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Efficient Boundary Extraction of BSP Solids Based on
Clipping Operations
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Abstract—We present an efficient algorithm to extract the manifold surface that approximates the boundary of a solid represented
by a Binary Space Partition (BSP) tree. Our polygonization algorithm repeatedly performs clipping operations on volumetric cells
that correspond to a spatial convex partition and computes the boundary by traversing the connected cells. We use point-based
representations along with finite-precision arithmetic to improve the efficiency and generate the B-rep approximation of a BSP solid. The
core of our polygonization method is a novel clipping algorithm that uses a set of logical operations to make it resistant to degeneracies
resulting from limited precision of floating-point arithmetic. The overall BSP to B-rep conversion algorithm can accurately generate
boundaries with sharp and small features, and is faster than prior methods. At the end of this paper, we use this algorithm for a few
geometric processing applications including Boolean operations, model repair and mesh reconstruction.

Index Terms—BSP to B-rep conversion, efficient, clipping, approximation, solid modeling.

O
1 INTRODUCTION curve has a single component and is closed even when the
B NaRY Space partition (BSP) trees are regarded afentive objegt_ being cllpped is _not e_xactly_convex due to the limited
representation of polyhedra based on the use of spatial sub- Précision of floating-point arithmetic.

. All the operations are performed using finite-precision or

divisions. They were initially proposed for visibility computations > ; .
IEEE double precision arithmetic. As a result, our approach

[1], [2], and are used for Boolean operations [3]-[8], meshirepa ! : ' i )
[9], [10], model simplification [11], collision detection, etc. Most IS © t0 8 times faster than an implementation of prior method
current modeling and simulation systems (e.g., [12]-[14]) are [15] using exact arithmetic. For models of moderate size (e.g.,
based on boundary representation (B-rep) and use mesh-based B-1€S than 100k BSP nodes), we can perform the boundary
reps. In applications like Boolean operations [3]-[8] and mesh &xtraction in a few seconds, thereby making it feasible to
repair [9], [10], BSPs are used to perform geometric operations perform interactive edmn_g (e.g., solid modeling, mesh repair,
to compute a topologically-valid mesh representation of the final &nd surface reconstruction) on such models. Experimental
solid. Such algorithms usually represent intermediate solids using "€Sults show that our BSP> B-rep algorithm can generate
BSP trees. Therefore, it is important to desigicéent algorithms approximate B-rep models with very small geometric error
to compute the B-rep corresponding to the BSP tree (i.e., BSP (i.e., less than 18 on allltested examples). In terms of.overall
B-rep conversion or boundary extraction). performance, our algorlthm can compute the appro_xnmate B-
In this paper, we present a novel algorithm to perform clip- '€P from the BSP-tree (with 430k nodes) of a solid model

ping operations on convex polyhedra and use that formulation (With 100k triangles) in 10 seconds and has a memory
for efficient BSP=> B-rep conversion. The basic computation ~ °verhead smaller than 500MB.

involves clipping the boundary of convex polytopes with a plane. The rest of the paper is organized in the following manner. We
We extend the algorithm proposed by Bajaj and Pascucci [1Sjrvey related work in Section 2. Section 3 gives an overview of
and use a set of logical operations to ensure we always outfgfP=> B-rep extraction issues. The clipping operation and the B-
two objects with genus zero topology. Our clipping algorithm i§ep extraction algorithms are presented in Section 4. Experimental
resistant to degeneracies resulting from limited precision floatinggsults and discussion are given in Section 5, and Section 6
point arithmetic. As compared to prior BS® B-rep conversion highlights several applications of our algorithm.

algorithms, our approachfiers the following benefits.

. By repeatedly clipping the volumetric cells that correspond REeLATED \WWORK

to convex regions defined by node_s of a BSP tree, we are agidst of the earlier work related to BSPs in geometric modeling
to construct connected volumetric cells and two-manifol

bound ; 41 h q jalt with the problem of computing a BSP tree from a polygonal
oundary surfaces are extracted from these connected c Bresentation (ref. [2], [8], [16], [17]). The algorithm propdssy

as B-reps of BSP solids. A clipping aIgont_hm IS descrlped "Mibault and Naylor [8] is based on repeatedly selecting a planar
this paper to guarantge that the .tWO resultm_g volumetnc_ ce lygon on the surface of a given model as the clipping plane (i.e.,
have genus zero, WhICh. results ina stable_ Im_plementat!on ffle non-leaf node of the BSP tree) to separate other polygons into
BSP => B-rep conversion. During the clipping _operatlon,leﬂ and right half-spaces, where the tree itself is not well balanced.
our algorithm combinatorially ensures that the |ntersect|0§ajaj and Pascussi present a progressive conversion fronp B-re

to BSP tree for streaming geometric applications [16]. They use
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. . . . . . Fig. 2: A 2D illustration of the B-rep extraction from a BSP soli
Fig. 1: A highly noisy squirrel model having 20k triangles (top}h  (top). Bottom rows show the steps for constructing the connecte
many flipped triangles and self-intersections can be fixed badkid regions defined by the leaf-nodes on a BSP tree. The B-reprizotad
repair algorithm [10] plus our approach in about 26 second®r&h fom the boundary of these regions. The construction procedure
our BSP=> B-rep takes about 12 seconds. We use the model repgifjows the order of nodes visited on the BSP tree (displayed in
algorithm [10] to construct a BSP tree with 370k nodes (initlgd 5 (ed dashed curve) — has a linear complexity in terms of node

about 101k solid leaf-nodes) from the squirrel model. number. Reconstruction of the connectivity between convegions
is guaranteed by our novel clipping algorithm (see section 4).

