
HRBF-Fusion: Accurate 3D Reconstruction from RGB-D Data Using
On-the-Fly Implicits
YABIN XU, Nanjing University of Aeronautics and Astronautics, China / Delft University of Technology, The Netherlands
LIANGLIANG NAN, Delft University of Technology, The Netherlands
LAISHUI ZHOU, Nanjing University of Aeronautics and Astronautics, China
JUN WANG, Nanjing University of Aeronautics and Astronautics, China
CHARLIE C.L. WANG, The University of Manchester, United Kingdom / Delft University of Technology, The Netherlands

Fig. 1. Reconstruction of two large indoor scenes: (left) a study room of a university library and (right) a study platform in a grand hall of an academic building.
The original two sequences consists of 16,128 (library) and 10,930 (study platform) RGB-D image frames and the reconstructed model consists of 7,488,867
(library) and 7,904,727 (study platform) points respectively. The average processing speed of our approach is around 43ms per frame, which demonstrates a
nearly real-time performance. RGB-D data in these two experiments are captured by a Microsoft Kinect v1 sensor with a resolution of 640 × 480. Progressive
results of the reconstruction can be found in the supplementary video.

Reconstruction of high-fidelity 3D objects or scenes is a fundamental
research problem. Recent advances in RGB-D fusion have demonstrated
the potential of producing 3D models from consumer-level RGB-D cameras.
However, due to the discrete nature and limited resolution of their surface
representations (e.g., point- or voxel-based), existing approaches suffer
from the accumulation of errors in camera tracking and distortion in the
reconstruction, which leads to an unsatisfactory 3D reconstruction. In
this paper, we present a method using on-the-fly implicits of Hermite
Radial Basis Functions (HRBFs) as a continuous surface representation for
camera tracking in an existing RGB-D fusion framework. Furthermore,
curvature estimation and confidence evaluation are coherently derived
from the inherent surface properties of the on-the-fly HRBF implicits,
which devote to a data fusion with better quality. We argue that our
continuous but on-the-fly surface representation can effectively mitigate
the impact of noise with its robustness and constrain the reconstruction
with inherent surface smoothness when being compared with discrete
representations. Experimental results on various real-world and synthetic
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datasets demonstrate that our HRBF-fusion outperforms the state-of-the-art
approaches in terms of tracking robustness and reconstruction accuracy.
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1 INTRODUCTION
Reconstruction of high-fidelity 3D objects or scenes is vital to
applications such as augmented / virtual reality, digital fabrication,
and robotics. With the increasing popularity of consumer-level
depth cameras (e.g., Microsoft Kinect), 3D information, in the form
of RGB-D images or point clouds, can be easily obtained. A lot
of reconstruction systems targeting on producing surface models
of small-scale objects or large scenes [Cao et al. 2018; Choi et al.
2015; Dai et al. 2017; Keller et al. 2013; Lefloch et al. 2017; Whelan
et al. 2016; Zhou and Koltun 2015] have been introduced since the
pioneering work of KinectFusion [Newcombe et al. 2011]. Despite
the advances in 3D reconstruction in the last decade, obtaining high-
quality 3D models from consumer-grade depth cameras remains an
open problem due to the following two main issues.
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• Imperfect Surface Representation: Existing approaches lack
an accurate surface representation that facilitates high-
fidelity reconstruction while being memory efficient and
computationally affordable. The volumetric representation
is widely used for RGB-D reconstruction systems [Chen
et al. 2013; Dai et al. 2017; Niessner et al. 2013] following
KinectFusion [Newcombe et al. 2011]. However, a commonly
used implementation with fixed-size resolution lacks adap-
tiveness [Chen et al. 2013; Dai et al. 2017; Niessner et al.
2013], which tends to generate over-smoothed surfaces in
the regions with geometric details. The alternative surface
representation [Keller et al. 2013] – surfel, which predicts
geometry by ray-to-plane surfel splatting, works poorly in
high-curvature regions and is also prone to failure due to
noises and outliers.
• Camera Tracking Error : Imprecision registration based on
Iterative Closest Point (ICP) or its variants [Besl and McKay
1992; Rusinkiewicz and Levoy 2001] is usually applied for
camera pose estimation between RGB-D frames, where dis-
tortion errors are accumulated and can become significant in
featureless regions. Research efforts have been paid to resolve
the problem through global optimization [Choi et al. 2015;
Zhou and Koltun 2013] or additional information provided
by the RGB-D camera (e.g., geometric [Lefloch et al. 2017;
Zhou and Koltun 2015] and photometric [Whelan et al. 2016]
information), to derive a weighted variant of the ICP scheme
to reduce camera tracking drift. In recent pipelines (e.g., [Cao
et al. 2018; Dai et al. 2017; Whelan et al. 2016]), both strategies
are applied to improve the result of reconstruction.

The issue of camera tracking is also suffered from the lack of
good surface representation when geometric cues are employed
to enhance ICP registration.

1.1 Our method
To address the aforementioned issues, we propose HRBF-Fusion,
a new method using on-the-fly HRBF implicits for high-accurate
camera tracking and high-fidelity 3D reconstruction. The core of our
method is a voxel-free implicit surface representation, i.e., the closed-
form HRBF surface approximation that gracefully benefits multiple
key stages of the reconstruction pipeline, including preprocessing,
camera pose estimation, and depth map fusion. The 3D reconstruc-
tion pipeline used in our tests is a variant of ElasticFusion [Whelan
et al. 2016] and ORB-SLAM2 [Mur-Artal and Tardós 2017], in which
the tracking-and-fusion steps of ElasticFusion are used to generate
submaps and the ORB-based local-to-global optimization routine
is used to obtain a global consistent 3D model for large scenes. In
contrast, we evaluate both the global model and the new RGB-D
frames as continuous but compactly-supported HRBF surfaces to
produce robust curvature estimation and reconstruction-indicated
confidence maps. With the help of these HRBF surfaces, more
reliable camera tracking and depth map fusion can be achieved.
In summary, we make the following contributions:
• A method to evaluate a continuous surface effectively and
efficiently on both the global model and the acquired RGB-D
frame by using on-the-fly HRBF implicits;

• A robust and efficient curvature evaluation method based
on the on-the-fly HRBF implicits, leading to a dramatic
improvement in camera tracking based on the curvature-
weighted registration;
• A reconstruction-indicated confidence evaluation method,
also based on efficient HRBF surface evaluation, can signifi-
cantly reduce the impact of noises and outliers in both camera
tracking and depth-image fusion.

As a consequence, we develop a more robust reconstruction system
for high-fidelity online surface reconstruction, which also shows
good scalability to large scenes.

1.2 Related work
1.2.1 Geometric representation. 3D reconstruction within a com-
modity RGB-D camera has been extensively studied in the past
decade. A key ingredient toward a high-quality 3D reconstruction
system is the underlying representation for camera pose estimation
and depthmap fusion. Different representations have been proposed,
including volumetric representation [Curless and Levoy 1996; Dai
et al. 2017; Newcombe et al. 2011; Niessner et al. 2013; Zhang and
Hu 2017], surfel-based representation [Cao et al. 2018; Keller et al.
2013; Weise et al. 2009; Whelan et al. 2016], height field [Meilland
and Comport 2013], probability-based representation [Dong et al.
2018], and 2.5D depth map [Gallup et al. 2010]. A recently trend is to
solve the problem by using neural implict representation for shape
generation [Huang et al. 2021b,a; Liu et al. 2020; Sucar et al. 2021,
2020] and using learing-based method for depth fusion [Bozic et al.
2021; Weder et al. 2020, 2021]. Here we provide a compact solution
by using a closed-form representation for the on-the-fly implicts.

Following the pioneering work of KinectFusion [Newcombe et al.
2011] that applied a Truncated SignedDistance Field (TSDF) [Curless
and Levoy 1996] for modeling integration, volumetric representation
has demonstrated promising results for reconstructing small-scale
scenes. Because of its implementation on GPU for real-time tracking
and fusion, volumetric representation becomes more and more
popular [Chen et al. 2013; Dai et al. 2017; Meerits et al. 2018;
Niessner et al. 2013]. The original uniform-grid KinectFusion has
a fundamental limitation (i.e., the lack of scalability), which leads
to expensive memory consumption for reconstructing fine details.
Recently, a learning-based TSDF was adopted to represent the
geometry under reconstruction [Sun et al. 2021]. Although methods
have been developed to alleviate this by exploiting sparsity in the
TSDF representation [Chen et al. 2013; Niessner et al. 2013], the
quality of local reconstruction still depends on the resolution to
partition the space which is related to the scale of the scene.

