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Figure 1. Intersection-free dual contouring in uniform grids: (a) triangles intersect each other on the resultant 

mesh from dual contouring (DC) [2], and (b) our intersection-free dual contouring. 

 

1. Introduction 

The purpose of this research is to investigate a more efficient approach than [1] for generating intersection-

free iso-surface from uniformly sampled grids using dual contouring (DC). Crack-free mesh surface can be 

generated by DC, and DC is able to reconstruct sharp features when Hermite data is available. However, the 

surface produced by Dual Contouring is rarely intersection-free. The only work existing in literature to address 

the problem of geometric intersection on the mesh surface generated by DC is [1], which combines the primal 

and dual contouring. Some necessary conditions have been derived in [1] to try to reduce the number of 

triangles generated in DC. However, although the conditions in [1] are sufficient, the detection involves the 

detection of polygon-edge intersection which is neither as robust nor as efficient as our new approach based 

on convex/concave detection. Also, a question is left at the end of [1]: whether it is possible to apply Rule 1 

along to an intersection-free mesh surface without introducing the edge vertices. Our convex/concave analysis 

gives the negative answer for this question – in most cases, it is not necessary to introduce the edge vertices 

so that we can have an intersection-free mesh surface with the same number of triangles as the original DC 

algorithm (ref.[2]) when working on uniform grids. However, there are some extreme cases where edge 

vertices are needed. 

Traditional contouring techniques, such as the Marching Cubes (MC) method [3] and its variants [4-7], 

fulfill the intersection-free requirement as they generate triangles enclosed in grid cells and, within each cell, 

the triangles are not intersecting. However, these methods typically produce much more triangles than DC 

when contouring the volumetric data sampled at the same grid resolution. In [1], Ju and Udeshi borrowed the 

idea of enclosing triangles in non-overlapping volumes (called envelopes) from MC to a modified DC approach 

that avoids potential intersections. By their method, intersection-free triangular mesh surfaces can be 

generated but with more triangles than the mesh surfaces generated by the original DC approach [2]. Here, 

we derive a convex/concave analysis based approach, which is more robust and efficient. Moreover, heuristic 
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rules are developed in this work for preserving sharp-edges better on the resultant mesh surfaces. Figure 1 

shows a result of our approach versus the original DC. 

 

2. Preliminary 

To be self-contained, the principle of intersection-free DC will be briefed in this section. More details can be 

found in [1, 2]. 

Basically, when applying the dual contouring algorithm to volumetric data sampled on uniform grids, the 

isosurface can be generated by linking vertices in boundary grid cells. A grid cell with its eight grid nodes have 

inconsistent inside (or outside) configurations is a boundary grid cell. In each boundary cell c, a vertex vc on the 

resultant mesh surface is created and located at the position minimizing the Quadratic Error Function (QEF) 

defined by the samples on the grid edges of c, where the samples are equipped with normal vectors (i.e., 

Hermite data). For each cell edge e the contains a sign change – with one end inside but the other outside, two 

triangles will be constructed to linking four vertices in the cells around it. However, the mesh surface 

constructed in this way is rarely intersection-free.  

A hybrid approach of primal/dual methods is developed in [1]. As illustrated in Fig.2, a triangle fan with 

eight triangles is generated around a cell edge e with sign change in the hybrid approach, where each triangle 

connects the edge vertex ve on e, the face vertex vf on a face f sharing e and the cell vertex vc in a cell c sharing 

f. Ju and Udeshi then proved that the hybrid approach generates intersection-free triangles if each cell vertex, 

face vertex and edge vertex lies interior to the corresponding cell, face or edge. The envelop Ee at a grid edge e 

is defined as the union of eight tetrahedra, each formed by the edge e, the face vertex vf and the cell vertex vc 

(see Fig.2). It has proven that the envelopes Ee of different edges e are disjoint, and the triangles generated by 

the hybrid method around e are contained in separate tetrahedral of the envelope Ee. Therefore, the 

triangulated surface is guaranteed to be intersection-free. 

 
Figure 2. Triangle fans generated by the hybrid method at a grid edge e with sign change (a), and the envelope 

Ee of triangles formed by the union of tetrahedra (b). 

