as average curvature [26], [17], [25], [28] or bending an-
gle [18], [19], [20]. These univariate models are representative
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Fig. 1: A soft pneumatic actuator with red glass-headed pins inserted in the inextensible layer, serving as makers for the training
of the neural network (left). The deformed shape is represented by the red dots, the locations of which are predicted from four
color sensors embedded in the actuator (middle and right). Note that the predicted locations of the red dots accurately match
the red pins, in the absence of object interaction (middle) and during interaction with objects (right).

for bending in the absence of object contacts. However, the
soft actuator continuously adapts its shape during interaction
with objects. A single parameter thus becomes ineffective to
accurately describe the global deformation (e.g., the sigmoid
curve in Fig. 1). Other soft robot sensing methods [27], [29]
focus on object detection rather than shape sensing, bypassing
the need for a continuous actuator model.

While the kinematics can be analytically derived for robots
composed of rigid links, the deformation and motion for soft
robots involves a lot more degrees of freedom (DoFs). A
promising direction for soft robots is the use of learning
algorithms to directly predict the deformed shape of the
actuator based on sensor values. Giorelli et al. [30], [31] used a
Feed-forward Neural Network (FNN) to learn the tip position
of a cable-driven soft tentacle based on the cable forces.
Runge et al. [32] suggested Finite Element Analysis (FEA)
based training to learn a kinematic model of a soft pneumatic
actuator through a neural network. Neural networks have also
been applied to calibrate soft sensors to estimate the magnitude
and the location of a contact pressure [33]. Wall et al. [5]
used polynomial regression learning methods to find the most
effective layout of sensors from a redundant layout of sensors
on a soft pneumatic actuator. In parallel with our work, Van
Meerbeek et al. [34] predict the bending and twisting of a soft
foam with embedded optical fibers, comparing several learning
techniques. Thuruthel et al. [35] show that temporal relations
in the sensor data can be used to predict the fingertip position
of a soft actuator using a recurrent neural network known as
Long Short-Term Memory (LSTM). However, neither of them
has demonstrated the capability of predicting the deformed
shape of a soft gripperdeformation generated by unknown
interactions as shown in our work. An FNN is used in this
paper to reconstruct the global deformation. It demonstrates
that learning algorithms can be used to fuse information of
multiple sensors that overlap with each other. Benefited from
our novel color-based sensing approach, this is the the first
approach that can accurately predict the global shape of an
actuator interacting with objects.

B. Overview and Organization of the Work
The basic idea of our shape sensing approach is to translate

the bending that occurs in the extensible parts of soft actuators
into a measurable change in colors. The color signals are

captured by a miniaturized color sensor that is embedded in the
inextensible layer of the soft actuator. To translate structural
deformation into changes in color, we developed a multi-color
structure that can be fabricated by 3D printing. With the local
deformations of the actuator detected by a set of embedded
color sensors, we make use of an FNN to reconstruct the
global deformation. As shown in Fig. 1, the deformed shape
of a pneumatic actuator can be accurately reconstructed by the
proposed method, even after the inextensible bottom layer is
largely distorted into a sigmoid-like curve. The reconstructed
global deformation can provide much more information than
(averaged) curvature or bending angle as used in many existing
approaches (e.g., the 3D printed soft hand in [1]) to the control
system of soft actuators.

Note that, this paper is an extension of our recent re-
search [36] which proved the principle of color-based curva-
ture sensing. Here, we extend it to reconstruct the multivari-
ate shape deformation by integrating multiple color sensors.
To this end, machine learning is employed for deformation
reconstruction.

The rest of this paper is organized into five sections.
Section II presents the developed color-sensing method and
discusses the design and fabrication of the actuator with
integrated signal generators. In order to generate training data
set for accurately estimating a deformed shape, the method for
data acquisition is introduced in Section III. Both the hardware
setup and the steps of sampling will be discussed. After that,
an FNN-based method is employed in Section IV to fuse the
color signals captured by multiple sensors to reconstruct the
deformed shape of an actuator. The experimental results will
be presented in Section V and the paper ends with conclusion
in Section VI.