Kelly et al. [2013] proposed a surfel-based representation method
to solve the scalability issue and has presented comparable results
against volumetric methods on flat or smooth regions. In their
method, a ray-to-plane surfel rendering algorithm is used to predict
the model for real-time camera tracking. The method has been
applied to real-time reconstruction systems [Cao et al. 2018; Lefloch
et al. 2017; Whelan et al. 2016]. However, the linear ray-to-plane
based shape prediction is sensitive to noises in particular on the
high-curvature surface regions. Hence reconstructed models are
often distorted when there are noises in high-curvature regions.
Implicit moving least-squares (IMLS) surface was employed in [Liu
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et al. 2021] to achieve a better shape representation in their learning-
based 3D reconstruction. However, the evaluation of IMLS is less
efficient. Differently, we predict the shape from surfels by using
closed-form HRBF implicits which makes our system is memory-
efficient and robust.
Radial Basis Functions was employed in [Carr et al. 2001] for

surface reconstruction. In this method, the computation is however
very time-consuming, and it also requires the provision of auxiliary
‘off-surface’ points. Liu et al. [2016] introduced closed-form HRBF
implicits using quasi-interpolation, which has demonstrated its
capability of generating surface reconstruction in high quality and
high efficiency. Inspired by this work, we explore the possibility
to incorporate the closed-form HRBF implicits with the inherent
surface properties for noise-resistant camera tracking and high-
quality 3D reconstruction. It is also worthy to notice that Schöps et
al. [2020] recently developed an online mesh construction method
for reconstruction refinement; nevertheless, camera poses are
required as additional input for their method. Differently, our on-
the-fly HRBF implicits are directly devoted to camera tracking and
RGB-D reconstruction.

1.2.2 Camera tracking. An important issue in the real-time RGB-D
surface reconstruction system is the drift of camera tracking caused
by the instability of the frame-to-model registration.
One of the reasons that cause the instability of registration is

the presence of noise and outliers. To mitigate the impact of noise
and outliers, Jian and Vemuri [2011] proposed to use the Gaussian
Mixture Model (GMM) to describe the distribution of both template
and point set. Not only geometric but also color information
has been conducted for probabilistic registration [Danelljan et al.
2016]. Although robust, these probabilistic registration approaches
are time-consuming which makes them ineligible for real-time
reconstruction from a sequence of input RGB-D frames. Others tend
to evaluate the reliability of an input raw depth map by analyzing
the inherent property of depth cameras (e.g., [Reynolds et al. 2011]).
Similarly, a distortion-based model is employed in [Keller et al. 2013]
which weights measurements based on the assumption that the
depth data captured near the center of a sensor are more accurate.
Recently, a voting mechanism is introduced in [Cao et al. 2018] to
evaluate the confidence of depth map for generalized ICP [Segal
et al. 2009] by using the time-coherence between nearby frames. In
this paper, we propose a novel reconstruction-indicated confidence
metric to exploit the underlying uncertainty on each depth map.

Another reason for tracking drift is the lack of salient geometric
features in the scene which leads to slippery registration. As
depth cameras are commonly equipped with an additional RGB
camera, colors are used as additional information to form a joint
optimization problem [Godin et al. 1994; Whelan et al. 2016]
or to pre-align the depth map with color-based features [Henry
et al. 2012]. Yang et al. [2017] incorporated visual saliency into a
volumetric fusion pipeline to achieve high-quality object recon-
struction. Other geometric features have also been considered in
other approaches to add weights in the optimization for registration,
including contour cues [Zhou and Koltun 2015], planar structures,
and repeated objects [Zhang et al. 2015], patch co-planarity [Shi
et al. 2018] and curvatures [Lefloch et al. 2017]. Among them, the

curvature is very general and can be evaluated in all regions. Several
methods of curvature estimation have been discussed in [Lefloch
et al. 2017], among which the method of adjacent-normal cubic
approximation [Goldfeather and Interrante 2004] is concluded as
the most robust curvature estimator. However, this method needs
to solve a 7 × 7 linear system at every point, which hinders its
usage for real-time applications even with the implementation
on GPU (ref. [Lefloch et al. 2017]). By the requirement of real-
time performance, Lefloch et al. [2017] selected the chord-and-
normal-vectors (CAN) approach [Zhang et al. 2008] for curvature
estimation. The camera drift can be reduced by integrating curvature
information into the ICP framework with higher weights in high
curvature regions [Lefloch et al. 2017]. However, the curvature
evaluation in their approach is not robust when input RGB-D data
becomes noisy. This is crucial as the input frames from consumer-
level RGB-D cameras are often contaminated with noises and
outliers. In our approach, we use curvature as additional information
in both tracking and fusion stages – but differently, curvature in
our approach is robustly extracted from the continuous surfaces
represented by HRBF implicit.

1.2.3 Accumulated error. Apart from focusing on the error sourced
from the frame-by-frame registration, methods have been developed
to correct the error accumulation in camera pose estimation and
global 3Dmodel in both online [Cao et al. 2018; Dai et al. 2017; Wang
and Guo 2017; Wasenmüller et al. 2016; Whelan et al. 2012] and
offline [Choi et al. 2015; Li et al. 2013; Zhou and Koltun 2013; Zhou
et al. 2013] mode, where the offline methods are time-consuming.
For online correction, Whelan et al. [2016] proposed a system

that divides the reconstructed model into active (recently captured
frames) and inactive parts. When the registration between active
and inactive parts is successful, an optimization-based deformation
is applied to deform the active part to fuse into the inactive part.
However, the routine does not provide a way to fix the errors
that have already been inherited into the inactive part. Yang et
al. [2020] proposed a noise-resilient panoramic scanning approach
that uses robot-mounted multiple RGB-D cameras to obtain high-
quality 3D models of the scene. A different strategy is applied in
the area of simultaneous localization and mapping (SLAM) [Engel
et al. 2013; Forster et al. 2014; Klein and Murray 2007; Mur-Artal
et al. 2015; Mur-Artal and Tardós 2017], where drift-free pose
estimation has been extensively studied. The basic idea of these
approaches is to minimize the reprojection error across frames
or distribute camera pose estimation error across the pose-graph
constructed by the co-visibility between frames. While focusing
on different problems, these approaches do not provide a method
to correct dense 3D models generated from depth map fusion. To
solve this problem, submap-based online reconstruction systems
(e.g., [Cao et al. 2018; Dai et al. 2017]) are proposed to correct the
camera poses and minimize the geometric error of 3D models in
an integrated manner. In our system, we adopt a similar submap-
based hierarchical optimization for the steps of close-loop detection,
camera pose, and 3D model correction.
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Fig. 2. Framework of the proposed RGB-D reconstruction system.

2 OVERVIEW
We utilize closed-form HRBF implicits for on-the-fly surface evalua-
tion for the globalmodel, which replaces the commonly used discrete
surface representations of existing reconstruction systems and plays
a vital role in the key stages of the pipeline to improve tracking
robustness and reconstruction accuracy. We adopt a computational
framework similar to prior systems [Dai et al. 2017; Keller et al. 2013;
Lefloch et al. 2017; Newcombe et al. 2011; Niessner et al. 2013] for
reconstruction (see Fig. 2). The functionality of closed-form HRBF
implicits is utilized in various stages of the framework.

The global model M is represented by a set of unorganized points
where each point is associated with attributes1 including its position
v̄ ∈ R3, normal n̄ ∈ R3, support size 𝑟 ∈ R, confidence value 𝑐 ∈ R,
and two principal curvature values ¯̂1, ¯̂2 ∈ R. This is a highly
scalable representation, which can be considered as an enriched
surfel representation [Cao et al. 2018; Keller et al. 2013].
When capturing a new RGB-D frame F = {D,C} with D and C

denoting the depth map and the color map respectively, the RGB-D
frame F is fused into the global model by applying the following
key steps:
• Preprocessing: Continuous surfaces are evaluated in the input
RGB-D frame and on the global model by using the on-the-fly
HRBF implicits respectively (Section 3.1). Note that the HRBF
surface for the global model is evaluated in the previous
frame of the scanning sequence. With the help of robust
HRBF surface evaluation, a curvature map (Section 3.2) and
a reconstruction-indicated confidence map (Section 3.3) are
evaluated in the input frame to enhance the robustness of our
reconstruction pipeline.
• Camera pose estimation: The purpose of this step is to obtain
the transformation between the input frame and the current
global model. We adopt a variant ICP algorithm based on the
point-to-plane metric with specially designed searching and
weighting schemes to align it to the surface predicted from
its last pose. Unlike existing RGB-D reconstruction systems
based on discrete surface representations, our accurate and
robust local surface reconstruction based on HRBF implicits
improves the robustness in both the correspondence search
(Section 4.1) and the optimization of registration (Section 4.2).
On-the-fly calculated curvatures and normals are stored in
local but ‘dense’ maps for camera pose estimation, which can
avoid the problem caused by sparsity in a global map.

1Variables evaluated on the global model are represented by symbols with ‘̄ ’ head
throughout the paper.