a plane-based approach [3] to perform robust Boolean operations
on BSP solids by using finite-precision arithmetic. Their approa¢h000 Boolean operations on a model would take about three hours
assumes that the boundary of the model has been explicitly stoksd their approach and almost three days by CGAL [20]. The
in the non-leaf nodes of a BSP tree, and the final surface generagéifient CSG=> B-rep techniques in the literature (e.g., [21]-
by their algorithm corresponds to a polygonal soup withod24]) mainly focus on rendering the final boundary, and may not
the connectivity information. The reconstruction of connectivitfe able to generate a valid mesh representation. As a result, using
would take extra time andfert. Campen and Kobbelt [9] describeCSG tree as the intermediate representation for the BSB-rep
an algorithm to construct BSP trees locally in a few regions ¢nversion can be relatively slow.
a spatial subdivision, which can reduce the memory overheadThere is a long history of research on robust polygon clipping
and the computation cost. More discussions about the geometficcomputational geometry and solid modeling (e.g., [25], [26]).
predicates and the point-based vs. plane-based representationti@iever, reliable polygon clipping algorithms are notfsient
be found in [18]. for boundary extraction from BSP trees, as the numerical pruning
It is possible to convert a BSP tree into a CSG tree and ugre mainly arises from the inexact representation of a convex
CSG => B-rep conversion algorithms [6], [19] to compute thePOlyhedron generated after the clipping operations.
final boundary. Banerjee and Rossignac [6] present a methodSome of the widely used spatial subdivision representations in
to evaluate the B-rep of a CSG solid by first converting eadjeometric modeling and visualization are based on uniform grids
primitive in the CSG tree into a subtree that defines primitives @ Octrees. They are relatively simple to implement and there is ex-
terms of planar half-spaces and then computing the B-rep [18§nSive literature on computing a reliable polygonal approximation
The robustness of their approach is guaranteed by performifigthe resulting surface [27]-{31]. In contrast, BSP trees are more
Boolean operations of the “loose” primitives, whose exact dﬂ.elele in terms of representing (and reconstructing) solids with
mensions, positions and topology are not fixed. Based on thdie features, which include thin-shell like shapes with one small
loose primitives, the robustness of an algorithm can be decoupf@gnension, or thin-rope like shape with two small dimensions.
from numerical accuracy of the operations. We also use a simifa®" €xample, in Fig.3, the fine features are missed even when
notion of loose primitives in our approach. As opposed to CS¥e use very high resolution octrees. However, they are faithfully
trees, BSP trees are used in many other geometry procesdigenstructed in the B-rep models of BSP solids. Most recently,
applications besides Boolean operations. Figure 1 highlightst¢ problem of thin features in grid based approaches was also
mesh repair example, where the repaired solid represented byddressed by using the hybrid representation of grids and mesh
BSP tree is composed by 101k convex solids. One may wish $gfaces (see [32]).
use the pipeline of “BSR-> CSG => B-rep” as an alternative
of direct BSP=> B-rep conversion in order to use the existingg PROBLEM OF B-REP EXTRACTION
techniques of CSG> B-rep conversion. However, as reported irin this section, we give a brief overview of BSP trees and discuss
the recent work of Bernstein and Fussell [3], performing arourttie issues related to geometric computation in BSP B-rep
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Octree: 5123 Octree: 10243 Octree: 1536  Octree: 20483

' & Given BSP Tree Octree: 5123 Octree: 10243 Octree: 1536° | Octree: 20483
Dutch-ship Harp

Example Cell# [ Time (Sec.)] Peak Memory| Face # Cell# [ Time (Sec.)] Memory [ Face #
Given Model - - - 15,812 - - - 10,652
BSP Tree* 74,955 4.751 168 MB 47,076 36,413 4.438 186 MB 51,948
Octree: 513 1,184,192 2.237 265 MB 147,532 | 1,238,464 1.359 142 MB 81,520
Octree: 1022 | 2,721,728 6.225 579 MB 305,218 | 4,416,128 5.071 441 MB 278,618
Octree: 1538 | 4,662,016 12.351 1,024 MB 469,824 | 8,750,976 11.158 1,026 MB | 586,634
Octree: 2048 | 7,144,064 21.079 1,543 MB 621,434 | 12,810,368 19.783 1,572 MB | 1,033,754

Fig. 3: The mesh surfaces reconstructed from BSP tree by our mateasbmpared with the results contoured from octrees on twehipearks

— the Dutch-ship and the harp. We uséefient resolutions for the octree and compare the performaribetive BSP-tree. Our BSP> B-rep
conversion algorithm can successfully reconstruct small featwieigh may be dficult even with a high resolution octree. Moreover, the
use of BSP tree results in a B-rep with fewer triangles and hasrlounning time and memory overhead than octrees, though eudses
algorithms are easier to implement. In this case, the mesh surfamestaected from octree is generated based on the Dual Comgo(IDIC)
algorithm [30].

conversion. BSP solid. The connectivity of the resultant polygonal model is
computed by matching the coordinates between vertices. However,
3.1 BSP Trees this matching step can result in two problems (ref. [33], [34]):

A BSP solid is represented by a binary tree, where each non- First, repeated intersection computations result in accumu-
leaf node corresponds to a plane that partitions the space into lated round-& errors in the vertex coordinates. Adferent
two half-spaces. Each BSP node represents a convex region that fragments that share a vertsxare generated by performing
corresponds to the intersection of all half-spaces on the path intersection computations on afigirent sequence of planes,
from the tree’s root to that node. The leaf-nodes are labeled as these computations can result in varying routil-errors
either solid (inblack) or empty (inwhite) according to whether corresponding to the vertex.

their corresponding convex regions are part of the solid or note Second, epsilon error based predicates are typically used
(see Fig.2). The connectivity between these convex regions on to detect coincident points, i.e. two points are identified as
a BSP tree is not stored explicitly in the data structure, which ~ coincident points if the Euclidean distance between them
makes it dfficult to robustly extract the connectivity of B-reps as  is less thane, a small constant. However, the use of such
reconstructing the connectivity requires making decisions based predicates can 1) mismatch theffdrent coordinates oY/

on geometric tests (i.e., predicates). Specifically, for two convex generated from dierent fragments and this could result in

regions corresponding to two leaf-nodes which havffedint cracks in the B-rep, or 2) classify topologically separated
parents, the detection of whether their boundary surfaces are vertices as coincident due to inaccuracies — this can result in
connected is fiected by round4 errors. A node on a BSP trée non-manifold entities as with vertex clustering based mesh

is defined awalid if its plane separates the corresponding convex Simplification algorithms (e.g., [35]).

region into two convex regions with nonzero volume. We assunmherefore, we investigate a boundary surface extraction algorithm

that all the nodes on a given BSP tree are definedakid. that generates global topology information as part of the polygo-
nization.

