
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Efficient Boundary Extraction of BSP Solids Based on
Clipping Operations

Charlie C.L. Wang, Member, IEEE, Dinesh Manocha, Fellow, IEEE

Abstract—We present an efficient algorithm to extract the manifold surface that approximates the boundary of a solid represented
by a Binary Space Partition (BSP) tree. Our polygonization algorithm repeatedly performs clipping operations on volumetric cells
that correspond to a spatial convex partition and computes the boundary by traversing the connected cells. We use point-based
representations along with finite-precision arithmetic to improve the efficiency and generate the B-rep approximation of a BSP solid. The
core of our polygonization method is a novel clipping algorithm that uses a set of logical operations to make it resistant to degeneracies
resulting from limited precision of floating-point arithmetic. The overall BSP to B-rep conversion algorithm can accurately generate
boundaries with sharp and small features, and is faster than prior methods. At the end of this paper, we use this algorithm for a few
geometric processing applications including Boolean operations, model repair and mesh reconstruction.

Index Terms—BSP to B-rep conversion, efficient, clipping, approximation, solid modeling.

✦

1 Introduction

B inary space partition (BSP) trees are regarded as an effective
representation of polyhedra based on the use of spatial sub-

divisions. They were initially proposed for visibility computations
[1], [2], and are used for Boolean operations [3]–[8], mesh repair
[9], [10], model simplification [11], collision detection, etc. Most
current modeling and simulation systems (e.g., [12]–[14]) are
based on boundary representation (B-rep) and use mesh-based B-
reps. In applications like Boolean operations [3]–[8] and mesh
repair [9], [10], BSPs are used to perform geometric operations
to compute a topologically-valid mesh representation of the final
solid. Such algorithms usually represent intermediate solids using
BSP trees. Therefore, it is important to design efficient algorithms
to compute the B-rep corresponding to the BSP tree (i.e., BSP=>

B-rep conversion or boundary extraction).
In this paper, we present a novel algorithm to perform clip-

ping operations on convex polyhedra and use that formulation
for efficient BSP=> B-rep conversion. The basic computation
involves clipping the boundary of convex polytopes with a plane.
We extend the algorithm proposed by Bajaj and Pascucci [15]
and use a set of logical operations to ensure we always output
two objects with genus zero topology. Our clipping algorithm is
resistant to degeneracies resulting from limited precision floating-
point arithmetic. As compared to prior BSP=> B-rep conversion
algorithms, our approach offers the following benefits.

• By repeatedly clipping the volumetric cells that correspond
to convex regions defined by nodes of a BSP tree, we are able
to construct connected volumetric cells and two-manifold
boundary surfaces are extracted from these connected cells
as B-reps of BSP solids. A clipping algorithm is described in
this paper to guarantee that the two resulting volumetric cells
have genus zero, which results in a stable implementation of
BSP => B-rep conversion. During the clipping operation,
our algorithm combinatorially ensures that the intersection

• Charlie C.L. Wang is with the Department of Mechanical and Automa-
tion Engineering, The Chinese University of Hong Kong.
E-mail: cwang@mae.cuhk.edu.hk; Fax: +852-26036002

• Dinesh Manocha is with the Department of Computer Science, Univer-
sity of North Carolina, Chapel Hill.

Manuscript prepared in June 2010
Revision prepared in January 2012

curve has a single component and is closed even when the
object being clipped is not exactly convex due to the limited
precision of floating-point arithmetic.

• All the operations are performed using finite-precision or
IEEE double precision arithmetic. As a result, our approach
is 5 to 8 times faster than an implementation of prior method
[15] using exact arithmetic. For models of moderate size (e.g.,
less than 100k BSP nodes), we can perform the boundary
extraction in a few seconds, thereby making it feasible to
perform interactive editing (e.g., solid modeling, mesh repair,
and surface reconstruction) on such models. Experimental
results show that our BSP=> B-rep algorithm can generate
approximate B-rep models with very small geometric error
(i.e., less than 10−5 on all tested examples). In terms of overall
performance, our algorithm can compute the approximate B-
rep from the BSP-tree (with 430k nodes) of a solid model
(with 100k triangles) in 10 seconds and has a memory
overhead smaller than 500MB.

The rest of the paper is organized in the following manner. We
survey related work in Section 2. Section 3 gives an overview of
BSP=> B-rep extraction issues. The clipping operation and the B-
rep extraction algorithms are presented in Section 4. Experimental
results and discussion are given in Section 5, and Section 6
highlights several applications of our algorithm.