• Depth map fusion: To integrate a new frame into the global
model with a valid pose, correspondences between vertices
of the input frame and the points in the global model are
established based on an index map that is obtained by
rendering the index of each model point into a texture [Keller
et al. 2013]. After that, the input vertices with their attributes
aremerged into the global model using a confidence-weighted
average (Section 5). Similar to other surfel-based approaches
(e.g., [Cao et al. 2018; Keller et al. 2013]), attributes stored on
the global model are employed to conduct the fusion.

These steps are repeated until the relative translation between the
first frame and the current frame exceeds a certain threshold. Then,
the global model formed by already registered and fused frames will
be treated as a submap.
With reliable geometric and photometric enhanced registration,

high-quality camera tracking and surface reconstruction can be
achieved for relatively small objects. When reconstructing large
scenes by long-range scanning, a local-to-global optimization
scheme similar to [Cao et al. 2018] is applied between submaps
to further alleviate the accumulation of errors in camera tracking
by using the ORB features [Rublee et al. 2011].

3 GEOMETRIC CUES BY HRBF IMPLICITS
In this section, we first introduce the method of surface prediction
with closed-form HRBF implicits. After that, the robust curvatures
and the reconstruction-indicated confidence map can be generated
from the on-the-fly HRBF surfaces.

HRBF implicits have been used to reconstruct an implicit function
from scattered Hermite points [Macêdo et al. 2011]. Given a point set
P = {p1, p2, ...p𝑛} with corresponding normals N = {n1, n2, ...n𝑛},
a function 𝑓 interpolating the positions and the normals can be
defined as

𝑓 (x) =
𝑛∑
𝑗=1
{𝛼 𝑗𝜓 (x − p𝑗 )− < 𝜷 𝑗 ,▽𝜓 (x − p𝑗 ) >}, (1)

where ⟨·, ·⟩ denotes the dot-product of two vectors, and ▽ is the
gradient operator. The Compactly Supported Radial Basis Functions
(CSRBF) [Wendland 1995] are applied as the kernels because of their
numerical stability and the on-the-fly nature. Specifically, we have

𝜓 (x − p𝑗 ) =
{
(1 − 𝑑

𝑟 )
4 ( 4𝑑𝑟 + 1), 𝑑 ∈ [0, 𝑟 ],

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(2)

where 𝑑 = ∥x − p𝑗 ∥ is the Euclidean distance between the query
point and the corresponding CSRBF kernel and 𝑟 is the support size.
The coefficients 𝛼 𝑗 ∈ R and 𝜷 𝑗 ∈ R3 can be computed from the
following constraints: 𝑓 (p𝑖 ) = 0 and ▽𝑓 (p𝑖 ) = n𝑖 on all given points
p𝑖=1,...,𝑛 . Instead of solving a 4𝑛 × 4𝑛 linear system, a closed-form
function was proposed in [Liu et al. 2016] to approximate the HRBF
implicits as

𝑓 (x) = −
𝑛∑
𝑗=1

<
𝑟2
𝑗

20 + [𝑟2
𝑗

n𝑗 ,▽𝜓 (x − p𝑗 ) >, (3)

where 𝑟 𝑗 is the support size of kernel centered at p𝑗 . The value of
𝑟 𝑗 should be determined to cover at least 8 neighboring kernels for
constructing a locally continuous surface [Liu et al. 2016] around
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Surfel splatting Our approach

p𝑓

p𝑚
p𝑛

Fig. 3. An illustration of the surfel splatting (left) [Cao et al. 2018; Keller
et al. 2013] and our HRBF-based (right) surface prediction methods. The
red cross in each figure represents the intersection between the ray (red
dashed line) and the global model points (blue dots).

p𝑗 . [ = 1.0 × 106 is employed as the regularization coefficient for
points evaluated in the unit of meter [Liu et al. 2016]. With such a
closed-form surface representation, solving the linear system can be
avoided. This enables a method for efficient and on-the-fly surface
evaluation, which is very important for real-time reconstruction.

3.1 Surface evaluation
In our approach, continuous surfaces are evaluated for both the
newly captured depth image and the global model by using the
on-the-fly HRBF implicits. Specifically, two surfaces are evaluated
on all pixels of two frames – the input RGB-D frame for a local
model and the previous frame in the scanning sequence for the
global model. Similar to the raycasting method of [Newcombe et al.
2011], we predict the surface points for a pixel u at the current pose
by intersecting the HRBF local surface with the ray from the camera
optical center to the corresponding point in the image plane (see
Fig. 3). In contrast to the popular surfel-based surface prediction
method [Cao et al. 2018; Keller et al. 2013] that searches for the
nearest (from the viewpoint) discrete point within a radius (see the
left of Fig. 3 for illustration), our method takes advantage of the
smooth nature of the surface and thus is more robust to noise and
outliers.

For the surface evaluation in a frame byHRBF implicits, we choose
the kernels that are closer to the viewpoint while discarding kernels
that have greater depth deviation from the nearest model point due
to depth discrepancy. After obtaining a local set of kernels that define
the HRBF surface on a viewing ray, we project the kernels’ centers
onto the ray to form a searching interval [p𝑛, p𝑓 ], where p𝑛 is the
nearest point and p𝑓 is the furthest one along the viewing ray. The
model point p𝑚 is supposed to lie in the interval to satisfy 𝑓 (p𝑚) = 0,
which can be obtained by a binary searching algorithm (see the
right of Fig. 3 for an illustration). After determining the position of a
surface point, other attributes at p𝑚 such as colors can be predicted
from its nearest kernel. Note that, this ray-intersection based surface
evaluation can run in highly parallel mode on themany cores of GPU.
Specifically, we implement the surface evaluation of HRBF implicits
in a fragment shader that is used for per-pixel operation with each
viewing ray defined on pixels. The input vertexmap and normal map
are bound with the fragment shader for local searching. The HRBF
implicits are constructed and evaluated within the fragment shader.
The outputs are the texture maps bound with a frame buffer, which
are the predicted surface points and their corresponding attributes.

Noisy global model Surfel splatting Our approach
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Fig. 4. Comparison of the predicted vertex map generated by surfel splatting
(middle column) and HRBF local surface reconstruction (right column) on
the same global model (left column). The test is conducted on the lr kt1
example from ICL-NUIM [Handa et al. 2014] by adding three levels of
Gaussian noise with the standard deviations as 𝜎 = 3.0, 𝜎 = 6.0 and
𝜎 = 12.0 respectively, where the ground truth of the geometry and camera
poses are provided. Note that the global models are generated by fusing
multiple RGB-D frames (i.e. 1-68) using the same strategy of [Keller et al.
2013] and the ground-truth camera poses. Colors indicate the unsigned
distances from the points to the ground-truth 3D model.

For surface evaluation on a global model M, the stored points
{v̄} will be used as the kernels of HRBF implicits. The resultant
intersection points are stored in a 3D vertex map V̄. The normal at
each intersection point p𝑚 can also be obtained from the gradient
as ▽𝑓 (p𝑚)/∥▽𝑓 (p𝑚)∥. The resultant normal map is denoted by N̄.
With the help of the closed-form HRBF implicits, we are able to
predict V̄ more accurately – see the comparison with surfel splatting
on a model with ground-truth geometry (Fig. 4). The experiment
is conducted on the lr kt1 example from the synthetic dataset ICL-
NUIM [Handa et al. 2014] with the ground-truth geometry and
camera poses provided. To evaluate the sensitivity to noise, the
input RGB-D frames are contaminated by adding different levels of
Gaussian noise. The global models are obtained by fusing multiple
(i.e, 1-68) input frames with the ground-truth camera poses, while
the same strategy of [Keller et al. 2013] is adopted for depth map
fusion. As can be observed from the cross-sectional views in Fig. 4,
the increased level of noise makes the points in the global model
corrupt gradually. The surfel splatting method results in imprecise
prediction of the underlying surface when highly noisy input is
given. In contrast, the vertex map predicted by our method can
properly represent the underlying surface. Moreover, smoother
normal maps can be generated by our method (Fig. 5). Note that an
accurate and robust prediction of geometry is the key ingredient to
the high accuracy in camera pose estimation (Section 4). With our
HRBF-based local surface reconstruction, the accuracy of geometry
prediction and thus the registration is dramatically improved (see
Fig. 6 for an example).

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:6 • Xu et al.
O
ur

ap
pr
oa
ch

Su
rfe

ls
pl
at
tin

g

Fig. 5. Comparison of the normal maps generated by the ray-to-plane surfel
splatting method (top row) and our HRBF-based prediction method (bottom
row) on the stone wall from 3D Scene Data [Zhou and Koltun 2015].