3.2 Polygonization algorithms

Thibault and Naylor [8], [17] present an approach to transmit-2-1 Polygonization with topology information

the polygon of a splitting plane node in the BSP tree to thEhe boundary extraction algorithm presented by Comba and
descendant nodes. The convex polygon corresponding to a nddgylor [36] first generates polygonal faces for all solid leaf-
is clipped into smaller convex polygons (called fragments inodes of a BSP tree. After that, their algorithm relies on the non-
[9]) by the half-spaces defined on the nodes of its subtree. rifbust ‘glue’ operator to compute a correct boundary surfaga fro
a fragment lies between the inside cell and the outside cqbiplygonal meshes with overlapped faces.

it corresponds to a polygon on the boundary surface of theBajaj et al. [15], [16] use a non-manifold data structure to store
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the convex polytopes and their neighbor information, where ea
polytope is generated while constructing the BSP from a B-re gé
Each polytope in the data structure corresponds to a leaf-node /p ! L !

the BSP tree, and is stored as a cell. The boundary surface car
computed by collecting the boundary faces between the solid a %\f

the empty polytopes. Nevertheless, robust computation of the
cells with the neighboring information can be challenging due 1
finite-precision arithmetic. c

3.2.2 Problems of polyhedron clipping i

b
According to the convex clipping algorithm used in [15], [16],
the polytopes and the adjacency information between them daig. 4: (Left) Examples of some complex topologies that can be
be computed recursively by clipping the convex polyhedra. @enerated on the intersection curve between a pfaned a nearly-
consistent classification technique is introduced in [15] to degPnvex cell: (top) separate loops, (middle) loops joined at glsin
with numerical inaccuracies: however, the robustness of tHi§int and (bottom) nested loops. Since the vertices are gedebyt

. . . . intersecting dferent planes, their coordinates may include varying
technique is based on the assumption that the input polyhedror}ggnd_df errors. This can result in a ‘terrain’ like shape (right) in a

be clipped is_ exactly convex, which is n,OF alway§ Frue V\{hen tr]Scalized region of the boundary. Using a plane to cut therdtar
vertex coordinates are represented by finite-precision arithmetigq s to the intersection curves having complex topology.

Ideally, performing the clipping operation on a convex polyhe-
dronC by a planeP should result in two convex polyhed&t and
C~ (wheneverP intersect<C). However, when clipping operations ysing finite-precision arithmetic. We start with a polyhed®n
are performed using finite-precision arithmetic and point-baseg.g., a rectangular box) that is larger than the bounding box of
representations, the resultant polyhe@aand C~ may actually the solidH represented by the BSP trde,Because of the round-
be non-convex due to roundfcerrors in the coordinates of the off error, using the bounding box as the initial polyhed@®may
new vertices. More specifically, the truncated coordinates of th@t out some small volumes ¢ near the boundary of. The
vertices make them not lie “exactly” on the edges (and faces) pbunding box ofH can be given by the users as an input or
C. computed from the vertices of convex-hulls according to the solid

When a convex polyhedron is separated by a plane into tMgaf-nodes ofl", where the convex-hulls defined by a sequence
polyhedra, the intersection curve between the convex polyhedrgnhalf-spaces can be determined by the Quick-Hull algorithm
and the plane corresponds to a simple intersection curve tha{3g]. In our BSP=> B-rep algorithm, we recursively traverse
homeomorphic to a circle. Nevertheless, when clipping a nearlire BSP tree and cli© into smaller cells based on the nodes
convex cell, the intersection curve may have a more complicatgfl I. The resulting cells corresponding to the solid leaf-nodes
topology, e.g., separate loops, loops joining at a single poirtre classified asolid, and the cells assigned to the empty leaf-
or nested loops. Such a clipping operation may generate meigdes are classified @spty. The boundary surface d is then
than two polyhedra, which is inconsistent with the operatiogxtracted from the faces between the solid and empty cells. Note
of clipping a convex volume defined by a node of the BSkat we use the concept of “loose” primitives [6] here. It is not
tree. Figure 4 shows some examples of intersection curves witBcessary for all the vertices belonging to a face to be coplanar;
complex topologies. Although such cases may only occur in smadl order to deal with roundb errors, the non-planar faces are
or localized regions, inappropriate topology manipulation on thesgangulated for intermediate geometric computation. Figure 2
regions can easily make the program of a clipping algorithm cragives a 2D illustration of the algorithm. Pseudo-code of the
when the clipping algorithm makes assumptions on the inpgbundary extraction algorithm is giveRrocedure 1 BSPtoBrep
model's topology (e.g., genus zero). Without using a carefullg based on the cell clipping procedure (see section 4.2) and a non-
designed method (like our clipping algorithm) to clip degenerai@anifold data structure used to store the neighboring information
convex cells which are in fact non-convex, the clipping resultgetween the cells (to be described in section 4.4).
which are the input for further clipping, could result in 1) a two-
m.amfold polygonal model (but may not be genus zero), 2) a quf% Clipping algorithm
with several separated components, or 3) even a non-manifol
model. The consistent classification technique proposed by Bafziven a cellC with the vertex coordinates stored by finite-
and Pascussi [15] does not solve the stability problem of clippirRjecision representation, we present a novel clipping algorithm
degenerate convex cells. An approach to make their consist#tnd finite-precision arithmetic. The clipping operation guaran-
classification technique work is to choose the strategy of plan€€s that the separating curve has a simple topology and ensures

based representation plus exact predicates; however, this carflifegeneration of two genus zero cells;, andC™. C* denotes
slower in practice. the cell above the clipping plarfe andC- is below. Our clipping

algorithm is based on performing logical operations; therefore,
it is resistant to degeneracies caused by evaluating numerical

predicates with limited precision. The algorithm consists of three

This section presents the details of our boundary extractiQuns: eqge splitting, face clipping, and cell separation (see Fig.5).
algorithm (i.e., BSP=> B-rep) and the clipping operation.