2 RelatedWork

Most of the earlier work related to BSPs in geometric modeling
dealt with the problem of computing a BSP tree from a polygonal
representation (ref. [2], [8], [16], [17]). The algorithm proposed by
Thibault and Naylor [8] is based on repeatedly selecting a planar
polygon on the surface of a given model as the clipping plane (i.e.,
the non-leaf node of the BSP tree) to separate other polygons into
left and right half-spaces, where the tree itself is not well balanced.
Bajaj and Pascussi present a progressive conversion from B-rep
to BSP tree for streaming geometric applications [16]. They use
the Eigen-decomposition of the Euler tensor, which represents the
surface inertia, to select the clipping plane.

Compared with the problem of B-rep=> BSP conversion, there
is relatively little work on boundary extraction from BSP trees
[8], [15], [17]. These methods are prone to robustness problems
due to round-off errors. Recently, Bernstein and Fussell presented



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

Fig. 1: A highly noisy squirrel model having 20k triangles (top)with
many flipped triangles and self-intersections can be fixed by thesolid
repair algorithm [10] plus our approach in about 26 seconds, where
our BSP=> B-rep takes about 12 seconds. We use the model repair
algorithm [10] to construct a BSP tree with 370k nodes (including
about 101k solid leaf-nodes) from the squirrel model.

a plane-based approach [3] to perform robust Boolean operations
on BSP solids by using finite-precision arithmetic. Their approach
assumes that the boundary of the model has been explicitly stored
in the non-leaf nodes of a BSP tree, and the final surface generated
by their algorithm corresponds to a polygonal soup without
the connectivity information. The reconstruction of connectivity
would take extra time and effort. Campen and Kobbelt [9] describe
an algorithm to construct BSP trees locally in a few regions of
a spatial subdivision, which can reduce the memory overhead
and the computation cost. More discussions about the geometric
predicates and the point-based vs. plane-based representation can
be found in [18].

It is possible to convert a BSP tree into a CSG tree and use
CSG => B-rep conversion algorithms [6], [19] to compute the
final boundary. Banerjee and Rossignac [6] present a method
to evaluate the B-rep of a CSG solid by first converting each
primitive in the CSG tree into a subtree that defines primitives in
terms of planar half-spaces and then computing the B-rep [19].
The robustness of their approach is guaranteed by performing
Boolean operations of the “loose” primitives, whose exact di-
mensions, positions and topology are not fixed. Based on these
loose primitives, the robustness of an algorithm can be decoupled
from numerical accuracy of the operations. We also use a similar
notion of loose primitives in our approach. As opposed to CSG
trees, BSP trees are used in many other geometry processing
applications besides Boolean operations. Figure 1 highlights a
mesh repair example, where the repaired solid represented by a
BSP tree is composed by 101k convex solids. One may wish to
use the pipeline of “BSP=> CSG => B-rep” as an alternative
of direct BSP=> B-rep conversion in order to use the existing
techniques of CSG=> B-rep conversion. However, as reported in
the recent work of Bernstein and Fussell [3], performing around

Fig. 2: A 2D illustration of the B-rep extraction from a BSP solid
(top). Bottom rows show the steps for constructing the connected
regions defined by the leaf-nodes on a BSP tree. The B-rep is extracted
from the boundary of these regions. The construction procedure
follows the order of nodes visited on the BSP tree (displayed in
a red dashed curve) – has a linear complexity in terms of node
number. Reconstruction of the connectivity between convex regions
is guaranteed by our novel clipping algorithm (see section 4).

9,000 Boolean operations on a model would take about three hours
by their approach and almost three days by CGAL [20]. The
efficient CSG=> B-rep techniques in the literature (e.g., [21]–
[24]) mainly focus on rendering the final boundary, and may not
be able to generate a valid mesh representation. As a result, using
CSG tree as the intermediate representation for the BSP=> B-rep
conversion can be relatively slow.

There is a long history of research on robust polygon clipping
in computational geometry and solid modeling (e.g., [25], [26]).
However, reliable polygon clipping algorithms are not sufficient
for boundary extraction from BSP trees, as the numerical pruning
here mainly arises from the inexact representation of a convex
polyhedron generated after the clipping operations.

Some of the widely used spatial subdivision representations in
geometric modeling and visualization are based on uniform grids
or octrees. They are relatively simple to implement and there is ex-
tensive literature on computing a reliable polygonal approximation
of the resulting surface [27]–[31]. In contrast, BSP trees are more
flexible in terms of representing (and reconstructing) solids with
fine features, which include thin-shell like shapes with one small
dimension, or thin-rope like shape with two small dimensions.
For example, in Fig.3, the fine features are missed even when
we use very high resolution octrees. However, they are faithfully
reconstructed in the B-rep models of BSP solids. Most recently,
the problem of thin features in grid based approaches was also
addressed by using the hybrid representation of grids and mesh
surfaces (see [32]).