Global model + Input vertices
(unregistered)

Global model + Input vertices
(registered with surfel splatting)
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Fig. 6. Comparison of registration between the global model and the input
vertices under different noise levels. Similar to already discussed in Fig. 4,
the global model is obtained by fusing multiple RGB-D frames (i.e. 1-68)
using the same strategy of [Keller et al. 2013] and the ground-truth camera
poses. The left column shows the initial alignment of the global model and
the input vertices, whereas the other two columns show registration results
based on surfel splatting (the middle column) and our HRBF based method
(the right column).

The kernels for surface evaluation in the input RGB-D frame are
determined differently. Preprocessing is needed before applying
the HRBF based surface evaluation. Given an input frame with the
depth map and the color map, its corresponding 3D vertex map V
is computed using the camera intrinsic matrix K by following the
same steps as KinectFusion [Newcombe et al. 2011]. After applying
a bilateral filter to reduce noise while preserving discontinuity
in the depth map D, the corresponding 3D vertex for each pixel
u = (𝑥,𝑦)𝑇 ∈ R2 is computed as V(u) = D(u)K−1 (u⊤, 1.0)𝑇 . The
corresponding normal map N can be derived from V by central
difference. Besides, we assign each vertex with a support size S(u)
for local HRBF surface evaluation. To construct a continuous HRBF
surface, the support size of a kernel should cover at least 𝑘 other
kernels (i.e., 𝑘 = 8 according to [Liu et al. 2016]). The 𝑘-nearest
neighbor for each pixel u is first obtained by searching the vicinity
of u in a window patch (i.e., 7 × 7) of the filtered vertex map D.

[Lefloch et al. 2017] Our approach

Fig. 7. Comparison of principal curvature estimated by [Lefloch et al. 2017]
versus our method. The black points indicate the corresponding curvature
values are out of a range of [−300, 300]. Note that, |^1 |, |^2 | > 300 means
the radius of curvature is already less than 3𝑚𝑚. These are geometric details
that cannot be captured by RGB-D cameras – i.e., unreliable estimation.

The support size is assigned as the distance between a kernel and
its 𝑘-th nearest neighbor. Lastly, the ray-intersection based surface
evaluation is conducted in the input RGB-D frame to update its
vertex map D and normal map N.

3.2 Robust curvature
The principal curvature map ^ is evaluated by the on-the-fly HRBF
implicits in an input RGB-D frame, which provides important clues
in the registration step (Section 4.2). Benefit from the continuous
surface representation provided by HRBF implicit, the mean curva-
ture 𝐻 and the Gaussian curvature 𝐺 can be reliably computed by
the gradient and Hessian matrix of the function 𝑓 (·).

𝐻 =
▽𝑓 Hess(𝑓 )▽𝑓 𝑇 − |▽𝑓 |2𝑇𝑟𝑎𝑐𝑒 (Hess(𝑓 )))

2|▽𝑓 |3
,

𝐺 =

����Hess(𝑓 ) ▽𝑓 𝑇
▽𝑓 0

����
|▽𝑓 |4

,

(4)

where ▽ and Hess(·) are the gradient and Hessian operator respec-
tively. After that, the principal curvatures can be obtained by solving
the quadratic equation of normal curvature derived constructed
from the first and second fundamental forms [Patrikalakis 2002].
That is ^1 = 𝐻 +

√
𝐻2 −𝐺 and ^2 = 𝐻 −

√
𝐻2 −𝐺 .

To evaluate the reliability of curvature estimation, a comparison
between the prior approach [Lefloch et al. 2017] based on quadratic
surface fitting and our method is given in Fig. 7. As can be observed
in the zoom-view, curvature estimation applied by [Lefloch et al.
2017] is quite unstable in noisy regions (see the undefined points
shown in black). In contrast, our approach based on local HRBF
approximate is robust to noise. The result of curvature evaluation
is stored in a map co-aligned with the vertex map D.
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3.3 Reconstruction-indicated confidence map
For each new input RGB-D frame, a confidence map is usually
constructed to indicate the level of confidence at each vertex for
the camera pose estimation and the depth fusion. In the previous
reconstruction systems [Keller et al. 2013; Lefloch et al. 2017;
Whelan et al. 2016], the confidence map Υ for each raw input
is derived from the radial decreasing quality [Keller et al. 2013]
according to the distortion model of the camera [Sarbolandi et al.
2015] – i.e., the depth values on pixels closer to the center of the
camera are more accurate. The distortion-basedmethod can improve
the reconstruction quality to some extent but it still ignores the
uncertainty of the input data. Hence we evaluate the input depth
map by a reconstruction-indicated method based on the observation
that the implicit surface reconstruction relies on the density and
reliability of the acquired points.
The confidence is higher in regions where dense points exist

to construct an implicit surface and vice versa [Wu et al. 2014].
Specifically, we evaluate the magnitude of the function gradient
▽𝑓 (v) and its consistency to the normal ñ𝐷 indicated by the depth
map D. This is because a reliable local shape described by HRBF
implicits will 1) be commonly defined by more kernels and 2) have
its gradient pointing toward the similar direction as ñ𝐷 . Therefore,
the reconstruction-indicated confidence can be evaluated by

𝑐𝑟 = 𝑒𝑥𝑝 (− Y

| |▽𝑓 (v) · ñ𝐷 | |
) (5)

with ñ𝐷 being the unit normal obtained by applying central-
difference on the bilateral filtered depth values of D. Y is a coefficient
to reflect the resolution of RGB-D cameras. For all our experimental
tests taken on a Microsoft Kinect v1 sensor, Y = 1000 gives the best
results. For each pixel u, its final confidence is commonly determined
by the reconstruction-indicated term 𝑐𝑟 and the distortion-based
term 𝑐𝑑 as

𝑐 = 𝑐𝑟𝑐𝑑 , (6)
where 𝑐𝑑 = 𝑒𝑥𝑝 (−𝛾2/2𝜎2) is the same as [Keller et al. 2013]. Here
𝛾 is the radial distance between the current pixel and the camera
center normalized by the diagonal length of the frame image, and
𝜎 = 0.6 is derived empirically according to [Keller et al. 2013].

We compare our method of confidence map evaluation with the
camera-distortion based method [Keller et al. 2013] on the human
model from the CoRBS benchmark [Wasenmüller et al. 2016] (Fig. 8).
In contrast to the method of Keller et al. [2013] that generates
weights according to the optical direction of the camera, our
method of confidence evaluation properly reflects the underlying
uncertainty of the input frames (see the left column of Fig. 8 for
an illustration). Moreover, we further evaluate the reconstruction
results by using different confidence maps as shown in the right
column of Fig. 8. As can be found in the zoom views, misalignment
occurs by using the camera-distortion based method (see the
double-layers in the zoom views of Fig. 8’s top-right). Differently,
our method can effectively reflect the unstable measurement in
those regions with large depth variation by assigning smaller
weight values. As a result, the registration based on our HRBF-
based confidence evaluation provides better-aligned results (see the
bottom-right of Fig. 8). We also measure the errors of reconstruction
by the distance between each point to the ground-truth surface
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Fig. 8. Comparison of different methods for generating confidence maps
in registration – the camera-distortion based [Keller et al. 2013] (top left)
versus our reconstruction-indicated method (bottom left), where the test is
conducted on the human model from the CoRBS benchmark [Wasenmüller
et al. 2016]. The reconstructed models by using different confidence maps
are shown in the right column, where zoom views highlight the quality
difference in reconstruction. The reconstruction errors are measured by the
distance between each point to the surface of the ground-truth model and
are plotted in heat color with the corresponding histogram.

model, which are plotted in heat color with the corresponding
histogram. In summary, our method leads to a more accurate 3D
model with less artifact.

4 CAMERA POSE ESTIMATION
We estimate the camera pose of each newly captured RGB-D frame
by registering it onto the global model, which highly depends on the
underlying registration algorithm and is a key to 3D reconstruction
in high accuracy. Our registration method consists of two steps:

(1) Searching the correspondence between each point of the
input frame and its corresponding point in the vertex map
predicted from the global model in the previous frame;

(2) Updating the registration transformation by minimizing the
weighted point-to-plane geometric metric and the photomet-
ric difference between the pairs of points with correspon-
dence determined in the first step.

These two steps are repeatedly applied until the registration
converges to obtain the relative transformation between the neigh-
boring frames. With the help of on-the-fly HRBF surfaces proposed
in our approach, curvatures and confidence maps can be reliably
estimated to improve the robustness of registration.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:8 • Xu et al.

4.1 Correspondence search
Given a point v𝑖 = V𝑖 (u) from the 𝑖-th frame (the input RGB-
D frame), it is required to find its most similar point v̄𝑖−1 on
the global model in the (𝑖 − 1)-th frame’s vertex map predicted
by on-the-fly HRBF implicits. Assuming the motion between two
consecutive frames is very small, the projective data association
algorithm [Blais and Levine 1995] can be applied to speed up the
search of correspondence (ref. [Keller et al. 2013; Newcombe et al.
2011]). Specifically, the estimated transformation T𝑖 to the global
model, which is initialized as T𝑖−1 and will be updated during the
iteration of registration, is used to transfer 3D points of the 𝑖-th
frame into the previous frame by T−1

𝑖−1T𝑖 . After that, we use a small
window with a fixed size of 5 × 5 to search compatible points in the
predicted vertex map of the global model.