4 BOUNDARY EXTRACTION

4.2.1 Edge splitting

4.1 Overview For every vertexV on a given cellC, we check whether it is
Our BSP => B-rep algorithm is built on the earlier work of above (assigned as”), below (set as~’) or on (denoted by the
Bajaj and Pascussi [15]. However, we develop a novel clippirftag ‘0’) the planeP. We compute the signed distandg from V
algorithm to avoid the numerical accuracy problems of [15] wheto the planeP. The vertexV is classified as
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0

Fig. 5: Three steps of our clipping algorithm: 1) edge splittigy face clipping and 3) cell separation. The vertices in nedrew vertices
introduced by edge splitting, and the yellow ones are existargjices that are classified as vertices ‘on’ the clipping @lasew algorithms
are developed for steps 2 and 3 to guarantee the topology a&ndutinber of resulting cells, where a cell in yellow is above thppahg
plane and a blue one is below the plane.

Procedure 1 BSPtoBRep (BSP treE) new vertexV, is inserted at the position of its intersecting point at
Require: the bounding boxB of T is known P to split E into two edges (e.g., the red points shown in Fig.5).
Goal: generate the B-rep df as a mesh surfackly V; is assigned the label ‘0’. When a new vertex is introduced to
1: Compute a polyhedroR that is slightly larger tharB; split an edgeE, the topology of all faces linked t& is updated
2: StoreP as a cellC in the complex-based non-manifold dataaccordingly. After this step, the cell still has genus zero.
structure;

3: Call CellConstructionC, I'rt); {".rt" is the root of I'; this 422 Face clipping
procedure constructs a complex of connected ells

4: for all facesF in the complex of cellslo

5: if the adjacent cells above and beléware with diferent

The round-& errors corresponding to the positions of vertices
could lead to the following problems ab: 1) the vertices ofC
do not lie on their convex hull, 2) the vertices of a fageare

statusthen : . .
6 F is defined as a boundary face: not coplanar, or 3) t.he vert!ces &f do not lie on their co.nvex
{a polygonal face betweesolid and empty cells) hull. As a result, it is possible that more than two vertices on
7-  end if a faceF e C are flagged as ‘0’ after the edge splitting step is
8- end for applied toC. To address this, we need a scheme to split the face

9: Generate a meshly consisting of all the boundary faces anoF simply into F+. andF- (i.e., "above’ and ‘below trle clipping
the adjacent vertices; planeP), and build a boundary edge betweeh and F~. For the

degenerate cases having more than two ‘0’ vertices, a face

10: return My; B . .
with no vertex having+’ flag will be constructed to prevent the
_ flooding algorithm (in Section 4.2.3) from propagating the region
Procedure 2 CellConstruction (a celC, a BSP nodey) ‘below’ the clipping plane intcF+.
Require: C is stored in the data structure that can fetch its First, we find two vertice¥/s andV, on F that are on dferent
neighbors in constant time sides of the clipping plane and farthest away frBmif V; is not

Goal:_ generate a set of cells corre_sponding tg _the_ Ieaf-ners Ohdsigned with a+' flag or if V; is not identified as" by the
given BSP tree nodg, along with connectivity information  edge splitting step, we ignore the clipping®fas its vertices are
1: Assign the status of based on the status of {empty, solid  not classified as being onftrent sides of the clipping plar

or ambiguo_us} Starting fromV;, we search the vertices on the boundary of
2: if y is ambiguous then F in a clockwise manner until we find a vert&d with flag ‘0",
3:  Clip C by y.plinto two cellsC* andC~; {*.pl" is the plane  Thjs vertex is considered as the vertxering the region below
defined on a node of BSP tree the clipping plané®. Similarly, walking counter-clockwise starting
4:  Call CellConstructionC*, y.leftChild); from V;, the first vertexV; with flag ‘0" is labeled as the vertex
5. Call CellConstructiong™, y.rightChild); leaving the region below the clipping plarfe. The search orders
6: end if are illustrated in the middle of Fig.5 by the arrows. Note that the
7: return; F~ face constructed in this way will only contair-" and two
consecutive ‘0’ vertices.
Lastly, an edge linking/e andV, is constructed to spliF into
1) above P if dv > ¢, two new facesF* and F~. Note that none of the operations in
2) below P whendy < -, this computation involve the evaluation of numerical predicate.
3) on the planeP otherwise. Therefore, the robustness of face clipping is not susceptible to

The value ofe is chosen by the user. For exampde; 5x10°is  numerical inaccuracies. Again, the newly constructed faces are

selected when the computations are performed using IEEE doulslese primitives as described in [6], and the new €lhas genus

precision arithmetic. It should be noted that using a smsfllits a zero. The proof is straightforward. According to the formula of

higher number of edges into very short segments, whereas a lakg#er characteristic, the above face clipping operations add a new

value ofe will result in a high number of existing vertices beingedge and split one face into two — both the edge nuntbEr

classified as ‘on’ the plan® (e.g., the yellow point in Fig.5). and the face number.F of the cell increase one, which will not

Note that diferente will lead to different shape approximation change the genu& = 1- (n.V - n.E + n.F)/2.

errors in the models resulting from our approach. Thus, we tendThe above algorithm works well when the vertices Fofare

to select a value that balances between the overall running tiseparated by ‘0’ vertices into one simply connectetddroup and

and accuracy (e.ge = 5x 10719). one simply connected-* group (as shown in Fig.6(a)). However,
For every edgeE on C, if there is one endpoint above andin some extreme case, more than one groups+of(or ‘-’)

another below the clipping plane based on our classification,vartices are generated due to numerical error. For such cases, we
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z 0 X Region Flooding

0 0
(a) (b) 0

Fig. 6: The illustration of face clipping: (a) the ‘0’ vertiselassifies
‘+" and ‘-’ vertices into two simple groups, and (b) a complex cas
with more than one groups of* and ‘-’ vertices that can be ‘clipped’
by introducing a new vertex (the yellow dot) at the centelFo&nd
creating more than one edges (the red dash lines).