3 Problem of B-rep Extraction
In this section, we give a brief overview of BSP trees and discuss
the issues related to geometric computation in BSP=> B-rep



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

Dutch-ship Harp
Example Cell # Time (Sec.) Peak Memory Face # Cell # Time (Sec.) Memory Face #

Given Model - - - 15,812 - - - 10,652
BSP Tree* 74,955 4.751 168 MB 47,076 36,413 4.438 186 MB 51,948
Octree: 5123 1,184,192 2.237 265 MB 147,532 1,238,464 1.359 142 MB 81,520
Octree: 10243 2,721,728 6.225 579 MB 305,218 4,416,128 5.071 441 MB 278,618
Octree: 15363 4,662,016 12.351 1,024 MB 469,824 8,750,976 11.158 1,026 MB 586,634
Octree: 20483 7,144,064 21.079 1,543 MB 621,434 12,810,368 19.783 1,572 MB 1,033,754

Fig. 3: The mesh surfaces reconstructed from BSP tree by our methodare compared with the results contoured from octrees on two benchmarks
– the Dutch-ship and the harp. We use different resolutions for the octree and compare the performance with the BSP-tree. Our BSP=> B-rep
conversion algorithm can successfully reconstruct small features,which may be difficult even with a high resolution octree. Moreover, the
use of BSP tree results in a B-rep with fewer triangles and has lower running time and memory overhead than octrees, though octree-based
algorithms are easier to implement. In this case, the mesh surface reconstructed from octree is generated based on the Dual Contouring (DC)
algorithm [30].

conversion.

3.1 BSP Trees

A BSP solid is represented by a binary tree, where each non-
leaf node corresponds to a plane that partitions the space into
two half-spaces. Each BSP node represents a convex region that
corresponds to the intersection of all half-spaces on the path
from the tree’s root to that node. The leaf-nodes are labeled as
either solid (inblack) or empty (inwhite) according to whether
their corresponding convex regions are part of the solid or not
(see Fig.2). The connectivity between these convex regions on
a BSP tree is not stored explicitly in the data structure, which
makes it difficult to robustly extract the connectivity of B-reps as
reconstructing the connectivity requires making decisions based
on geometric tests (i.e., predicates). Specifically, for two convex
regions corresponding to two leaf-nodes which have different
parents, the detection of whether their boundary surfaces are
connected is affected by round-off errors. A node on a BSP treeΓ
is defined asvalid if its plane separates the corresponding convex
region into two convex regions with nonzero volume. We assume
that all the nodes on a given BSP tree are defined asvalid.

3.2 Polygonization algorithms

Thibault and Naylor [8], [17] present an approach to transmit
the polygon of a splitting plane node in the BSP tree to the
descendant nodes. The convex polygon corresponding to a node
is clipped into smaller convex polygons (called fragments in
[9]) by the half-spaces defined on the nodes of its subtree. If
a fragment lies between the inside cell and the outside cell,
it corresponds to a polygon on the boundary surface of the

BSP solid. The connectivity of the resultant polygonal model is
computed by matching the coordinates between vertices. However,
this matching step can result in two problems (ref. [33], [34]):

• First, repeated intersection computations result in accumu-
lated round-off errors in the vertex coordinates. As different
fragments that share a vertexV are generated by performing
intersection computations on a different sequence of planes,
these computations can result in varying round-off errors
corresponding to the vertexV.

• Second, epsilon error based predicates are typically used
to detect coincident points, i.e. two points are identified as
coincident points if the Euclidean distance between them
is less thanǫ, a small constant. However, the use of such
predicates can 1) mismatch the different coordinates ofV
generated from different fragments and this could result in
cracks in the B-rep, or 2) classify topologically separated
vertices as coincident due to inaccuracies – this can result in
non-manifold entities as with vertex clustering based mesh
simplification algorithms (e.g., [35]).

Therefore, we investigate a boundary surface extraction algorithm
that generates global topology information as part of the polygo-
nization.

3.2.1 Polygonization with topology information

The boundary extraction algorithm presented by Comba and
Naylor [36] first generates polygonal faces for all solid leaf-
nodes of a BSP tree. After that, their algorithm relies on the non-
robust ‘glue’ operator to compute a correct boundary surface from
polygonal meshes with overlapped faces.

Bajaj et al. [15], [16] use a non-manifold data structure to store



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

the convex polytopes and their neighbor information, where each
polytope is generated while constructing the BSP from a B-rep.
Each polytope in the data structure corresponds to a leaf-node of
the BSP tree, and is stored as a cell. The boundary surface can be
computed by collecting the boundary faces between the solid and
the empty polytopes. Nevertheless, robust computation of these
cells with the neighboring information can be challenging due to
finite-precision arithmetic.

3.2.2 Problems of polyhedron clipping

According to the convex clipping algorithm used in [15], [16],
the polytopes and the adjacency information between them can
be computed recursively by clipping the convex polyhedra. A
consistent classification technique is introduced in [15] to deal
with numerical inaccuracies; however, the robustness of this
technique is based on the assumption that the input polyhedron to
be clipped is exactly convex, which is not always true when the
vertex coordinates are represented by finite-precision arithmetic.