We measure the dissimilarity of a point pair using the following
metric similar to [Lefloch et al. 2017]

𝛾𝑑 = `𝑑 𝐼𝑑 + `𝑎𝐼𝑎 + `𝑐 𝐼𝑐 , (7)
which is determined by the distance variation term 𝐼𝑑 , the angle
variation term 𝐼𝑎 and the curvature variation term 𝐼𝑐 together
with equal weight (i.e., `𝑑 = `𝑎 = `𝑐 = 1

3 works well in all our
experiments).

𝐼𝑑 = ∥v𝑖 − v̄𝑚 ∥/𝑅max,

𝐼𝑎 = 1 − n𝑖 · n̄𝑚/(∥n𝑖 ∥∥n̄𝑚 ∥),

𝐼𝑐 = 1 − 𝑒𝑥𝑝
(
−
|^1,𝑖 − ^1,𝑚 | + |^2,𝑖 − ^2,𝑚 |

max{|^1,𝑚 |, |^2,𝑚 |}

)
,

(8)

where v̄𝑚 , n̄𝑚 , ^1,𝑚 and ^2,𝑚 are from the candidate points obtained
from the global model. 𝑅max is the distance between v𝑖 and the
farthest point that can be found in the search window.
A point pair with the smallest values of 𝛾𝑑 is considered as

the valid corresponding points. Moreover, we apply a pruning
strategy similar to [Newcombe et al. 2011] to discard outliers in the
correspondence pairs. A reliable correspondence search depends on
a robust normal and curvature estimation, which has been improved
by using our on-the-fly HRBF surface evaluation. The pairs of
compatible points are stored in a set Ψ = {(u, ū)} for computing
the updated transformation T𝑖 .

4.2 Transformation update
The transformation is updated by minimizing an objective function
considering both geometric and photometric information.
4.2.1 Geometric term. A curvature-based weight scheme [2017] is
employed here to enhance the point-to-plane metric [Newcombe
et al. 2011] for aligning an input RGB-D frame to the global model.
The objective function to be minimized is defined as

𝐸𝑔𝑒𝑜𝑚 (T𝑖 ) =
∑
(u,ū) ∈Ψ

𝑤 (ū) ((T𝑖v𝑖 − v̄𝑖−1) · n̄𝑖−1)2 , (9)

where the curvature-based scheme [Lefloch et al. 2017] is employed
to determine the weight 𝑤 (ū) by incorporating the confidence
coefficient, the depth-value and most importantly the principal cur-
vatures at the point v̄𝑖−1 (ū). Figure 9 demonstrates the performance
improvement when using on-the-fly HRBF to evaluate curvatures
(Section 3.2) and confidence map (Section 3.3) as proposed in this
paper. In this experiment, the routine and the weighting scheme of
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Fig. 9. Comparison of tracking robustness on the Lego-PAMI-TT Noise
Benchmark [Lefloch et al. 2017]. Themean error (top) and standard deviation
for the estimated camera center (bottom-left) and rotation (bottom-right)
are evaluated with different levels of (Gaussian) noise. The noisy levels
successively increases with standard deviation by integer factors (i.e., 1-13).
Note that the camera-distortion based confidence maps [Keller et al. 2013]
are employed in [Lefloch et al. 2017].

registration are the same as [Lefloch et al. 2017]. We evaluate the
camera tracking accuracy by computing Mean Camera Center Error
and Standard Deviation (SD) between the estimated poses with the
corresponding reference poses, as described in [Lefloch et al. 2017].
This comparison indicates that our method significantly improves
the accuracy of registration (therefore camera pose estimation)
when high-level noise is presented.
4.2.2 Photometric term. Following the approach of ElasticFu-
sion [Whelan et al. 2016], color information provided by an RGB-D
camera is used to further enhance registration. This complementary
information is encoded in a photometric term as

𝐸𝑐𝑜𝑙𝑜𝑟 (T𝑖 ) =
∑
(u,ū) ∈Ψ

(C̄𝑖−1 (𝜋 (T−1
𝑖−1T𝑖v𝑖 )) − C𝑖 (u))2, (10)

where C̄𝑖−1 and C𝑖 denote the RGB color value in the predicted map
of the previous frame and the color in the current input frame. 𝜋 is
the projection function between 3D objects and the corresponding
image frame.

The final objective function to be minimized is

𝐸 (T𝑖 ) = 𝑤𝑔𝑒𝑜𝑚𝐸𝑔𝑒𝑜𝑚 (T𝑖 ) + 𝐸𝑐𝑜𝑙𝑜𝑟 (T𝑖 ), (11)

where 𝑤𝑔𝑒𝑜𝑚 is the weight of the geometric term. 𝑤𝑔𝑒𝑜𝑚 = 10 is
suggested in [Whelan et al. 2016] and works well in all our tests. We
employ the Gauss-Newton nonlinear least-squares method [Björck
1996] to minimize this energy function, which leads to a reliable
alignment between the current input frame and the global model
usually after around 20 steps of iteration.

5 DEPTH MAP FUSION
Given a valid camera pose (Section 4), the depth map fusion step
integrates the input points and their attributes into a global model
as an enriched surfel representation (Section 2).

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.



HRBF-Fusion: Accurate 3D Reconstruction from RGB-D Data Using On-the-Fly Implicits • 1:9

Let T𝑖 ∈ SE3 denote the pose of 𝑖-th input frame, we transform
both points and their normals into the (𝑖 − 1)-th frame to conduct
the data fusion. Points of the global model are also projected into
the (𝑖 − 1)-th frame with their vertex ID stored in the texture map.
After that, for each transformed point of the 𝑖-th frame, we follow
the scheme of [Cao et al. 2018; Keller et al. 2013] to search its valid
neighbors in a 5 × 5 window by using the same position / normal
compatibility condition. When there are multiple valid neighbors,
the closest one is chosen to conduct fusion by a confidence-weighted
averaging. That is,

v̄←
𝑐v̄ + 𝑐v𝑔,𝑖
𝑐 + 𝑐 , n̄←

𝑐n̄ + 𝑐n𝑔,𝑖
𝑐 + 𝑐 ,

¯̂1 ←
𝑐 ¯̂1 + 𝑐^1,𝑖

𝑐 + 𝑐 , ¯̂2 ←
𝑐 ¯̂2 + 𝑐^2,𝑖

𝑐 + 𝑐 ,

𝑟 ← 𝑐𝑟 + 𝑐𝑟, 𝑐 ← 𝑐 + 𝑐, 𝑡 ← 𝑡𝑖 ,

(12)

with v𝑔,𝑖 and n𝑔,𝑖 being the position and normal of an input point in
the global model’s coordinate. 𝑐 , ¯̂1 and ¯̂2 are the stored confidence
and curvature values of a point on the global model, and 𝑐 , ^1,𝑖
and ^2,𝑖 are the values on an input point evaluated by using the
on-the-fly HRBF implicits (Section 3.2 and 3.3).
Points of global model with confidence above a threshold 𝜎𝑐𝑜𝑛𝑓

are considered as stable points (e.g., 𝜎𝑐𝑜𝑛𝑓 = 5.0 is employed by
following [Cao et al. 2018; Keller et al. 2013]), and only stable
points are used for HRBF surface prediction (Section 3.1). If no
corresponding model point is identified, we add the current vertex
with its attributes to the global model as an unstable point. Besides,
we remove points with confidence values below this threshold for
a period of time (i.e., 200 frames) by considering them as noises or
outliers.

6 RESULTS AND DISCUSSION
We have implemented our algorithm2 in the framework of Elastic-
Fusion [Whelan et al. 2016] by C++, CUDA, and OpenGL Shading
Language. Moreover, we have incorporated ORB-SLAM2 [Mur-Artal
and Tardós 2017] into our system for the implementation of submap-
based hierarchical optimization for large-scale scanning. Our system
has been evaluated on both synthetic datasets and raw sequences
captured by various depth cameras, including structured light cam-
eras (e.g., Asus XTion PRO LIVE, PrimeSense Carmine and Microsoft
Kinect v1) as well as Time-of-flight cameras (e.g., Microsoft Kinect
v2). We carried out all our experiments on a desktop PC equipped
with an Intel Core i7-9700K CPU @3.60GHz with 16GB RAM and a
GeForce RTX 2070 GPU with 8GB memory. In this section, we first
briefly describe the datasets. Then we present our visual results,
followed by the evaluation of our method on different datasets. The
output of our system can be either a point cloud or a triangular mesh
extracted from the iso-surface maintained by the closed-form HRBF
representation using the dual-contouring method [Liu et al. 2016].
Figure 10 shows some small and middle-sized objects rendered in
meshes. While in all other figures, we directly render point clouds
for the sake of efficiency. All reconstructed 3D models are visualized
by Easy3D [Nan 2021], which is an open-source library for 3D
modeling, geometry processing, and rendering.