Procedure 3 RegionFlooding (a celC’)
Require: the vertices ofC’ has been classified as’; ‘-’ or ‘0’
Goal: compute the faces o8 ‘below’ the clipping plane
1: Find a seed vertex based ®geq = arg min,.c dy;
2: Randomly select a face incident Yy as Feeq, and assign
the ‘~’ flag t0 Feeeq;
3: Initialize a set of facesS = {Feed);

=

4: repeat - | Region Processing

5. for all facesF € S do ) . . . )
Fig. 7: Region flooding and region processing are performedgaren

6 Initialize an em_pty_ set of facesy'; that the intersection curve homeomorphic to a circle, whichrayuaes

! for. all facesF, .|nC|dent.to F_ by‘ a’n edgeE do that the resultant cells generated by our clipping algoritiave genus

8: if any endpoints o is with ‘-’ flag then zero topology.

9: if Feis NOT with ‘-’ flag then

10: InsertF into S';

1L: enq if . L (e.g., two regions shown in Fig.7) — each isolated region is
12: Fe is assigned with=" flag; circled by a boundary with one simple loop (i.e., no self-
13 end if intersection);

14: end for 2) Select the regiofiRya With the maximal areaand assign
15:  end for

all the faces in this region with the flag"

16:  ReplaceS by S"; 3) Assign -’ to all of the remaining faces.

17: until S is empty )
18: return; Based on this method, the curgethat separates the-* and the
‘~’ regions is homeomorphic to a circle — the property is held even
if there are round- errors. The curve is in fact the boundary of
the largest region not traversed by the flooding algorithm. In the
second step of region processing, selecting any other separated
region will also give a result with two nearly-convex cells. We
select the region with maximal area according to the heuristic
4.2.3 Cell separation such that the ‘abo_ve’ status of such a region is less likely to be
The last step of iopi lqorith ¢ t.aﬁected by numerical errors.

p of our clipping algorithm generates a separating
curve ¢ that is homeomorphic to a circle, which subdivides th% In somg degenerate case_s caused .by r_odﬂhdFmr, there may
given cell C’ into two open surfaced* (‘above’ the clipping € no reglon fpund by Fhe first step hl.ghl.lghted above. However,
planeP) and M- (below’ P) with disk-like topology, where’ = as dgscrlbed in Definition 2, every clipping plane gt.ener.ated by
M* U M-. The holes orM* and M- are then filled by a face to a valid node of the BSP tree ,must separate the region into two
create two cells. The new face and cells are all loose primitiv@?rts’ the clipping on the cell ShQUId be er_lforceo_l as follpws.
(ref. [6]). Among all the faces, the face with a maximal signed-distance

We use a region flooding algorithm to generate the separ om Its center toP is enforced to be ‘above’ the clipping plane

ing curve ¢. First, we find a seed verte¥s ey With Veeq = y assigning the+ fl.ag. )

arg minec dv. Then, we randomly select a face incidenitgy to The surface ofC” is separated by the curwginto two open

serve as the seed faBe.g. The algorithm starts froffee, floods MeSh surfaced!™ (composed of all+* faces) andvi~ (composed

across the edges between faces, and stops at the edges not ‘befb@!l ‘— faces). As the topology of is simple, a loose facg,

P (i.e., with no endpoint flagged as ‘). All the faces traversed bySiNgs @s the boundary is constructed to sepafaieto C* and

the flooding algorithm are assigned the ‘- flag. Pseudo-code &f - Note that we only construct one face for the two convex

the flooding algorithm is presented mocedure RegionFlooding.  PolyhedraC’ = M"UF, andC™ = M~ UF,, which can be stored
The above flooding algorithm makes it possible to classify tH8 the non-manifold data structure presented in Section 4.4.

surface ofC’ into more than two disjoint regions. We further _ o _

classify the regions into two separated surface areas with a simglé- To compute the area, a “loose” facet is temporarily triaag into

boundary by the followinaeqion processing steps set of triangles by introducing a new vertex at the averaggtipn
ry by geg processing ps. of its existing vertices and constructing triangles cotingcthe existing

1) Identify the isolated regions with faces not assigned-as ‘ boundary edges with the newly added vertex.

introduce a new ‘0’ vertex in the center &f and create more
than one edges to separate thesednd ‘-’ vertices (see the
illustration in Fig.6(b)).
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4.3 Analysis TABLE 2: Statistics of Peak Memory Usage
The properties of our algorithm are analyzed as follows. BSP node Peak Memory Usage
Model Number | Exact Approach] Our Method

Remark  The clipping algorithm for a genus zero cé@lwith Spider 69k 140 MB 165 MB
a planeP only generates cells with genus zero topology. Turtle 54k 117 MB 141 MB
. |, David-egea 114k 347 MB 346 MB
fr”oof.l :’he topology of the resultant cells is guaranteed by the Oil-rig 127K 359 MB 406 MB
ollowing factors. Dutch-ship 75k 171 MB 202 MB
« The input cellC is two-manifold and has genus zero. Thus, Harp 73k 185 MB 182 MB
the cellC’ computed after edge splitting and face clipping is| Femurn Truss | 101k 166 MB 197 MB
still a two-manifold and has genus zero. Pig \ Helix 176k 435 MB 445 MB
. The boundary of each processed region has a simple topology Bunny 163k 423 MB 428 MB

homeomorphic to a circle — this property is satisfied by our

method of cell separation. Therefore, the separating curve

¢ also has a simple topology. That is to say, the commop, More implementation details
boundary betweeM* and M~ is a simple curve.