Ideally, performing the clipping operation on a convex polyhe-
dronC by a planeP should result in two convex polyhedraC+ and
C− (wheneverP intersectsC). However, when clipping operations
are performed using finite-precision arithmetic and point-based
representations, the resultant polyhedraC+ andC− may actually
be non-convex due to round-off errors in the coordinates of the
new vertices. More specifically, the truncated coordinates of the
vertices make them not lie “exactly” on the edges (and faces) of
C.

When a convex polyhedron is separated by a plane into two
polyhedra, the intersection curve between the convex polyhedron
and the plane corresponds to a simple intersection curve that is
homeomorphic to a circle. Nevertheless, when clipping a nearly-
convex cell, the intersection curve may have a more complicated
topology, e.g., separate loops, loops joining at a single point,
or nested loops. Such a clipping operation may generate more
than two polyhedra, which is inconsistent with the operation
of clipping a convex volume defined by a node of the BSP
tree. Figure 4 shows some examples of intersection curves with
complex topologies. Although such cases may only occur in small
or localized regions, inappropriate topology manipulation on these
regions can easily make the program of a clipping algorithm crash
when the clipping algorithm makes assumptions on the input
model’s topology (e.g., genus zero). Without using a carefully
designed method (like our clipping algorithm) to clip degenerate
convex cells which are in fact non-convex, the clipping results,
which are the input for further clipping, could result in 1) a two-
manifold polygonal model (but may not be genus zero), 2) a model
with several separated components, or 3) even a non-manifold
model. The consistent classification technique proposed by Bajaj
and Pascussi [15] does not solve the stability problem of clipping
degenerate convex cells. An approach to make their consistent
classification technique work is to choose the strategy of plane-
based representation plus exact predicates; however, this can be
slower in practice.

4 Boundary Extraction
This section presents the details of our boundary extraction
algorithm (i.e., BSP=> B-rep) and the clipping operation.

4.1 Overview

Our BSP=> B-rep algorithm is built on the earlier work of
Bajaj and Pascussi [15]. However, we develop a novel clipping
algorithm to avoid the numerical accuracy problems of [15] when

Fig. 4: (Left) Examples of some complex topologies that can be
generated on the intersection curve between a planeP and a nearly-
convex cell: (top) separate loops, (middle) loops joined at a single
point and (bottom) nested loops. Since the vertices are generated by
intersecting different planes, their coordinates may include varying
round-off errors. This can result in a ‘terrain’ like shape (right) in a
localized region of the boundary. Using a plane to cut the ‘terrain’
leads to the intersection curves having complex topology.

using finite-precision arithmetic. We start with a polyhedronC
(e.g., a rectangular box) that is larger than the bounding box of
the solidH represented by the BSP tree,Γ. Because of the round-
off error, using the bounding box as the initial polyhedronC may
cut out some small volumes ofH near the boundary ofC. The
bounding box ofH can be given by the users as an input or
computed from the vertices of convex-hulls according to the solid
leaf-nodes ofΓ, where the convex-hulls defined by a sequence
of half-spaces can be determined by the Quick-Hull algorithm
[37]. In our BSP=> B-rep algorithm, we recursively traverse
the BSP tree and clipC into smaller cells based on the nodes
of Γ. The resulting cells corresponding to the solid leaf-nodes
are classified assolid, and the cells assigned to the empty leaf-
nodes are classified asempty. The boundary surface ofH is then
extracted from the faces between the solid and empty cells. Note
that we use the concept of “loose” primitives [6] here. It is not
necessary for all the vertices belonging to a face to be coplanar;
in order to deal with round-off errors, the non-planar faces are
triangulated for intermediate geometric computation. Figure 2
gives a 2D illustration of the algorithm. Pseudo-code of the
boundary extraction algorithm is given.Procedure 1 BSPtoBrep
is based on the cell clipping procedure (see section 4.2) and a non-
manifold data structure used to store the neighboring information
between the cells (to be described in section 4.4).

4.2 Clipping algorithm

Given a cell C with the vertex coordinates stored by finite-
precision representation, we present a novel clipping algorithm
using finite-precision arithmetic. The clipping operation guaran-
tees that the separating curve has a simple topology and ensures
the generation of two genus zero cells,C+ and C−. C+ denotes
the cell above the clipping planeP andC− is below. Our clipping
algorithm is based on performing logical operations; therefore,
it is resistant to degeneracies caused by evaluating numerical
predicates with limited precision. The algorithm consists of three
steps: edge splitting, face clipping, and cell separation (see Fig.5).