II. COLOR-BASED SENSING

A. Sensing Principle

The sensing principle is based on multi-color structures,
the color and intensity of which gradually change upon
deformation. The changes can be observed by cost-effective
color sensors. To substantiate this principle, as illustrated in
Fig. 2, inside a soft pneumatic actuator Ω-shaped bellows are
colored by two distinct colors, distinguishing different parts
of a bellow. Beneath each bellow a color sensor, embedded
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Fig. 2: Illustration of multi-color bellows inside a soft pneu-
matic actuator for translating deformation into changes in
color. The dimensions of the bellow used in our experiments
are lsensor = 5.1 mm, lbellow = 11.3 mm and hbellow =
37.0 mm.

Fig. 3: Illustration of a bellow before and after being pressur-
ized. The pattern of colors that can be captured through the
sensing window is shown at the bottom.

in a plug, is plugged into the inextensible layer of the
bending actuator. Upon pressurization of the air chamber, the
bellows inflate, exposing a large area of the initially occluded
color (i.e., magenta) to the window of the color sensor (see
Fig. 3). Consequently, the measurement of the sensor changes
accordingly. This sensing principle can be applied to bellow-
based pneumatic actuators of different shapes and dimensions.
The length of the inflatable part in our design is 45.2 mm.
The main dimensions of the actuator are indicated in Fig. 2.
Although the measurements depend on the particular actuator
design, a general learning procedure, which will be presented
in Section IV, can be conducted to map the measurements of
the color sensors to the deformed shapes of an actuator.

B. Sensor Crosstalk

Although each color sensor is influenced most by the signal
generated by the bellow directly above it, it is also influenced
by adjacent bellows, as illustrated in Fig 4. The degree of
influence is not constant but depends on the deformation of
the actuator.

This ‘crosstalk’ between sensors would normally be unde-
sirable, as it complicates signal processing. We propose the

Fig. 4: Illustration of sensor crosstalk – each sensor captures
signals generated by the bellow directly above it and the
neighboring bellows.

Fig. 5: Both an exploded view of the sensor plug design
(left) and the assembled sensor plug (right) are shown. In the
exploded view (left), from the bottom up – the lower PCB,
rigid bottom, flexible plug and upper PCB. Note that the rigid
bottom and flexible plug are printed as one piece.

use of neural network based method for fusion, which does
not suffer from this undesirable effect as it can learn the
deformed shape of an actuator at a global level. In fact, as
will be demonstrated in Section V this crosstalk situation can
actually be used to reduce the number of sensors. This would
not be possible when using a separate sensor calibration for
each bellow segment.

C. Color Sensors

A color sensor is plugged into the inextensible layer of the
actuator at each bellow segment. To reduce the size of color
sensors, we customized the color sensor with a design of two-
layer PCBs, mounted on a 3D-printed plug (see Fig. 5). The
shape of the plug creates an airtight seal. The detailed design
of the sensor can be found in Appendix A. The color sensor
has a built-in LED that emits light to the multi-color structures
above it. Similar to the sensor crosstalk, the light is also shed
on the neighboring bellow segments.

For color sensing, the TCS34725 light-to-digital converter
is used. The sensor returns four values, namely Red, Green,
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(a) Raw RGBC data

(b) RGB normalized by the Clear value

Fig. 6: (a) Raw RGBC data of a color sensor measured at
pressure intervals during unobstructed bending. Besides a clear
decrease in intensity due to an increased measuring distance, a
change in color can be observed as well. (b) RGB normalized
by the Clear value. The ratio of red gradually increases from
0.1918 to 0.2088, while the blue ratio decreases from 0.4235
to 0.4071.

Blue and Clear (RGBC), for each exposure. The clear value is
IR filtered light, which gives an indication of overall light in-
tensity. The sensor integration time is set to 50 ms and the gain
to 60X . An Adafruit Feather HUZZAH with ESP8266 reads
the sensor-data of the four sensors with a negligible delay
between each sensor by using a TCA9548A I2C Multiplexer.
The Feather HUZZAH runs code using adafruit’s TCS34725
library. A command to collect a data sample is sent from
the main Matlab script through serial communication. The
collected data is then sent back to Matlab.

D. Materials & Fabrication

The embodiment of our design is fabricated on a Stratasys
Objet 350 Connex3 multi-material 3D printer, which uses
Material Jetting technology and can print combinations of
up to three different building materials in addition to a
water soluble support material. The overall structure of the
actuator is printed with the flexible Agilus 30 Black, while
the multicolored bellows are printed with the rigid VeroCyan
and the rigid VeroMagenta. Note that pure blue or red colors
are not available for this 3D printing system. As the colored
materials are rigid, we want to apply a layer as thin as possible.
VeroMagenta and VeroCyan but not VeroYellow materials are
chosen as VeroYellow has a higher translucency.