To reduce the number of triangles generated by the hybrid method, three rules are defined in [1] for 

contouring an Octree grid. The rules are based on the detection of polygon-edge intersections. However, 

when contouring uniform grids, a simpler detection method based on convex/concave analysis can be 

developed, which is the major contribution of our work below.  

 

3. Convex/Concave Condition for Intersection-free Triangulation 

A simpler convex/concave condition for intersection-free triangulation can be derived. First of all, as long as all 

cell vertices are located in their corresponding cell boxes, the intersection between the cell face fpq of two 

neighboring cells cp and cq (containing cell vertices vp and vq) and the line segment vp-vq is always in the face fpq 

when contouring uniform grids. Thus, the face vertices in the hybrid method of [1] are not needed. By 

removing face vertices, the envelope Ee around e is then formed by four tetrahedra.  
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Definition 1 Envelope Ee around an edge e that does not have volume overlap with other edge envelops is 

formed by four tetrahedra: vp-vq-v+
e-v

-
e, vq-vr-v

+
e-v

-
e, vr-vs-v

+
e-v

-
e and vs-vp-v+

e-v
-
e, where vp, vq, vr and vs are cell 

vertices in cells cp, cq, cr and cs around e, and v+
e and v-

e are two vertices at the end of e.  

Figure 3 gives an illustration of the four tetrahedra that form the intersection-free envelope Ee around the 

edge e. Note that the indices p, q, s and r are circularly used here. 

 
Figure 3. Four tetrahedra form the intersection-free envelope Ee around the edge e. 

Definition 2 For the cell vertex vc forming the intersection-free envelope Ee around an edge e, if any of the 

edges vc-v
+

e or vc-v
-
e is concave, it is defined as a concave envelope vertex of Ee; otherwise, it is named as a 

convex envelope vertex.  

Remark 1 The edge vp-v+
e is concave if vp is below the plane defined by the oriented triangle vs-vq-v+

e, and 

the edge vp-v-
e is concave if vp is below the plane define by the oriented triangle vq-vs-v

-
e. 

Figure 4 gives an illustration for Remark 1. 

 
Figure 4. Two cases that vp becomes a concave envelope vertex: (left) the edge vp-v

+
e is concave and (right) the 

edge vp-v-
e is concave. 

Proposition 1 For two cell vertices vs and vq in two non-neighboring cells cs and cq, the tetrahedron Tsqe 

formed by its previous cell vertex vs, its latter cell vertex vq and the edge e can only intersect three of the four 

cells around e. 

Proof:  As illustrated in Fig.5, without loss of the generality, four cells are located in the four regions split by 

the x-o-z and y-o-z planes. If the tetrahedron Tsqe has intersected with cr and pr∈cr is a point inside Tsqe, a point 

in Tsqe must at the same side of plane vq-v+
e-v

-
e as pr. Since the plane vq-v+

e-v
-
e passing through the origin and z-

axis which separate the volumes of cr and cp into two side of it, it is impossible to find a point from the cell cp 

at the same side of the plane as pr. 

◊  

By Remark 1 and Proposition 1, we can conclude the following remark since all points in cp will be above 

the oriented planes vs-vq-v+
e and vq-vs-v

-
e when the tetrahedron Tsqe intersects cr (see Fig.5). 
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Remark 2 A cell vertices vp in the cell cp will NOT be a concave envelope edge if the tetrahedron Tsqe formed 

by its previous cell vertex vs, its latter cell vertex vq and the edge e does not intersect the volume of cell cp. 

 
Figure 5. The tetrahedron formed by two cell vertices in diagonal cells and the edge e can only intersect three 

of the four cells around e. 

Proposition 2 For four cell vertices vp, vq, vr and vs around an edge e, if no concave envelope vertex is found, 

all the four triangles: vp-vq-vr, vp-vr-vs, vp-vq-vs and vq-vr-vs are all enclosed by Ee.  

Proof:  As shown in Fig.5, the vertex v-
e is always below the triangles: v+

e-vp-vq, v+
e-vq-vr, v

+
e-vr-vs and v+

e-vs-vp, 

and the vertex v+
e is always above the triangles: v-

e-vp-vq, v-
e-vq-vr, v

-
e-vr-vs and v-

e-vs-vp. Therefore, the edges vp-

vq, vq-vr, vr-vs and vs-vp are all convex. Since all edges are convex, the envelope Ee is a convex hull. Linear 

combination of three vertices on the convex hull leads to a point inside Ee. Thus, the triangles vp-vq-vr, vp-vr-vs, 

vp-vq-vs and vq-vr-vs are all enclosed by Ee. 