4.2.1 Edge splitting

For every vertexV on a given cellC, we check whether it is
above (assigned as ‘+’), below (set as ‘−’) or on (denoted by the
flag ‘0’) the planeP. We compute the signed distancedV from V
to the planeP. The vertexV is classified as



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

Fig. 5: Three steps of our clipping algorithm: 1) edge splitting, 2) face clipping and 3) cell separation. The vertices in red are new vertices
introduced by edge splitting, and the yellow ones are existingvertices that are classified as vertices ‘on’ the clipping plane. New algorithms
are developed for steps 2 and 3 to guarantee the topology and the number of resulting cells, where a cell in yellow is above the clipping
plane and a blue one is below the plane.

Procedure 1 BSPtoBRep (BSP treeΓ)
Require: the bounding boxB of Γ is known
Goal: generate the B-rep ofΓ as a mesh surfaceMH

1: Compute a polyhedronP that is slightly larger thanB;
2: StoreP as a cellC in the complex-based non-manifold data

structure;
3: Call CellConstruction(C, Γ.rt); {‘ .rt’ is the root of Γ; this

procedure constructs a complex of connected cells}

4: for all facesF in the complex of cellsdo
5: if the adjacent cells above and belowF are with different

statusthen
6: F is defined as a boundary face;

{a polygonal face betweensolid andempty cells}
7: end if
8: end for
9: Generate a meshMH consisting of all the boundary faces and

the adjacent vertices;
10: return MH ;

Procedure 2 CellConstruction (a cellC, a BSP nodeγ)
Require: C is stored in the data structure that can fetch its

neighbors in constant time
Goal: generate a set of cells corresponding to the leaf-nodes of a

given BSP tree nodeγ, along with connectivity information
1: Assign the status ofC based on the status ofγ; {empty, solid

or ambiguous}
2: if γ is ambiguous then
3: Clip C by γ.pl into two cellsC+ andC−; {‘ .pl’ is the plane

defined on a node of BSP tree}
4: Call CellConstruction(C+, γ.le f tChild);
5: Call CellConstruction(C−, γ.rightChild);
6: end if
7: return;

1) above P if dV > ǫ,
2) below P whendV < −ǫ,
3) on the planeP otherwise.

The value ofǫ is chosen by the user. For example,ǫ = 5×10−10 is
selected when the computations are performed using IEEE double
precision arithmetic. It should be noted that using a smallǫ splits a
higher number of edges into very short segments, whereas a large
value ofǫ will result in a high number of existing vertices being
classified as ‘on’ the planeP (e.g., the yellow point in Fig.5).
Note that different ǫ will lead to different shape approximation
errors in the models resulting from our approach. Thus, we tend
to select a value that balances between the overall running time
and accuracy (e.g.,ǫ = 5× 10−10).

For every edgeE on C, if there is one endpoint above and
another below the clipping plane based on our classification, a

new vertexVi is inserted at the position of its intersecting point at
P to split E into two edges (e.g., the red points shown in Fig.5).
Vi is assigned the label ‘0’. When a new vertex is introduced to
split an edgeE, the topology of all faces linked toE is updated
accordingly. After this step, the cellC still has genus zero.

4.2.2 Face clipping

The round-off errors corresponding to the positions of vertices
could lead to the following problems onC: 1) the vertices ofC
do not lie on their convex hull, 2) the vertices of a faceF are
not coplanar, or 3) the vertices ofF do not lie on their convex
hull. As a result, it is possible that more than two vertices on
a faceF ∈ C are flagged as ‘0’ after the edge splitting step is
applied toC. To address this, we need a scheme to split the face
F simply into F+ and F− (i.e., ‘above’ and ‘below’ the clipping
planeP), and build a boundary edge betweenF+ andF−. For the
degenerate cases having more than two ‘0’ vertices, a faceF−

with no vertex having ‘+’ flag will be constructed to prevent the
flooding algorithm (in Section 4.2.3) from propagating the region
‘below’ the clipping plane intoF+.

First, we find two verticesV+p andV−p on F that are on different
sides of the clipping plane and farthest away fromP. If V+p is not
assigned with a ‘+’ flag or if V−p is not identified as ‘−’ by the
edge splitting step, we ignore the clipping ofF as its vertices are
not classified as being on different sides of the clipping planeP.

Starting fromV−p , we search the vertices on the boundary of
F in a clockwise manner until we find a vertexVe with flag ‘0’.
This vertex is considered as the vertexentering the region below
the clipping planeP. Similarly, walking counter-clockwise starting
from V−p , the first vertexVl with flag ‘0’ is labeled as the vertex
leaving the region below the clipping planeP. The search orders
are illustrated in the middle of Fig.5 by the arrows. Note that the
F− face constructed in this way will only contain ‘−’ and two
consecutive ‘0’ vertices.