The Agilus 30 Black has an elongation of 220 ∼ 270% at
break and a tensile strength of 2.4 ∼ 3.1MPa – as documented
by Stratasys. The RGB values of the VeroMagenta (VM) and
VeroCyan (VC) materials are RGBVM = (166, 33, 98) and
RGBVC = (0, 93, 127) respectively.

(a) RGB ratio at the first measurement: [0.1918, 0.3508, 0.4235].
RGB ratio at the last measurement: [0.2088, 0.3496, 0.4071]

(b) RGB ratio at the first measurement: [0.2006, 0.3597, 0.4295].
RGB ratio at the last measurement: [0.2188, 0.3548, 0.4074]

(c) RGB ratio at the first measurement: [0.1902, 0.3646, 0.4286].
RGB ratio at the last measurement: [0.2129, 0, 3666, 0.4001]

(d) RGB ratio at the first measurement: [0.1612, 0.3428, 0.4679].
RGB ratio at the last measurement: [0.1894, 0.3466, 0.4367]

Fig. 7: RGB values of the four sensors plugged underneath
the four bellows. The RGB ratio data is obtained by dividing
the raw RGB values by the Clear value. For each sensor there
is a clear increase in red and decrease in blue.

E. Color Signal

Figure 6(a) shows the raw data that was obtained by reading
out the RGBC-data of a color sensor during unobstructed
progressive bending. A clear decrease in overall intensity
can be observed. This is due to the increased measurement
distance towards the hidden (magenta) elements that appear
upon bending, as well as the decrease in overlap of the light
of the LEDs upon bending (similar to the crosstalk in the
sensors explained in subsection II-B). Besides the change in
intensity, a color change can be observed as well. As shown
in Fig. 6(b) the raw RGB values are normalized by dividing
the raw RGB values by the Clear value. The normalized RGB
color codes show a clear increase in red and a clear decrease
in blue, confirming the appearance of a larger magenta area.
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Fig. 8: The data acquisition setup: (A) the soft pneumatic
actuator, (B) the four color sensors, (C) the variable obstacle,
(D) the pressure regulator and (E) the camera.

Similar observations can be made from sensors embedded in
other slots, as can been seen in Fig. 7. We do not observe a
clear trend in the green ratio upon bending. This can probably
be attributed to the fact that the VeroCyan material contains
less green than real cyan while the VeroMagenta contains more
green than real magenta, and the AgilusBlack also contains
some green.

III. DATA ACQUISITION

This section focuses on describing how the data, used in
the learning for reconstruction procedure, was acquired. We
built a setup that randomly changes the actuation pressure
and the position of an obstacle. It then captures an image of
the deformed actuator and collects the measurements of the
color sensors. Two readings are made during one loop – due
to hysteresis the actuator will slowly deform after reaching
a certain pressure. Both readings are collected into the set
of training samples. This allows for generating more samples
in a shorter timespan. The sample data collection process is
automatic. The main loop, running in Matlab, looks as follows:

1) Set random obstacle angle;
2) Set random actuation pressure;
3) Take first picture;
4) Read out data of the color sensors;
5) Wait for 2 seconds;
6) Take second picture;
7) Read out data of the color sensors;
8) Set pressure back to zero;
9) Set obstacle back to default position.

Our data acquisition setup is illustrated in Fig. 8. Its main
components are discussed in the following.

We took samples from 500 random pressure/obstacle-
configurations for the training. Two samples were taken for
each configuration, so a total of 1000 data samples were
collected. The total data collection procedure took less than 5
hours.

A. Shape of Actuator

We used the soft actuator design as discussed in Section II.
Our actuator has four bellows. Red glass-headed pins are
inserted into designated pin holders in the inextensible layer,

serving as markers (see Fig. 1). An additional marker is placed
on the origin of the actuator. The positions of the origin marker
and the first marker are fixed (see Fig.9), and the distance
between the markers is known. These markers are used to
determine the orientation of the actuator and to convert from
pixel positions to metric positions in the unit of mm. As a
result, the shape of an actuator can be obtained by processing
the images captured by camera.

