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1 PCA on Human Body Database

Principle Component Analysis (PCA) has been used to establish statistical models for analyzing
different data. In this technical report, I mainly focus on the human body database. The main
advantage is that the relationship between exemplars with low variance can be discarded after PCA
analysis. The full dataset does not need to be retained to represent the original examples. As a
result, both the computational complexity and the data size can be greatly reduced.
Assume there are m scanned models served as exemplars, they can be listed in a matrix

H = [h1 h2 . . .hm]3n×m, (1)

where hi is a 3n × 1 vector which the entities are the 3D coordinates of n vertices from the mesh
surface of the ith model in the database. By subtracting the average

h̄ =
1

m

m
∑

i=1

hi, (2)

The matrix H becomes
H = [(h1 − h̄) (h2 − h̄) . . . (hm − h̄)]3n×m (3)

To solve PCA on the matrix H, I can first calculate the covariance matrix CH = HHT , and apply
eigenvalue decomposition on CH

CHy = λy (4)

to get the principle components as well as the variances.
However, the matrix CH is 3n × 3n, and determining the 3n eigenvectors and eigenvalues is an
intractable task (a human model is normally represented by few thousands or millions vertices).
Fortunately, if the number of models is less than the number of vertices (m ≪ 3n), there will be
only m−1, rather than 3n, meaningful eigenvectors (the remaining eigenvectors will have associated
eigenvalues of zero). I can just solve for the eigenvectors of an m×m matrix instead of the 3n× 3n
matrix. Turk and Pentland [1] showed that if we consider the eigenvectors x of HTH such that

HTHx = λx, (5)

we can premultiplying both sides by H, and we have

HHTHx = λHx. (6)

From which we can see that Hx are the eigenvectors of CH = HHT .
Therefore, I can alternatively compute the transpose of the covariance, CT

H = HTH, and apply
eigenvalue decomposition on CT

H as
CT

Hx = λx, (7)
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I can obtain m eigenvectors, and x, which is the collection of a set of m×1 vectors. The eigenvectors
y of the covariance matrix CH can be calculated by

y = Hx. (8)

where yj is a 3n × 1 vector. The principal components of H is the normalized eigenvectors yj =
yj/‖yj‖ (j = 1, . . . ,m).

Another alternative that is more robust and efficient is to apply “economy size” SVD on HT

(HT )m×3n ≈ Um×mΛm×m(yT )m×3n (9)

The right singular vectors of the decomposition are the principle components, and square of singular
values are the variance.
For each principal component yj, it is associated with an eigenvalue λj, which is the variance for
each principle component. The principle components are sorted so that

λ1 ≥ λ2 ≥ . . . ≥ λm. (10)

The largest variance means the corresponding component yj is the most important axis to span
the model space. In order to reduce the dimension of the model space, I keep the first k prin-
cipal components according to the percentage of the total variance explained r by each principal
component.

r =
λ1 + λ2 + . . .+ λk

λ1 + λ2 + . . .+ λm

(11)

The human models in database are then projected onto k-dimensional points by

bi =
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

(hi − h̄). (12)

Thus, H3n×m is mapped into a reduced matrix Bk×m = [bi] (k ≪ 3n) spanning the linear space of
exemplar human bodies, named as the reduced exemplar matrix. Each human body is represented
by k parameters, instead of 3n vertex positions.
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