Lastly, an edge linkingVe andVl is constructed to splitF into
two new facesF+ and F−. Note that none of the operations in
this computation involve the evaluation of numerical predicate.
Therefore, the robustness of face clipping is not susceptible to
numerical inaccuracies. Again, the newly constructed faces are
loose primitives as described in [6], and the new cellC′ has genus
zero. The proof is straightforward. According to the formula of
Euler characteristic, the above face clipping operations add a new
edge and split one face into two – both the edge numbern.E
and the face numbern.F of the cell increase one, which will not
change the genus:G = 1− (n.V − n.E + n.F)/2.

The above algorithm works well when the vertices ofF are
separated by ‘0’ vertices into one simply connected ‘+’ group and
one simply connected ‘−’ group (as shown in Fig.6(a)). However,
in some extreme case, more than one groups of ‘+’ (or ‘−’)
vertices are generated due to numerical error. For such cases, we



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

Fig. 6: The illustration of face clipping: (a) the ‘0’ vertices classifies
‘+’ and ‘−’ vertices into two simple groups, and (b) a complex case
with more than one groups of ‘+’ and ‘−’ vertices that can be ‘clipped’
by introducing a new vertex (the yellow dot) at the center ofF and
creating more than one edges (the red dash lines).

Procedure 3 RegionFlooding (a cellC′)
Require: the vertices ofC′ has been classified as ‘+’, ‘ −’ or ‘0’
Goal: compute the faces onC′ ‘below’ the clipping plane

1: Find a seed vertex based onVseed = arg minV∈C′ dV ;
2: Randomly select a face incident toVseed as Fseed, and assign

the ‘−’ flag to Fseed;
3: Initialize a set of faces,S = {Fseed};
4: repeat
5: for all facesF ∈ S do
6: Initialize an empty set of faces,S r;
7: for all facesFe incident toF by an edgeE do
8: if any endpoints ofE is with ‘−’ flag then
9: if Fe is NOT with ‘−’ flag then

10: Insert Fe into S r;
11: end if
12: Fe is assigned with ‘−’ flag;
13: end if
14: end for
15: end for
16: ReplaceS by S r;
17: until S is empty
18: return;

introduce a new ‘0’ vertex in the center ofF and create more
than one edges to separate these ‘+’ and ‘−’ vertices (see the
illustration in Fig.6(b)).

4.2.3 Cell separation

The last step of our clipping algorithm generates a separating
curve ς that is homeomorphic to a circle, which subdivides the
given cell C′ into two open surfacesM+ (‘above’ the clipping
planeP) andM− (‘below’ P) with disk-like topology, whereC′ =
M+ ∪ M−. The holes onM+ and M− are then filled by a face to
create two cells. The new face and cells are all loose primitives
(ref. [6]).

We use a region flooding algorithm to generate the separat-
ing curve ς. First, we find a seed vertexVseed with Vseed =

arg minV∈C′ dV . Then, we randomly select a face incident toVseed to
serve as the seed faceFseed. The algorithm starts fromFseed, floods
across the edges between faces, and stops at the edges not ‘below’
P (i.e., with no endpoint flagged as ‘-’). All the faces traversed by
the flooding algorithm are assigned the ‘-’ flag. Pseudo-code of
the flooding algorithm is presented inProcedure RegionFlooding.

The above flooding algorithm makes it possible to classify the
surface ofC′ into more than two disjoint regions. We further
classify the regions into two separated surface areas with a simple
boundary by the followingregion processing steps.

1) Identify the isolated regions with faces not assigned as ‘−’

Fig. 7: Region flooding and region processing are performed to ensure
that the intersection curve homeomorphic to a circle, which guarantees
that the resultant cells generated by our clipping algorithmhave genus
zero topology.

(e.g., two regions shown in Fig.7) – each isolated region is
circled by a boundary with one simple loop (i.e., no self-
intersection);

2) Select the regionRmax with the maximal area1 and assign
all the faces in this region with the flag ‘+’;

3) Assign ‘−’ to all of the remaining faces.

Based on this method, the curveς that separates the ‘+’ and the
‘−’ regions is homeomorphic to a circle – the property is held even
if there are round-off errors. The curveς is in fact the boundary of
the largest region not traversed by the flooding algorithm. In the
second step of region processing, selecting any other separated
region will also give a result with two nearly-convex cells. We
select the region with maximal area according to the heuristic
such that the ‘above’ status of such a region is less likely to be
affected by numerical errors.

In some degenerate cases caused by round-off error, there may
be no region found by the first step highlighted above. However,
as described in Definition 2, every clipping plane generated by
a valid node of the BSP tree must separate the region into two
parts, the clipping on the cellC′ should be enforced as follows.
Among all the faces, the face with a maximal signed-distance
from its center toP is enforced to be ‘above’ the clipping plane
by assigning the ‘+’ flag.