B. Variable Obstacle

An obstacle is attached through a 3D-printed arm linked to
to a stepper motor (see Fig.8(C)), and thus its location can be
varied by the stepper. To (roughly) align the trajectories of the
obstacle and the actuator and thus create valid obstructing, the
arm has a length of 140 mm and its axis is located 100 mm
above the inextensible layer of the actuator. At the start of
one loop, the obstacle angle is randomly chosen between
15 and 32 degrees. We have a resolution of 65 uniform
steps within this range. We use an Arduino Uno and Pololu
DRV8825 stepper driver to control the stepper (see Fig.8(C)).
The random obstacle position is controlled the main Matlab
program through serial communication.

C. Pressure Regulator

The actuator requires low pressures to generate relatively
large changes in actuator deformation. For the data acquisition,
we need to generate stable actuator deformations with a
high resolution within the actuator’s actuation range of 0 to
5 kPa. This is realized by a syringe based pressure regulator.
Specifically, a stepper motor moves the plunger of a syringe to
add air to, or subtract air from, the actuator (see the illustration
in Fig.8(D)). The pressure inside the actuator is measured
using an NXP MP3V5050GC6U pressure sensor with a range
of 0 − 50 kPa. A desired pressure can then be achieved by a
PID-controller using Arduino.

D. Camera

We use a Logitech C922 Pro Stream Webcam to capture
the positions of markers. The camera is placed at a distance
of 250 mm to the actuator markers. We capture images with
a resolution of 1920 × 1080p. The camera settings are set
manually and are kept constant over all captured images. A
sample of the raw image captured by camera is shown in
Fig. 9.

E. Sampling Strategy

During a pilot acquisition, the pressure was varied between
0 and 5 kPa and the obstacle angle between 0 and 32 degrees,
as shown in Fig. 10. However, our experiments suggest that
a relatively high amount of constrained configurations in the
training data can improve the training results. Therefore, we
increased the minimum value of the obstacle angle to 14.5
degrees. The results of the final sampling are shown in Fig. 11.
Note that the maximum pressure was also reduced to increase
the life-span of the actuator.
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Fig. 9: An example sample of the raw camera data when the
actuator interacts with an obstacle. Six red markers are used
to describe the actuator’s shape. The two most right markers
at the root of actuator are fixed.

Fig. 10: Samples that were collected during a pilot acquisition
and training, where the samples indicated by a cross are
interacting with the obstacle. Although the training performed
quite well on the test-data and we can well predict the
unobstructed bending, the learned shape predictor had inferior
results when confronted with other types of obstacles not
presented in the training set.

IV. DEFORMATION RECONSTRUCTION

The global deformation of an actuator can be represented
by the coordinates of the six markers in the inextensible layer.
This section discusses the reconstruction of the deformation
from the sensor data. We use a Feed-forward Neural Network
to train the global actuator shape based on the sensor data.
To train the network, we use the RGBC-data of the sensors
as inputs and the coordinates of six markers as outputs. The
RGBC-data of the four sensors can be directly fed into the
FNN. Some processing is needed for the marker coordinates
as the set of training data.

First, we undistort the captured images using the parameters
obtained from a multi-plane camera calibration. Our calibra-
tion has a Mean Pixel Error of 0.44. Using the fixed distance of
11.4 mm between the first two markers on the right, we make

Fig. 11: The final sampling strategy that was applied to
collect the training data. After introducing more contacted
samples into the training set, the predictor can reconstruct very
accurate shape of an obstructed actuator. the predictor gives
a better reconstruction of obstructed actuator shapes, while
maintaining its accuracy on unobstructed actuator shapes.

Fig. 12: Graphical representation of the Neural Network con-
figuration used in our training process and the shape predictor.

a conversion from pixel-scale to millimeter-scale at the rate
of 6.8875 : 1. This means the mean error of the calibration
is 0.064 mm. We remove the red cables shown on the right
of Fig. 9, by simply cropping out the right of the picture to a
resolution of 1300 × 1080p. After cropping, we use Matlab’s
Computer Vision System Toolbox functions to extract the x-
and y-coordinates of the six red markers in millimeter. The
positions of the markers are ordered by solving a Travelling
salesman problem. These values are used as outputs of the
FNN.

A graphical representation of the FNN is shown in Fig. 12.
The two-layer network has a hidden layer with ten neurons.
The hidden layer uses a sigmoid transfer function and the
output layer uses a linear transfer function. We have a total
of 16 inputs (four sensors with four measurements) and 12
outputs (x- and y-coordinates of six markers).