Without loss of generality, let us assume thdt™ has n.V*  The data structure employed in our approach is introduced below.
vertices,n.E* edges anch.F* faces, whileM~ hasn.V-, nE~ The whole model has four lists: cell list, face list, edge list,
andn.F~ vertices, edges and faces respectively. The formula ghd vertex list. The most important issue in the representation
Euler characteristic gives is the information about how an entity in dimensidris shared
3 _ by neighboring entities in one dimension higher as well as the
(V" +nV —+n.VS) -~ (ME"+nE" -nE?) orientations of these entities. In our data structure for BSP
+(nFT+nF)-2=-2G, B-rep conversion, an edge entity consists of two links pointing to
whereG is the genus of’ composed byM* and M-, andn.v® its starting and ending vertices (e.¥3 andV, linked by E; in
and n.ES correspond to the number of shared vertices and eddeig.8). At every vertex/, the list of adjacent edges is also stored.
betweenM* and M~. Again, based on the Euler characteristicA face entity F contains a list of edges forming its boundary in
the genusG* of C* is G* = 1— (n.V* —n.E* + (.F* +1))/2, and the counter-clockwise order. Moreover, the direction of an edge in
similarly the genu$G~ of C" isG™ =1-(n.V--n.E-+ (n.F- + the face is specified by a sign of"or ‘' —’, and the links pointing
1))/2, where the additional face comes from the filled fage to the faces adjacent to an edgeare also stored in a face-link list
Adding G* andG~ together give$s = G* + G~ — (n.ES—n.v9)/2. of E. A cell C is a closed two-manifold mesh surface composed

The topology of the intersecting curyeis simple, andn.ES = by loose faces. The orientation of a facedris recorded as+’ if
n.Vs. This implies that its normal is pointing outwards and*for inwards. In addition, a
faceF also stores the information about the cells above and below
G=G"+G =0. asCg+ andCe-, respectively. Note that the orientations of newly

Og]reated entities are decided by topological information stored in
the data structure and are ndtexted by the roundberrors.

By using this data structure during an edge split, the edge list

As long as the neighboring information between the nearly-convex all these faces must be updated. When clipping a facthe
cells is stored in a non-manifold data structure (which will beells Ce+ and Ce- located on both sides df must also update
detailed in section 4.4), the boundary surface of a solid defin8eeir face list although the polyhedron clipping is only performed
by the union of those solid cells can be obtained. Specificallgn one side of-. The updating operations of this data structure
the boundary surface consists of the loose faces between ktgye the complexity linear to the adjacency — according to our
neighboring solid and empty cells. No numerical predicate Bxperimental tests, which is always less than 20. Processing the
involved in the surface extraction (i.e., Step 9 Bfocedure complex cells in this way canffectively avoid the face gluing
BSPtoBRep). step (as discussed in [36]). The clipping algorithm presented in

For a given BSP solicH, it is possible that the topology the section 4.2 can be easily implemented with the help of this
of surfaceMy generated by our BSP> B-rep algorithm may data structure. Our current version of this data structure may have
be diferent from the boundary surface ®i. However, our Some redundant information, a more compact one can be used
experimental results indicate that the Haustldistance between [38].
My and the exact solution is typically less tharr®.0 The boundary mesh surface fét is extracted from the faces

Notice that, the theoretical error bounds on the topology armbtween the solid and the empty cells, called boundary faces.
geometric representation of the resulting B-rep depend on severak vertices and edges adjacent to the boundary faces are also
factors including the number of times the clipping operationsopied to the resultant mes¥l,. When an edgé is shared by
are performed, the orientation of clipping planes and the size ioterlaced empty and solid cells after the comprehensive polyhe-
models relative to the precision of floating-point arithmetic. Fadron clipping, E will become a non-manifold entity (e.gg; in
example, if a polytope is defined using many planes that are nedlfig.8). Similarly, non-manifold verte¥ will be generated when
parallel to each other, the clipping operations performed by oits adjacent cells are interlaced as empty and solid. According
algorithm could result in a shape that may have a large Haffsddo our formulation of nearly-convex cells, there is another non-
distance due to roundfioerrors. However, such extreme cases anmanifold case that some cell may only have two faces. However,
rare in practice and do not occur if we select the clipping plarel above non-manifold entities can be easily eliminated during
defined in a BSP node perpendicular to the plane used in its param@sh construction, which is a separate problem and has been
node during the construction of BSP trees. addressed in prior work (e.g., [39], [40] and [41]).

As the genus cannot be negative for a two-manifold polyhedr
we getG* =G~ =0.
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TABLE 1: Comparison with an Exact Implementation Using Plane-thd®epresentation and Exact Predicates

BSP node Total Time (sec.) Region Flooding Time on Orient. Predicate (sec.)
Model Number | Exact Approach | Our Method Time (sec.) Filtered Exact Predicat¢ Our Method
Spider 69k (68) 18.3 3.74 (x4.9) 0.389 14.029 0.079 &178)
Turtle 54k (34) 14.2 2.62 x5.4) 0.391 10.929 0.048 (228)
David-egea 114k (43) 32.3 4.38 (x7.4) 0.871 25.799 0.093 &277)
Oil-rig 127k (57) 33.3 6.08 x5.5) 0.880 26.937 0.096 280)
Dutch-ship 75k (70) 22.8 3.45 (x6.6) 0.554 18.225 0.059 &308)
Harp 73k (54) 19.6 3.98 x4.9) 0.517 15.227 0.061 249)
Femurn Truss | 101k (38) 25.8 3.14 (8.2) 0.682 20.559 0.083 «247)
Pig \ Helix 176k (61) 52.9 6.86 x7.7) 1.35 42.615 0.133 &320)
Bunny 163k (266) 60.4 10.6 (x5.7) 1.682 46.447 0.046 (1,010)

4 The numbers shown in the bracket of the second column are thesdefothe BSP trees.

T The exact approach is based on [15] and is improved by using-plased representation and the single stage filtered exact gteslic

¥ Our method uses the standard IEEE double precision arithmetiogegdgn current processors.

* The time spent in the region flooding step of our algorithm to enbaobustness takes only less than 25% of the total running time.