The surface ofC′ is separated by the curveς into two open
mesh surfacesM+ (composed of all ‘+’ faces) andM− (composed
of all ‘−’ faces). As the topology ofς is simple, a loose faceFς
usingς as the boundary is constructed to separateC into C+ and
C−. Note that we only construct one face for the two convex
polyhedra,C+ = M+∪Fς andC− = M−∪Fς, which can be stored
in the non-manifold data structure presented in Section 4.4.

1. To compute the area, a “loose” facet is temporarily triangulated into
a set of triangles by introducing a new vertex at the average position
of its existing vertices and constructing triangles connecting the existing
boundary edges with the newly added vertex.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

4.3 Analysis

The properties of our algorithm are analyzed as follows.

Remark The clipping algorithm for a genus zero cellC with
a planeP only generates cells with genus zero topology.

Proof. The topology of the resultant cells is guaranteed by the
following factors.

• The input cellC is two-manifold and has genus zero. Thus,
the cellC′ computed after edge splitting and face clipping is
still a two-manifold and has genus zero.

• The boundary of each processed region has a simple topology
homeomorphic to a circle – this property is satisfied by our
method of cell separation. Therefore, the separating curve
ς also has a simple topology. That is to say, the common
boundary betweenM+ and M− is a simple curve.

Without loss of generality, let us assume thatM+ has n.V+

vertices,n.E+ edges andn.F+ faces, whileM− has n.V−, n.E−

and n.F− vertices, edges and faces respectively. The formula of
Euler characteristic gives

(n.V+ + n.V− − n.V s) − (n.E+ + n.E− − n.E s)
+(n.F+ + n.F−) − 2 = −2G,

whereG is the genus ofC′ composed byM+ and M−, andn.V s

and n.E s correspond to the number of shared vertices and edges
betweenM+ and M−. Again, based on the Euler characteristic,
the genusG+ of C+ is G+ = 1− (n.V+ − n.E+ + (n.F+ + 1))/2, and
similarly the genusG− of C− is G− = 1− (n.V− − n.E− + (n.F− +
1))/2, where the additional face comes from the filled faceFς.
Adding G+ andG− together givesG = G+ +G− − (n.E s − n.V s)/2.
The topology of the intersecting curveς is simple, andn.E s =

n.V s. This implies that

G = G+ +G− ≡ 0.

As the genus cannot be negative for a two-manifold polyhedron,
we getG+ = G− = 0. ⋄

As long as the neighboring information between the nearly-convex
cells is stored in a non-manifold data structure (which will be
detailed in section 4.4), the boundary surface of a solid defined
by the union of those solid cells can be obtained. Specifically,
the boundary surface consists of the loose faces between the
neighboring solid and empty cells. No numerical predicate is
involved in the surface extraction (i.e., Step 9 ofProcedure
BSPtoBRep).

For a given BSP solidH, it is possible that the topology
of surfaceMH generated by our BSP=> B-rep algorithm may
be different from the boundary surface ofH. However, our
experimental results indicate that the Hausdorff distance between
MH and the exact solution is typically less than 10−6.

Notice that, the theoretical error bounds on the topology and
geometric representation of the resulting B-rep depend on several
factors including the number of times the clipping operations
are performed, the orientation of clipping planes and the size of
models relative to the precision of floating-point arithmetic. For
example, if a polytope is defined using many planes that are nearly
parallel to each other, the clipping operations performed by our
algorithm could result in a shape that may have a large Hausdorff

distance due to round-off errors. However, such extreme cases are
rare in practice and do not occur if we select the clipping plane
defined in a BSP node perpendicular to the plane used in its parent
node during the construction of BSP trees.

TABLE 2: Statistics of Peak Memory Usage

BSP node Peak Memory Usage
Model Number Exact Approach Our Method

Spider 69k 140 MB 165 MB
Turtle 54k 117 MB 141 MB

David-egea 114k 347 MB 346 MB
Oil-rig 127k 359 MB 406 MB

Dutch-ship 75k 171 MB 202 MB
Harp 73k 185 MB 182 MB

Femur∩ Truss 101k 166 MB 197 MB
Pig \ Helix 176k 435 MB 445 MB

Bunny 163k 423 MB 428 MB

4.4 More implementation details

The data structure employed in our approach is introduced below.
The whole model has four lists: cell list, face list, edge list,
and vertex list. The most important issue in the representation
is the information about how an entity in dimensiond is shared
by neighboring entities in one dimension higher as well as the
orientations of these entities. In our data structure for BSP=>
B-rep conversion, an edge entity consists of two links pointing to
its starting and ending vertices (e.g.,V1 and V2 linked by E1 in
Fig.8). At every vertexV, the list of adjacent edges is also stored.
A face entityF contains a list of edges forming its boundary in
the counter-clockwise order. Moreover, the direction of an edge in
the face is specified by a sign of ‘+’ or ‘−’, and the links pointing
to the faces adjacent to an edgeE are also stored in a face-link list
of E. A cell C is a closed two-manifold mesh surface composed
by loose faces. The orientation of a face inC is recorded as ‘+’ if
its normal is pointing outwards and ‘−’ for inwards. In addition, a
faceF also stores the information about the cells above and below
asCF+ andCF− , respectively. Note that the orientations of newly
created entities are decided by topological information stored in
the data structure and are not affected by the round-off errors.