2The source code is available at: https://github.com/YabinXuTUD/HRBFFusion3D.

Fig. 10. Reconstructed 3D individual models with different geometric
properties and scalability from the Object Scans [Choi et al. 2016] dataset.
Here the models are rendered by polygonal meshes extracted from the
iso-surfaces of HRBF implicits.

6.1 Test datasets
We tested our method on the following datasets.

6.1.1 Object Scans [Choi et al. 2016]. This dataset provides more
than 10,000 individual 3D object scans that contain a diversity of
objects with different geometric properties and scalability. The
scans are captured by unprofessional operators with a PrimeSense
Carmine RGB-D camera.

6.1.2 ICL-NUIM benchmark [Handa et al. 2014]. This is a synthetic
benchmark dataset with geometric and camera pose ground truth.
We selected four scenes of living rooms (including synthetic noise)
commonly used in the previous work to evaluate the tracking
accuracy and reconstruction quality of our results.

6.1.3 TUM benchmark [Sturm et al. 2012]. It is a dataset captured by
a Microsoft Kinect v1 with motion-captured camera poses as ground
truth, which is widely used to evaluate the tracking accuracy of a
reconstruction method. We select four frequently used sequences
(i.e., fr1/desk, fr2/xyz, fr3/office, fr3/nst) for the evaluation.

6.1.4 CoRBS benchmark [Wasenmüller et al. 2016]. This is a bench-
mark dataset of Microsoft Kinect v2 providing both the motion-
captured camera poses and the 3D models acquired by a high-
precision commercial scanner as ground-truth. We select the human
model (Fig. 8) and the racing car model (in supplementary video) to
demonstrate the performance of our approach.

6.1.5 CuFusion dataset [Zhang and Hu 2017]. This dataset contains
both synthetic and real-world sequences for object scanning. Both
ground truth trajectories and 3D models are provided on the
synthetic examples. We select the synthetic sequence Armadillo
(that does not have color information) for the evaluation.

6.1.6 ScanNet dataset [Dai et al. 2017]. This dataset is an RGB-D
video dataset captured by structure sensors, which consists of 2.5
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million views in more than 1,500 scanned sequences. We randomly
selected 200 sequences to test the performance of our approach.

6.1.7 Our dataset. We scanned a few objects and large indoor
scenes using a Microsoft Kinect v1 and are shown in Figs. 12, 16, 13,
20, and 21. This is mainly used to evaluate the detail recovery and
the scalability of our method. For the evaluation of reconstruction
accuracy, we obtain the ground truth models shown in Fig. 13 by a
commercial hand-held structure light scanner, Artec Eva, with the
precision of 0.1𝑚𝑚.

6.2 Visual results
6.2.1 Individual objects. We first tested our method on a variety
of objects from the Object Scans dataset [Choi et al. 2016]. Figure
10 shows the reconstruction results of 18 objects of different sizes
and characteristics. Among these objects, (1), (2), (3), (4) are small
toys, where the average size is about 0.56𝑚 × 0.30𝑚 × 0.36𝑚, small
geometric features are presented (i.e., the handlebar in (1) with a
radius of 0.01𝑚, the ear in (3) with a thickness of 0.02𝑚 (as shown
in zoom-views of Fig. 10). It is intractable for the methods based on
a volumetric representation to reconstruct such geometric details
while still adapting to the scale of its background. On the contrary,
our HRBF-based on-the-fly surface representation has addressed
such limitation since the reconstruction quality only depends on
the local kernels and the corresponding support radius (Section 3.1).
Apart from the small-sized toys, we also tested our system on

middle-sized objects, including indoor furniture (5) (6) (7) (8) (9),
sculpture (10) (11) (12) (13), and outdoor equipment (14) (15) (16).
The average size is around 0.89𝑚 × 0.60𝑚 × 1.03𝑚. The chair (9),
the sculpture (10) (11), and the outdoor equipment (15) mainly
demonstrate curved surfaces while the tables (5) (6) (8) contain
large planar regions. Besides, the chair (7) and the horse models (12)
have dense tube-like structures, which poses challenges for RGB-D
reconstruction systems. Thanks to the high adaptivity provided by
the HRBF on-the-fly surface representation, such fine geometric
features (i.e., the decoration on the legs of table (6), the small crease
on the desktop in (8), and the concave part in (15) (see the zoom-
views in Fig. 10)) are faithfully recovered by our system.

At last, we tested our system with relatively large vehicles (17)
and (18), the sizes of which are 4.94𝑚 × 1.97𝑚 × 1.94𝑚 and 3.33𝑚 ×
1.68𝑚 × 1.94𝑚 respectively. Our system can reconstruct not only
global consistent models but also fine geometric details. This can
be observed from the crease of the tires on both objects (as shown
in the zoom-view in Fig. 10).

6.2.2 Large scenes. Figure 1 presents two large-scale indoor scenes
reconstructed by our system. The left shows the reconstructed
results of a study room in a university library, while the right shows
a study platform in a grand hall of an academic building. Please note
that the length of both scenes is above 21𝑚. Due to the complexity of
the scene layout, the camera trajectories are extremely complicated,
posing challenges to both camera tracking and reconstruction. The
detailed camera trajectories can be found in our supplementary
video. Our system managed to capture and reconstruct both scenes
with high fidelity.

Fig. 11. Comparison of the influence of different representations on tracking
robustness with Kintinuous [Whelan et al. 2012], PointFusion [Keller et al.
2013] and VoxelHashing [Niessner et al. 2013] on two noisy scanning
sequences – (top row) the Armadillo model of the CuFusion Dataset [Zhang
and Hu 2017] and (bottom row) the scene sequence lr kt1 of the ICL-NUIM
dataset [Handa et al. 2014]. From left to right, noises are added into the
depth maps in different levels of normal distribution: 𝜎 = 3.0, 𝜎 = 6.0 and
𝜎 = 12.0. Note that we clip tracking error larger than 0.05m and consider it
as tracking lost. The insets show the ground truth-geometry of test data.

6.3 Evaluation
In addition to the above visual results, we also conducted a com-
prehensive analysis of our method in terms of tracking robustness,
detail recovery, scalability, reconstruction accuracy, ablation study,
parameter discussion, memory consumption, and processing times.
Details are given below.

6.3.1 Tracking robustness. The camera tracking of RGB-D recon-
struction systems generally tends to drift due to the noise and
sparsity in the input frames, which also accumulates noise in the
global model. We evaluated the performance of our HRBF-based
surface evaluation in tracking robustness below.

Three state-of-the-art reconstruction systems are selected to com-
pare the influence of different representations on tracking robust-
ness, including Kintinuous [Whelan et al. 2012], PointFusion [Keller
et al. 2013], and VoxelHashing [Niessner et al. 2013]. Kintinuous is an
extended version of the originalKinectFusion [Newcombe et al. 2011]
by exploiting a dynamic volume. VoxelHashing utilizes a hashing
structure to maintain a sparse representation with voxel grids.
PointFusion uses a surfel representation for camera tracking. The
experiment is conducted on two synthetic sequences with ground
truth camera poses: the Armadillo of the CuFusion Dataset [Zhang
and Hu 2017] and the lr kt1 of the ICL-NUIM dataset [Handa et al.
2014]. Noises are added in different levels of normal distribution
(i.e., 𝜎 = 3.0, 𝜎 = 6.0 and 𝜎 = 12.0) to test the robustness of different
systems. We evaluated the camera pose error for all frames and the
results are shown in Fig. 11. It can be found that the point-based
representation is more sensitive to noise while our HRBF-based
method demonstrates consistently low errors in camera tracking.