Unless otherwise specified, we use a block division of our
samples, where the first 70% of our samples are used for
training, the next 15% as validation set and the remaining
15% as test set. We apply the Levenberg-Marquardt algorithm
to train the network, and obtain a shape predictor with the raw
data of the sensors as input.
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Fig. 13: The error distance between the real and the predicted
positions for each marker. The box plot shows the median, the
25th / 75th percentile, and the minimal / maximal bounds.

V. RESULTS

A. Accuracy

The error distance between the real and the predicted marker
positions is calculated for all marker positions of the samples
in the test-set. The error distance is calculated as

εi =
√

(xRi
− xPi

)2 + (yRi
− yPi

)2, (1)

where subscripts R and P indicate the real and predicted co-
ordinates respectively and i indicates the sample number. The
results are given in Fig. 13. It shows that the median prediction
error is lower than 0.1 mm for all marker coordinates. As
would be expected, the largest error is observed on the marker
at the tip of the actuator, and the error decreases when moving
closer towards the root of the actuator. The error is smallest
for the marker at location ‘5’.

To validate the advantage of using multiple sensors, we
trained the FNN for all possible sensor quantities and sensor
configurations. In Fig. 14, the mean Mean-Squared Error
(MSE) of each configuration is plotted in a bar graph. We
trained each configuration 10 times in these experiments.

The results show that the sensor at the root of the
actuator (i.e., the configuration ‘C0001’) individually pro-
vides the most complete information (with the mean MSE:
8.542 × 10−3mm). As an individual sensor, configuration
‘C0010’ (with the mean MSE: 6.551 × 10−2mm) provides
better information than the configuration where the sensor
is placed at the second bellow from the tip (i.e., ‘C0100’
with the mean MSE of 2.749 × 10−1mm). However in a two
sensor configuration, a combination of the second and the
fourth sensors from the tip is the best (i.e., ’C0101’ with the
mean MSE: 1.818 × 10−3mm)) as the second sensor contains
information that the root sensor is missing. The results show
that two well-placed sensors can already achieve very accurate
results and only small improvements are realized by adding
more. This demonstrates that each sensor indeed captures
information from neighboring bellow segments as well. Note

Fig. 14: The mean MSE of the predicted outputs on the test-set
for all 15 possible sensor configurations. Each configuration
was trained 10 times. The standard deviation is indicated on
the error chart.

Fig. 15: While projecting the predicted positions of markers
onto the camera images, it can find that our method also gives
very accurate prediction in scenarios that are different from
the training set. Some have complicated curvatures – e.g., the
‘S’-shape shown in the left figure.

that we train the predictor for the separate sensors by selecting
the sensor outputs of the sensor of interest from the same data
acquisition, in which the LEDs of all sensor plugs are on.

Our training based predictor also performs well on objects
different from the trained obstacles. This is demonstrated in
Fig. 15, where we test the sensing method on other objects.

The position of the actuator can be predicted in real time.
In the supplementary video (https://youtu.be/zgOexw8YLQc),
the predicted coordinates are projected on top of the live
camera images to demonstrate the accuracy of the method
in various scenarios. Due to the simplicity of the FNN con-
figuration, the capturing (50 ms for the integration time) and
evaluation (0.232 ms) of a new set of inputs is very efficient.
This makes our approach very suitable for real-time feedback
control. The relative slow loop in the supplementary video is
due to the visualization of the 1920 × 1080p camera image.

https://youtu.be/zgOexw8YLQc
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B. Robustness

We tested the actuators under some extreme conditions to
explore how it would perform on load cases that were not
included in the training set. Although some accuracy is lost,
the neural network is still able to predict most of the extreme
load cases quite well. The right of Fig.1 shows the prediction
on a sigmoid-curved actuator shape that is realized by bending
and rotating the actuator’s tip at the same time.

It should be noted that our light-based sensing method is
almost not affected by external lighting conditions. This is due
to the light absorbing black flexible air chamber and the bright
LEDs placed in the sensor plugs. We demonstrate this in the
supplementary video where the actuator is tested in dark and
extremely bright conditions.

Another aspect of robustness, repeatability, has also been
tested in our experiments. As demonstrated in the supplemen-
tary video, sensors can be pulled out and inserted back in
while regaining nearly the same result.