◊  

Proposition 3 For four cell vertices vp, vq, vr and vs around an edge e, if only vp is a concave envelope vertex, 

triangles vp-vq-vr and vp-vr-vs will be enclosed by the envelope Ee, but the triangles vp-vq-vs and vq-vr-vs will have 

some part NOT enclosed by Ee.  

Proof:  If only vp is a concave envelope vertex and the edge v+
e-v

-
e has no intersection with the triangle vp-vq-vr, 

the edge vp-vr will be a convex edge for the region enclosed by two tetrahedra vr-vs-v
+

e-v
-
e and vs-vp-v+

e-v
-
e. This 

region becomes a convex hull. Thus the triangle vp-vr-vs is inside Ee. The region formed by the tetrahedra vp-vq-

v+
e-v

-
e and vq-vr-v

+
e-v

-
e can be split into other two tetrahedra vp-vq-vr-v

+
e and vp-vq-vr-v

-
e, which encloses the 

triangle vp-vq-vr. 

If the edge v+
e-v

-
e has an intersection with the triangle vp-vq-vr, the edge vp-vr will be a convex edge for the 

region enclosed by two tetrahedra vp-vq-v+
e-v

-
e and vq-vr-v

+
e-v

-
e. Thus, the region is a convex, and the triangle 

vp-vq-vr is inside. The region formed by the tetrahedra vr-vs-v
+

e-v
-
e and vs-vp-v+

e-v
-
e can be split into other two 

tetrahedra vq-vr-vs-v
+

e and vq-vr-vs-v
-
e, which encloses the triangle vq-vr-vs. 

Since vp is a concave envelope vertex, the edge vp-vs is outside Ee. Therefore, the triangles vp-vq-vs and vq-vr-

vs will have part NOT enclosed by Ee.  

◊  

Remark 3 For four cell vertices vp, vq, vr and vs around an edge e, only one or two vertices can be concave 

envelope vertices, and these two vertices must be in the adjacent cells. 

If vp is a concave envelope vertex, the tetrahedron Tsqe formed by vs, vq and the edge e can only intersect cp, cs 

and cq but not the cell cr (by Proposition 1). Therefore, vr cannot be a concave envelope vertex (by Remark 2). 

Also, if vq is a concave envelope vertex, vs cannot be a concave envelope vertex. 

Remark 4 if two vertices are concave envelope vertices, none of the triangles vp-vq-vr, vp-vr-vs, vp-vq-vs and vq-

vr-vs is enclosed by Ee. 
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If vp is a concave envelope vertex (or vr is a concave envelope vertex), the edge vs-vq is outside Ee; and the edge 

vp-vr is outside Ee when vq (or vs) is outside Ee. Figure 6 shows an example for that. If two vertices are concave 

envelope vertices, we have to further split then into four triangles by adding an edge vertex ve on e to ensure 

that Ee encloses all the triangles. 

 
Figure 6. An example with two concave envelope vertices: (left) location of vertices around edge e and (right) 

the triangulation by inserting an edge vertex ve. 

Analysis of Robust and Efficient Implementation:  Our convex/concave analysis based approach is more 

robust and efficient comparing the intersection-free approach presented in [1], which is based on the edge-

polygon intersection tests. In general, 4 to 6 tests of edge-triangle intersection are needed for the triangles 

around a sign change edge e. By the fastest algorithm of edge-triangle intersection test in literature (ref. [8]), 

each edge-triangle intersection test needs 3 cross-product and 3 (or 4) dot-products. Therefore, totally 18 

cross-product and 24 dot-products are required in the worst case. In our convex/concave analysis, we only 

need to detect whether the four vertices are concave envelope vertices. Specifically, when detecting whether 

a vertex vp is below the oriented triangle vs-vq-v+
e can be efficiently detected by checking if the scalar triple 

product below satisfies 

(vp – v+
e) · ((vs - v

+
e) × (vq - v+

e)) < 0. 