Fig. 11: The procedure of generating the resultant surfage BBoolean diference operation (Pig Helix). Smooth and sharp features are
successfully reconstructed.

i

=7 N

=

I
i
V?";

S

V/ Fig. 10: Self-intersection removal on the cow model.
G 8

Fig. 8: An example of four cell€;, C,, C3 andC,4 sharing the same
edgeE; and the same two verticd§ andV,, where the edg&; will
be non-manifold ifC; andC3; are empty andC, andC, are solid.

5 EXPERIMENTAL REsuLTS AND DiscussioN

We have implemented our algorithm in+& and used it for
different geometric processing applications. All the performance
results shown in this paper are generated on a PC with Intel Core
2 Quad CPU Q6600 2.4GHz and 4GB RAM running the 32-bit
Windows Vista operating system.

In order to demonstrate the performance advantage of our
approach, we implemented an exact BSP B-rep algorithm
based on [15]. The various components of the exact boundary
algorithm are:

. Since using exact arithmetic to represent the coordinates
of vertices on a complex model results in a high memory
overhead, we use plane-based representations [3], [9].

. The boundary surface is extracted from the set of convex
polytopes generated and stored by the algorithm proposed
by Bajaj and Pascussi [15].

Fig. 9: Models used in comparing our method with an exact imple- « The orientation predicate is implemented by following the

mentation using plane-based representation. method of [3], which is similar to the method proposed by

Shewchuk [42] but with a single stage filter due to simplicity.
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More specifically, when the absolute value of determinant is TABLE 3: Performance of Our Boolean Computation

less than 10'°, the exact arithmetic routine provided by the Models Femurn Truss|  Pig \ Helix

GMP library [43] is used. Face # 5.00k & 39.3k | 1.28k & 74.0k
Table 1 shows the comparison of performance of our B-rep BSP Construction]  0.432 sec. 0.181 sec.
extraction algorithm with that of exact B-rep extraction algorithm Boolean Operation 1.24 sec. 1.50 sec.
highlighted above. In practice, we observe that our algorithm is B-rep Extraction 3.14 sec. 6.86 sec.
5 to 8 times faster, and has a speed that can be employed in ACIS R15 26.38 sec. 48.10 sec.
the interactive applications (i.e., less than 5 seconds on moderate CGAL Failed 64.23 sec.

size models). To provide a fair comparison, we used IEEE double
precision arithmetic to convert the plane-based representation into
the point-based representation on the resultant mesh surfaegmcked. Among all models shown in Table 1, only the Dutch-
This approach may not be robust when the three planes usediip and the Harp models have Haustalistances greater than
define the position of a vertex are nearly parallel to each otheQ (i.e., 3x 10 and 1x 10°® respectively). For the averagé-
A more robust way is to use exact arithmetic Sngular Value norm, all models have errors less tharr®LNote that 10° is the
Decomposition (SVD), which will take more time, as compared tominimal error that can be reported by the Metro tool. This study
the timings reported in Table 1. Table 2 reports the peak memagigout shape approximation error shows that our approach can
usage of both the exact approach and our method. We see ffeionstruct the two-manifold boundary surfaces very accurately.
memory costs are similar. This is because, when models are stored
by plane-based representations [3], [9], the exact arithmetic is oiymitations
temporarily used in computation which does not take too muchAlthough the experiments show that the results generated by our
memory. BSP => B-rep algorithm are accurate, the shape approximation
We use 64 bits (i.e., standard double precision variables) fBfror is actually dected by several issues.
the codficients in our implementation of exact BS® B-rep . The source of the shape approximation error is the inaccurate
algorithm since our point-based approach only uses 64 bits for positions computed for the newly inserted vertices as well as
the coordinates of vertices. However, the orientation predicates the epsilon-tweaking based point orientation predicate. Both
based on plane-based representation require more bits to compute come from the edge splitting step. Positional errors depend on
an exact answer (as mentioned in [42]). When the required the orientation of the clipping plane compared to the direction
intermediate computation exceeds the hardware limit (e.g. 64 bits), of line segments to be clipped. Analysis shows that if they are
the computation becomes expensive. This is the major reason nearly parallel to each other, it tends to generate larger round-
why our approach using only IEEE double precision arithmetic  off errors. In short, it depends on how the clipping planes are
can generate the results much quickly. The running time for 3D defined during the BSP tree construction. A good heuristic
orientation predicates shown in Table 1 demonstrate the speedups. is to select a clipping plane which is nearly perpendicular to
Although the speedups depend on the number of bits employed the previous clipping plane (see [45]).
to represent the input, using too few bits to represent the input. After edge splitting, the operations in the face clipping and
BSP tree may not work; and there is no consensus on how the cell separation steps may slightly amplify the errors while
many bits are really needed to represent the input. Moreover, enforcing the topology of clipping results.
during our experimental tests, when 32 bits are used to represent Lastly, as the resultant inexact cells will be further clipped
the codficients of plane equations on an input BSP tree, our into smaller ones, errors embedded on the cells can be further
implementation of the exact approach runs faster than given a propagated. Therefore, the final error also depends on the
64 bits input. Finally, the time spent in the region flooding step  depth of the given BSP tree. In short, a much deeper BSP
of our clipping algorithm is also reported in Table 1. This part tree will likely lead to higher shape approximation error.

takes less than 25% of the total running time on all the exampleSn the other hand, although the clipping algorithm is resistant to
Generally, plane-based representations [3] together with ex@glgeneracies, the BSP> B-rep algorithm does not have theo-
predicates have an expensive overhead in terms of running tii&ical error bounds on its results. However, the geometric error
To reduce the cost, Campen and Kobbelt [9] only compute B&Buld be small (e.g., less than £0n our examples) if we tend
trees locally in a few regions where intersections occur. In ordg§ select the clipping plane defined in a BSP node perpendicular
to compare our approach with theirs, we tested the intersectignthe plane used in its parent node when constructing BSP trees.
removal implementation presented in section 6.3 on the cow mod@|e resulting mesh surfadd,, generated by our algorithm is a

with 6K faces, as used in [9]. A similar result is computed by oujood approximation of the real boundary surféte of H.
algorithm (see Fig.10) in 2.7s, while the authors of [9] reported

that their algorithm takes 1.2s on the same model but using & M@fe A ppyicaTions

powerful PC. The main reason our method takes longer is beca S%his section, we highlight several applications of this BSP
of the iterative computation performed on all the cells of the BS N . . .
-rep algorithm, including Boolean operations, model repair and

tree to determine their solidity by using [10]. More specificallyh1esh reconstruction

when using Murali and Funkhouser’s algorithm [10] for model ’

repair, the entire BSP solid must be converted into connected )

volumetric cells that lead to much higher memory requiremenfsl Boolean operations

and more time is spent on memory management. Our computation of Boolean operations is based on the approach