We further evaluated our system in terms of accuracy in trajectory
estimation on the TUM benchmark [Sturm et al. 2012] (Microsoft
Kinect v1) where ground truth trajectories are provided by a highly
accurate calibrated motion-capture system. We chose a set of widely
used sequences (i.e, fr1/desk, fr2/xyz, fr3/office, fr3/nst) and compared
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Fig. 12. Comparison of reconstruction results generated by Redwood [Choi et al. 2016], BundleFusion [Dai et al. 2017], ElasticFusion [Whelan et al. 2016],
UncertaintyAware [Cao et al. 2018], and our method on five objects with different geometric shapes and details. Models from left to right are: Fertility, Plant,
Human, Pillar and Car Frame. Note that the Redwood and the BundleFusionmethods generates mesh surfaces from volume representation as results (displayed
in the first two rows) while the results of other three methods as point clouds are rendered by surfel splatting.

our methods with state-of-the-art online reconstruction systems,
including DVO-SLAM [Kerl et al. 2013], RGBD SLAM [Endres et al.
2012], MRSMap [Stückler and Behnke 2014], Kintinuous [Whelan
et al. 2012], ElasticFusion [Whelan et al. 2016], BundleFusion [Dai et al.
2017], and UncertaintyAware [Cao et al. 2018]. To make a complete
comparison, the offline reconstruction system, Redwood [Choi
et al. 2015], is also included. We recorded the absolute trajectory
error (ATE) of root-mean-square error (RMSE) for camera tracking
accuracy. The results are summarized in Table 1. We can see that our
method consistently outperformed (or demonstrated comparable)
results to themost promisingmethods in the comparison. To analyze
camera tracking drift, we separately evaluated our method with and
without global optimization (i.e., similar to UncertaintyAware [Cao
et al. 2018] that both local and global bundle adjustment (BA) are
applied in global optimization). Most existing systems have applied

different global optimization techniques to alleviate the accumulated
errors in camera pose estimation.

• DVO SLAM, RGBD SLAM, and MRSMap first apply a pose
graph optimization to achieve a global consistent trajectory
and then the global model is constructed by integrating all
depth maps in a volumetric representation (i.e., DVO SLAM
and RGBD SLAM) or merging key surfel views (i.e.,MRSMap).
• Kintinuous and ElasticFusion achieve a globally consistent
model in a map-centric manner by deforming the global
model according to global or local constraints.
• Redwood, BundleFusion, and UncertaintyAware divide the
global model into submaps and obtain a globally consistent
model by optimizing between submaps.

Our system outperforms most of these systems. There is one
exception that BundleFusion achieved the best result on fr3/nst.
The main reason lies in its combined sparse visual features, dense
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Table 1. ATE RMSE on the TUM benchmark (unit: m)

fr1/desk fr2/xyz fr3/office fr3/nst

DVO SLAM 0.021 0.018 0.035 0.018
RGBD SLAM 0.023 0.008 0.032 0.017
MRSMap 0.043 0.020 0.042 2.018
Kintinuous 0.037 0.029 0.030 0.031
ElasticFusion 0.020 0.011 0.017 0.016
BundleFusion 0.016 0.011 0.022 0.012
Redwood 0.027 0.091 0.030 1.929

UncertaintyAware 0.015 0.006 0.009 0.014
Ours 0.014 0.005 0.007 0.016

Comparison of only applying Local BA
UncertaintyAware 0.015 0.006 0.037 0.014

Ours 0.014 0.005 0.015 0.016
Comparison of only applying Global BA

UncertaintyAware 0.033 0.009 0.025 0.093
Ours 0.018 0.007 0.014 0.030

photometric and geometric objective, which enables it to obtain
a more tight alignment on textured scenes. Global optimization
techniques such as local or global BA can help significantly reduce
the tracking errors in practice. It is interesting to compare the errors
after removing either local or global BA (see the last two parts of
Table 1). We can find that our results are more accurate than those
of UncertaintyAware in most cases.

6.3.2 Detail recovery. With the help of on-the-fly HRBF surface
representation, our method is able to recover finer geometric details.
To demonstrate this capability, we compared our method with the
state-of-the-art reconstruction systems including Redwood [Choi
et al. 2015], ElasticFusion [Whelan et al. 2016], BundleFusion [Dai
et al. 2017], and UncertaintyAware [Cao et al. 2018] on a variety
of 3D objects (see Fig.12). Since our scanning aims at achieving a
complete model, a global loop is required to exist for every model.
The Redwood system [Choi et al. 2015] cannot generate good

results due to the registration error. It completely failed on the
human example (see the human face and the right leg in the third
column). The same issue of camera tracking drift also occurs in
the ElasticFusion and the BundleFusion systems. In short, all these
three systems are unable to produce a global consistent 3D model.
The UncertaintyAware approach can obtain global consistent models
by successfully detecting the close loop in all examples. However,
artifacts are still generated by the UncertaintyAware approach due
to the accumulated error – see the human face in the third column.
As has been expected, our HRBF-based method is more robust in
recovering geometric details.

6.3.3 Reconstruction accuracy. To evaluate the reconstruction ac-
curacy, we compared the results of Redwood [Choi et al. 2015],
ElasticFusion [Whelan et al. 2016], BundleFusion [Dai et al. 2017],
UncertaintyAware [Cao et al. 2018], and ours to the 3D models
acquired by a commercial hand-held structure light scanner, Artec
Eva, with the precision of 0.1𝑚𝑚. The model obtained from this
structure light scanner is referred to as ground truth. To evaluate
the relevant scenery, we manually removed the background of the
obtained model from each method. Each model is aligned to the
ground truthmesh and the distance error is computed and visualized

Image Ground truth ElasticFusion BundleFusion Redwood UncertaintyAware Ours

Fig. 13. Comparison of the reconstruction accuracy with ElasticFusion [Whe-
lan et al. 2016] (third column), BundleFusion [Dai et al. 2017] (fourth column),
Redwood [Choi et al. 2015] (fifth column), and UncertaintyAware (sixth
column). The ground-truth models (second column) were obtained by a high-
precision structure light 3D scanner. The color map presents the distance
error on the reconstructed models. Models from top to bottom are: Faces,
Head, Upper Body, Small Chair.
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Fig. 14. Surface reconstruction error in terms of average point to surface
distances on the ICL-NUIM benchmark (unit: meter). The best performance
is highlighted in bold fonts.

as a color map (see Fig. 13). As can be observed, all these methods
were able to produce consistent 3D models and our results have the
smallest errors while preserving more geometric details than the
other methods. The errors were mainly sourced to camera tracking,
which is prone to noises on the input RGB-D images. By using
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Fig. 15. Comparison of the reconstruction quality between the offline
optimization based method of Zhou et al. [2013] (top) and our approach
(bottom) on the stonewall example from their 3D Scene Dataset. This
example consists of 2, 700 frames.

the on-the-fly HRBF surface estimation together with the weighted
registration strategy (i.e., curvature, confidence, and photometric),
our system is more robust in camera tracking, therefore, yielding
the highest precision among all these systems.

We also evaluate the surface reconstruction accuracy in terms of
average point-to-surface distances on the living room kr0-kr3models
from the ICL-NUIM benchmark [Handa et al. 2014]. Our method
is compared with a variety of existing approaches and the results
are summarized in Fig. 14. It is easy to find that our method can
achieve better (or comparable) results in terms of reconstruction
accuracy. Again this is benefited from the robust HRBF on-the-fly
surface estimation presented in this paper.

6.3.4 Scalability. With the robustness in camera tracking and
surface prediction, our method can reconstruct large scenes. In
addition to the two scenes already shown in Fig. 1, we tested our
approach on the stonewall models from the 3D Scene dataset (see
Fig. 15). Comparing their method with the offline global optimizer
[Zhou and Koltun 2013], we can observe a significant reduction
of camera tracking drift on our result on this example with 2, 700
frames.
As shown in Figs. 16 and 17, we captured a sequence of 6, 114

RGB-D images in a conference room by a Microsoft Kinect v1
camera with a complex camera trajectory. The trajectory contains
many local loops. When comparing with other state-of-the-art
reconstruction systems including Redwood [Zhou and Koltun 2015],
ElasticFusion [Whelan et al. 2016], BundleFusion [Dai et al. 2017]),
and UncertaintyAware [Cao et al. 2018], all the other four methods
suffer from camera tracking drift (especially in the regions with
local loops on the trajectory) and perform poorly in recovering
surface details – see the ‘double-layers’ of chairs (fourth column) and
tables (fifth column) shown in the zoom-views. Our robust surface
estimation by using on-the-fly HRBF implicits can effectively reduce
the error in camera tracking drift thus can generate more consistent
3D reconstruction.

We also conducted experiments on the ScanNet dataset [Dai et al.
2017]. Among its 1,500 scan sequences, we randomly selected 200
sequences to reconstruct 3D scenes and compared our results with
those from BundleFusion [Dai et al. 2017]. It is found that similar
results are generated by both methods on most of the sequences
especially on those for simple scenes. Better reconstruction results
can be found on 5 sequences with complex trajectories. For example,
in the scene shown in Fig. 18, the structural distortion is significantly
reduced by our method. Similar improvement can also be found on
the other four scenes as shown in Fig. 19.