C. Importance of Color Signal

The raw RGBC data in Fig. 6 showed that, due to intensity
changes that occur upon bending, the Clear signal on itself was
already a good indicator of the bending deformation, To test
the performanceofwhen only using the Clear signal to predict
an actuator’s shape, we trained our network with the Clear
signal of the sensors as inputs. The training was able to realize
a mean MSE of 2.633 × 10−3mm on the test set (over 10
trainings) as compared to a mean MSE of 1.602 × 10−3mm
when including the RGB data as addition. This proves that
the changes in color upon bending are very necessary for
improving the accuracy of shape prediction.

Whereas the mean MSE of the ‘1001’ sensor config-
uration was very close to the ‘1111’ configuration when
using all RGBC-data as inputs (1.994 × 10−3mm and
1.602 × 10−3mm respectively), the mean MSE increases
more significantly when only the Clear value is used
(5.165 × 10−3mm for configuration ‘1001’). This means that
the color signals are very important to ensure the robustness
of our sensing approach.

When an application can accept the aforementioned error
of 2.633 × 10−3mm, fast and low-cost shape sensing can be
achieved by embedding off-the-shelf photo-detectors such as
LDRs, and LEDs into a soft pneumatic actuator fabricated in a
single color. This is considered as a simplified version of our
approach with reduced accuracy and robustness, which can
be applied to more durable actuators fabricated by silicone
casting.

D. Comparison to Multivariate Polynomial Regression

To demonstrate the effectiveness of a neural network, we
compare the MSE of the training result to the MSE obtained
when using Multivariate Polynomial Regression (MVPR). For
both the MVPR and the FNN, we use the first 850 samples for
training, and evaluate the accuracy of prediction (by MSE) on
the remaining 150 samples. A multivariate linear regression
(MVLR) results in a predictor with an MSE of 0.0377 mm,

Fig. 16: The distances between the real positions and the posi-
tions predicted by the multivariate linear regression (MVLR),
the quadratic multivariate polynomial regression (MVPR), the
tuned MVPR and the FNN. The predictions generated by the
FNN have smaller errors.

whereas a quadratic MVPR results in an MSE of 0.0788 mm.
Such errors are 23.5× and 49.2× that of the prediction by the
FNN which has an MSE of 1.602 × 10−3 mm. After manually
tuning the polynomials of the MVPR by removing some
of the quadratic terms, we were able to obtain a prediction
with an MSE of 0.0079 mm, which is still 4.9× that of the
corresponding MSE of the FNN. Moreover, the FNN-based
predictor is robust and does not involve any manual tuning
of parameters. Figure 16 shows the error distances over all
markers by using the MVLR, the quadratic MVPR, the tuned
MVPR and the FNN.

VI. CONCLUSION

We have demonstrated a complete method to fabricate a
soft pneumatic actuator with integrated color signal generators
to realize accurate shape estimation in both obstructed and
unobstructed situations. We have shown that our color-based
sensing approach is robust and performs well on obstacles
that were not included in the training data. This realization
of accurate shape sensing is a significant step towards the
application of soft robots in many dexterous tasks.

Our future work will focus on improving the performance
on cases under specific loading conditions by collecting
additional training data for these loadcases. Moreover, 3-
dimensional load cases and data collection could be used to
include the effects of twisting of the bellow upon contact.
Optimization could be performed to minimize the amount
of samples needed without losing accuracy. Another existing
problem is the long-term reliability of a 3D-printed actuator. It
is worthy to work towards digital fabrication of soft actuators
using materials with longer durability. Lastly, we will also
work on how to estimate the complete actuator shape based
on the predicted coordinates on the inextensible layer (e.g. by
using elasticity simulation).
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Fig. 17: The design of the upper PCB (left with dimension:
10.80 mm×5.08 mm) and the design of the lower PCB (right
with dimension: 12.07 mm × 6.35 mm).
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APPENDIX A
COLOR SENSOR PCB DESIGN

This appendix discusses the sensor design. The design of
the sensor plug has been shown in Fig. 5. The body of the
plug is fabricated by a PolyJet 3D printing system using
the rigid VeroCyan and the flexible Agilus30 photopolymers.
Two Printed Circuit Boards (PCBs) – both customized – are
mounted on the top and the bottom parts of the plug. The
designs of these PCBs are shown in Fig. 17. The schemes of
the upper and the lower PCBs can be found in Fig. 18 and
Fig. 19 respectively. Wires are guided through the 3D-printed
plug to connect the upper and lower PCB in an airtight way.
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