The shape approximation errors between the models generadedcribed in [4], where linear programming is used to check

by our BSP=> B-rep approach and the models produced by ththe feasibility of regions represented by leaf-nodes of the BSP
exact method are measured — using the publicly available Metree. The resultant BSP tree corresponding to the Booleans is
tool [44]. Both the averag&?-norm and the Hausdfirdistance obtained by removing all the infeasible regions, and the B-rep
with respect to the diagonal length of models’ bounding boxes aie generated by our extraction method. The first example shown
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Fig. 12: Our result of Boolean operation on the truss model aad th

femur model. The small and sharp features are preserved by &ifg- 13: Self-intersection removal on the harp model (previousl
polygonization algorithm. The model is very complex in terms o$hown in Fig.3): (left) the problematic regions correspondmgmall
shape and topology, however it still can be successfully recantsttu features — the strings, and (right) our repaired result whieisgmves
by our method. the small features.

TABLE 4: Statistics of Model Repair
[ Models [ Fig. [ Input ## [ Time (sec.)[ Result 4|

Dutch-ship 3 15,812 491 45,984
Harp 3 10,652 4.67 45,853
Spider 9 4,999 4.68 36,317
Turtle 9 5,499 3.57 29,386
David-egea| 9 16,532 6.27 62,521
Cow 10 5,804 2.86 25,988
Oil-rig 15 | 45,326 7.90 83,672

in Fig.12 comes from the tissue engineering. The goal is to _ _ _
generate the s@@ld of a femur by performing an intersectionFig- 14: Example of self-intersection removal. From left to tighe
operation between a truss model and the femur. The seccﬂhﬂen model with self-intersection, inside of the given modeg th

. . ] rocessed result generated by [10] with interlaced solid and yempt
example corresponds to subtracting a helix from a pig model, aﬁﬁ%"& and the final model generated by our algorithm.

Fig.11 shows the surface generation result. We have also compare
the performance of our algorithm with ACIS R15 [14] and CGAL
[20], where the CGAL implementation uses the kernel with exact . -
predicates and exact constructions. The performance in Tableuséj_ally ha_ve the p_robler_n of non-mamfold entities, holes, as well
shows that our algorithm is mordfieient and stable. as inconsistent orientations (see Fig.16). These models can be

repaired into closed two-manifold mesh surfaces by our approach.

6.2 Model repair

BSP trees can be used for model repair [9], [10]. After construct- CoNcLusioNs AND FUTURE WoRK

ing the connected complex cells, the algorithm described in [10 . — . .
can be adopted to assign the solidity of each cell in terms e present anfBcient polygonization algorithm for solids repre-

global optimization. However, when this method is applied to 3ente_d using BSP trees. The main contribution i’_s a novel clipping
self-intersecting closed mesh surface, a solid with interlaced soﬁ!:gor'thm for degenerate convex polyhedra using IEEE double

and empty shells will be generated (see the middle of Fig.lﬁreds_ion a_rithmetic. In our algorithm, the_ clippin_g operations
Given such a solid with interlaced shells, we apply a floodin ombinatorially ensure the output of two objects with genus zero

step to the connected cells similar to [9]. The inside of the mod&P°09y when using standard IEEE double precision arithmetic

is defined as the volume that is not reachable from infinity (i.e., (N® Penefit of hardware support is retained. Based on this novel

the unbounded cells) without crossing the surface. The resultscgpping scheme, we have deve_loped a s_ta_ple dfdient B-rep .
our approach are shown in Figs.3, 9, 10, and 13-15. extraction method for BSP solids. The initial results are quite

Our BSP=> B-rep algorithm is fast, which gives it the benefitPromising and our algorithm can accurately reconstruct sharp
of providing a very good model repair function (by using [10]f€2Ures-

in an interactive speed. Table 4 shows the statistics of the modell N€re¢ are many avenues for future work. We would like to

repair implementation using our BSP> B-rep algorithm. The further improve our algorithm to provide bounds on geometric

repair on most models can be completed in less than five secod toPological errors. We can also combine the algorithm with
on a moderate level PC, where the reported time includes fftrées (similar to [9]) and further improve its performance. In

three steps of the model repair: 1) BSP construction, 2) solidilge approach presented in this paper, we basically assume that
correction [10], and 3) B-rep extraction. the BSP tree is constructed ‘exactly’ and try to compute the

corresponding B-rep. Our future work would take into account
_ the error in constructing the BSP tree and its impact on the
6.3 Mesh reconstruction final B-rep. Another possible area for future work is to design
As shown in Fig.16, the above mesh repair technique is alsflicient and specialized algorithms for “BSP> CSG => B-
employed to fix the mesh surface that is reconstructed from ponep conversion”. Lastly, as our algorithm proceeds in a divide-
cloud using a parallel local triangulation method (e.g., [47]gnd-conquer manner, it may be possible to develop out-of-core
which can generate the mesh surfaces in an interactive speed. ifhglementation to handle very large and complex models by using
mesh surfaces generated by this local triangulation based metlaomhethod similar to [48].
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Fig. 15: Example of the oil-rig model with self-intersection remd by our approach (top) versus the mesh repair result from tlydBoder
algorithm of [46] (bottom). The zoomed views from top to bottshow: the given mesh model with self-intersections, the repaired mesh
model generated by our method, the repaired mesh model with peesemvall features by our method, the small features not preserved by
the octree based PolyMender algorithm [46].
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