In the worst case, 8 cross-products and 8 dot-products are needed. When computing scalar triple product by 

determination, the computation can be further reduced. Moreover, when find vp is a concave envelope vertex, 

the detection of vr can be neglected (by Remark 3). The detection on vq and vs can be simplified in the same 

way. 

In the aspect of robustness, the detection based on edge-polygon intersection test is suffered by the 

extreme cases (e.g., the intersection occurs on the edge or vertex of the triangle). Obviously, our detection 

based on convex/concave analysis does not have such problem.  

 
Figure 7. Sharp feature preservation: (a) the result without applying the heuristic rules and (b) the result after 

applying the heuristic rules for sharp feature preservation. 
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4. Heuristic Rules for Sharp-Edge Preservation 

The position of a vertex vc in a cell c is determined by minimizing the Quadratic Error Function (QEF) defined 

by the Hermite samples on the grid edges of c. Although this can move vertices on the resultant mesh surface 

to a position on the sharp features, the subsequent triangulation on four vertices vp, vq, vr and vs around the 

edge e may destroy the sharp edges (see Fig.7(a) as an example). Some heuristic rules are developed in this 

section to preserve sharp-edges when triangulating the vertices vp, vq, vr and vs around the edge e with sign 

change.  

First of all, whether a vertex vc is on (or near) sharp feature is detected by the normal voting tensor 

constructed by the normal vectors of Hermite samples on the grid edges of the cell c. For all Hermite samples 

(pi,ni) (i=0,…,m), the normal voting tensor is 

Fn = ∑ ni · ni
T 

which is a 3 × 3 matrix. After computing the eigen-values (|λ1| ≥ |λ2| ≥ |λ3| ≥ 0) of the normal voting tensor Fn, 

if there are more than two non-zero eigne-values, the vertex vc is classified into a vertex near sharp features – 

named as sharp-feature vertex. Ideally, if vc is on a corner, none of the eigen-values will be zero; when vc is on 

a sharp edge, two eigen-values will be non-zero – see the analysis in [9].  To be robust, we consider |λ1|<ε as a 

zero eigne-value with ε = 0.15. According to observation, we conclude the following rules for triangulation 

four cell vertices vp, vq, vr and vs around an edge e with sign change.  

Rule 1a When triangulating four cell vertices vp, vq, vr and vs around an edge e with sign change, if only one 

vertex among them is sharp-feature vertex, the diagonal of triangulation must link to the sharp-feature vertex. 

Rule 1b When there are two sharp-feature vertices and they do not belong to adjacent cells, the diagonal of 

triangulation must link to these two sharp-feature vertices. 

Rule 1c When there are three sharp-feature vertices, the diagonal of triangulation must link those two sharp-

feature vertices that are not in the adjacent cells. 

Figure 8 shows an illustration for these rules. By applying these rules, sharp features are better preserved on 

the resultant mesh surfaces – Fig.7(b) shows an improved sharp edge on the resultant mesh surface. As the 

intersection-free triangulation has higher priority than preserving sharp features, these rules are only applied 

when none of the four cell vertices vp, vq, vr and vs are concave envelope vertices. Otherwise, the triangulation 

is determined by Proposition 3. 

 
Figure 8. Illustration for the three rules of sharp feature preservation, where the vertices in red color are 

sharp-feature vertices. 

 

4. Discussion 

The major drawback of this approach is that the sharp features are not well preserved after adding the 

constraints for enclosing the vertices and triangles in their corresponding envelope (especially when the 

resolution is low). For example the model in Fig.9, when not constraining the vertices and faces in their 

corresponding envelopes, the sharp features are well reconstructed even when the resolution is 128 x 128 x 
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128. After adding the intersection-free constraints, even in the resolution of 512 x 512 x 512 the thin-sharp-

features do still embed aliasing. Adaptive sampling and contouring can be employed to improve the quality of 

reconstructed shin-sharp features on the resultant mesh surfaces. 

 
Figure 9. The thin-sharp features are not well preserved by adding the intersection-free constraints: (top-row) 

without the intersection-free constraints and (bottom-row) with the intersection-free constraints. The results 

are shown in different resolutions (left-column) 128 x 128 x 128, (middle-column) 256 x 256 x 256, and (right-

column) 512 x 512 x 512. 
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