Moreover, we captured a sequence of 14, 163 RGB-D frames with
a quite long trajectory on an urban street using a Microsoft Kinect
v1. We compare the reconstruction results with BundleFusion [Dai
et al. 2017] and UncertaintyAware [Cao et al. 2018] in Fig. 20. We
can observe that the result of BundleFusion [Dai et al. 2017] breaks
(see the zoom-view on the top left) and fails to generate a globally
consistent 3D model. UncertaintyAware can obtain a more consistent
result but still suffers from camera tracking drift, which leads to
artifacts in the reconstruction (see the zoom-view on the right of
the second row). In contrast, our system can produce a globally
consistent 3D model. It is also worthy to note that surfel-based
representation has the advantage to preserve geometric details. This
can be observed from the number plate ‘1’ in the right zoom-views,
where the result obtained from the volumetric representation of
BundleFusion is not as clear as UncertaintyAware and ours.

6.3.5 Ablation Study. We further conducted an ablation study to
evaluate the effectiveness of each single algorithm component of
our system by replacing it with another option used in others’ work,
where the study is taken on a sequence of 4, 080 RGB-D images
captured in a meeting room (Fig. 21). For quantitative analysis, we
also plot the mean distance errors of all validated vertex pairs for
each frame pair to indicate the quality of the registration as shown
in Fig. 21(f). Due to the high sensitivity to noise, the surfel-based
representation led to a dramatic increase in mean distance error (see
Fig. 21(f)) and unsatisfactory reconstruction (see the close-up view
shown in Fig. 21(a)). In the second test, we replace our HRBF-based
curvature estimation with the method presented in [Lefloch et al.
2017]. Although the global consistent 3D model can be obtained –
thanks to global techniques of local and global BA, noises induced by
the black surfaces (i.e., chairs) can lead to artifacts in intra-submap
level as shown in Fig. 21(b). In Fig. 21(c), we utilize the camera-
distortion based evaluationmethod [Keller et al. 2013] for confidence
map. As a result, the accumulated noise in the global model leads
to unstable registration and imperfect reconstruction. The last two
tests are conducted to evaluate the importance of local BA (Fig. 21(d))
and global BA (Fig. 21(e)) in our pipeline of reconstruction, where
local BA helps to recover the artifacts between submaps and global
BA helps to generate globally consistent models.

6.3.6 Parameter discussion. As a key parameter of our system,
the support size influences the accuracy of registration. We select
different sizes of window patches (Section 3.1) as 5×5, 7×7 (default),
and 9 × 9 for the experiment. The evaluation is conducted on three
different datasets, i.e., TUM benchmark, ICL-NUIM benchmark, and
CoRBS benchmark, and the results are presented in Fig. 22. A larger
support size leads to a smoother surface while a smaller support
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Fig. 16. Comparison with state-of-the-art RGB-D reconstruction systems, i.e., ElasticFusion [Whelan et al. 2016], Redwood [Choi et al. 2015], BundleFusion [Dai
et al. 2017], and UncertaintyAware [Cao et al. 2018] on a sequence of 6, 114 RGB-D images captured in a conference room by a complex camera trajectory that
consists of many local loops (see Fig. 17).

Fig. 17. The complex camera trajectory for the conference room example
shown in Fig. 16 with 6, 114 frames.

size can preserve more geometric details. Correspondingly, a patch
size of 5 × 5 is suitable for the reconstruction of clean data but not
robust enough to handle the noises induced by depth cameras. On
the other hand, a patch size of 9× 9 always leads to over-smoothing

results. A patch size of 7 × 7 can achieve the best performance in
our tests as shown in Fig. 22.

6.3.7 Performance. To study the memory consumption of our
approach, we recorded the GPU memory consumption for storing
and managing the global model over 13 sequences of RGB-D images
that are captured. Comparison with the BundleFusion system [Dai
et al. 2017] is conducted to demonstrate the memory efficiency
of our HRBF-based method – see Table 2. Note that BundleFusion
shares the same representation with VoxelHashing [Niessner et al.
2013], which exploits sparsity by applying a hash-based structure
to the volumetric representation. The memory consumption of
BundleFusion by using two different voxel sizes is reported. When
4mm is used for the voxel size – being able to capturemore geometric
details, the BundleFusion system failed to add depth maps during
reconstruction due to the large memory requirement. Our system
has a significantly smaller memory footprint compared to the
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Fig. 18. Comparison of our reconstruction result (bottom row) with BundleFusion [Dai et al. 2017] (top row) on "scene0054_00", a sequence of 6, 629 RGB-D
frames captured by a structure sensor, from ScanNet [Dai et al. 2017]. Closer inspections (green and yellow boxes) are presented to show reconstruction
details of each method. The camera trajectory is visualized in blue color. Our approach maintains only global model points with confidence values larger than
a threshold (see Section 5) similar to [Cao et al. 2018; Keller et al. 2013; Whelan et al. 2016], which causes some missing data on the floor.

(a) scene0005_00 (b) scene0098_00

(c) scene0142_00 (d) scene0017_00

Fig. 19. More comparison between the reconstruction results of BundleFusion [Dai et al. 2017] (top) and ours (bottom) on the other four sequences from the
ScanNet dataset [Dai et al. 2017], which contain 1159, 1285, 2434, and 1490 RGB-D frames, respectively. Structural distortions are marked in colored circle, and
closer zoom-views are also presented to show the details of 3D reconstruction.

volumetric representation based approaches and therefore is more
suitable for reconstructing large scenes.
We report the computing time used by each component of our

system in Fig. 23 for all RGB-D frames throughout the sequence
of Meeting Room (Fig. 16). The efficiency of different components of
the computational pipeline has been analyzed. In general, our system
can achieve an average processing time of 42ms per frame, which

indicates a near real-time performance (i.e., approximately 24Hz).
Among all components of our system, the HRBF-based prediction
takes over half of the processing time (25ms). For comparisons, we
also plot the processing times of BundleFusion [Dai et al. 2017] (left)
and UncertaintyAware [Cao et al. 2018] (center) in Fig. 23.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:16 • Xu et al.
O
ur
s

Un
ce
rta

in
ty
A w

ar
e

Bu
nd

le
Fu

sio
n

Fig. 20. Comparison of our reconstruction result (bottom row) with state-of-the-art RGB-D reconstruction systems, i.e., BundleFusion [Dai et al. 2017] (top
row) and UncertaintyAware [Cao et al. 2018] (center row) on a sequence of 14, 163 RGB-D frames captured on an urban street with a long trajectory. Closer
inspections (black boxes) are presented to show the reconstructed details of each method.

Table 2. Statistic of memory consumption for reconstruction (unit: MB)

Model Name Fig. #Frames BundleFusion (GPU) Ours (GPU)
Voxel Size

10mm 4mm
Fertility 12 1,301 153.0 740.9 15.0

Plant 12 1,703 162.9 830.5 25.3
Human 12 2,751 137.4 1309.1 44.9
Pillar 12 1,987 198.2 1536.6 59.8

Car Frame 12 3,694 126.8 1462.5 95.1
Faces 13 579 59.0 443.0 21.1
Head 13 1,663 167.6 1806.4 15.6

Upper Body 13 1,308 179.7 1951.6 22.3
Small Chair 13 1,693 107.5 1115.2 34.0

Conference Room 16 6,114 164.7 1240.3 98.1
Urban Street 20 14,163 2205.3 - 552.5

Library 1 16,128 1924.1 - 571.3
Study Platform 1 10,930 1835.0 - 603.1

7 CONCLUSION AND FUTURE WORK
We have presented the HRBF-Fusion as a new method using on-the-
fly HRBF implicits for 3D reconstruction from RGB-D images. Our
system is not only able to reconstruct objects with high fidelity but
also scalable to large scenes after incorporating submap-based local
and global optimization strategies. The robustness of our HRBF-
Fusion is mainly due to the robust curvature estimation based
on the HRBF implicits, which can significantly reduce the drift
in camera tracking. Moreover, our reconstruction-indicated surface
evaluation method exploits the uncertainty of the measurement in
the input depth maps and further improves the accuracy in both
the camera tracking step and the finally reconstructed models. The

surfel representation using on-the-fly HRBF implicits has a low
memory footprint and is suitable for reconstructing large scenes.

The proposed system can reconstruct long-range scanning with
submap level local and global optimization. However, camera track-
ing failure may still happen between intra-submaps for featureless
regions (e.g., white planar walls). This is a common problem in all
existing RGB-D reconstruction systems. A proactive reconstruction
method by using robotic systems is planned to be investigated in
our future work. Furthermore, it is also interesting to incorporate
geometric primitives or structural regularities (i.e., parallelism
or orthogonality) to improve the robustness of the hierarchical
optimization for long-range scanning.
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Fig. 23. Comparison of the computing time of our system (right) with BundleFusion [Dai et al. 2017] (left) and UncertaintyAware [Cao et al. 2018] (center) on
each frame of the Meeting Room sequence (Fig. 16). The processing time for each main component of the three systems is also plotted. Note that, two GPUs
are used for BundleFusion as suggested in [Dai et al. 2017] and the time is reported here according to the main GPU. Differently, only one GPU is employed for
UncertaintyAware and our pipeline.
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