By using this data structure during an edge split, the edge list
of all these faces must be updated. When clipping a faceF, the
cells CF+ and CF− located on both sides ofF must also update
their face list although the polyhedron clipping is only performed
on one side ofF. The updating operations of this data structure
have the complexity linear to the adjacency – according to our
experimental tests, which is always less than 20. Processing the
complex cells in this way can effectively avoid the face gluing
step (as discussed in [36]). The clipping algorithm presented in
the section 4.2 can be easily implemented with the help of this
data structure. Our current version of this data structure may have
some redundant information, a more compact one can be used
[38].

The boundary mesh surface forH is extracted from the faces
between the solid and the empty cells, called boundary faces.
The vertices and edges adjacent to the boundary faces are also
copied to the resultant meshMH . When an edgeE is shared by
interlaced empty and solid cells after the comprehensive polyhe-
dron clipping,E will become a non-manifold entity (e.g.,E1 in
Fig.8). Similarly, non-manifold vertexV will be generated when
its adjacent cells are interlaced as empty and solid. According
to our formulation of nearly-convex cells, there is another non-
manifold case that some cell may only have two faces. However,
all above non-manifold entities can be easily eliminated during
mesh construction, which is a separate problem and has been
addressed in prior work (e.g., [39], [40] and [41]).



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

TABLE 1: Comparison with an Exact Implementation Using Plane-based Representation and Exact Predicates

BSP node Total Time (sec.) Region Flooding∗ Time on Orient. Predicate (sec.)
Model Number△ Exact Approach† Our Method‡ Time (sec.) Filtered Exact Predicate Our Method

Spider 69k (68) 18.3 3.74 (×4.9) 0.389 14.029 0.079 (×178)
Turtle 54k (34) 14.2 2.62 (×5.4) 0.391 10.929 0.048 (×228)

David-egea 114k (43) 32.3 4.38 (×7.4) 0.871 25.799 0.093 (×277)
Oil-rig 127k (57) 33.3 6.08 (×5.5) 0.880 26.937 0.096 (×280)

Dutch-ship 75k (70) 22.8 3.45 (×6.6) 0.554 18.225 0.059 (×308)
Harp 73k (54) 19.6 3.98 (×4.9) 0.517 15.227 0.061 (×249)

Femur∩ Truss 101k (38) 25.8 3.14 (×8.2) 0.682 20.559 0.083 (×247)
Pig \ Helix 176k (61) 52.9 6.86 (×7.7) 1.35 42.615 0.133 (×320)

Bunny 163k (266) 60.4 10.6 (×5.7) 1.682 46.447 0.046 (×1,010)

△ The numbers shown in the bracket of the second column are the depths of the BSP trees.
† The exact approach is based on [15] and is improved by using plane-based representation and the single stage filtered exact predicates.
‡ Our method uses the standard IEEE double precision arithmetic supported in current processors.
∗ The time spent in the region flooding step of our algorithm to enhance robustness takes only less than 25% of the total running time.

Fig. 11: The procedure of generating the resultant surface from Boolean difference operation (Pig\ Helix). Smooth and sharp features are
successfully reconstructed.

Fig. 8: An example of four cellsC1, C2, C3 andC4 sharing the same
edgeE1 and the same two verticesV1 andV2, where the edgeE1 will
be non-manifold ifC1 andC3 areempty andC2 andC4 are solid.

Fig. 9: Models used in comparing our method with an exact imple-
mentation using plane-based representation.

Fig. 10: Self-intersection removal on the cow model.

5 Experimental Results and Discussion

We have implemented our algorithm in C++ and used it for
different geometric processing applications. All the performance
results shown in this paper are generated on a PC with Intel Core
2 Quad CPU Q6600 2.4GHz and 4GB RAM running the 32-bit
Windows Vista operating system.

In order to demonstrate the performance advantage of our
approach, we implemented an exact BSP=> B-rep algorithm
based on [15]. The various components of the exact boundary
algorithm are:

• Since using exact arithmetic to represent the coordinates
of vertices on a complex model results in a high memory
overhead, we use plane-based representations [3], [9].

• The boundary surface is extracted from the set of convex
polytopes generated and stored by the algorithm proposed
by Bajaj and Pascussi [15].

• The orientation predicate is implemented by following the
method of [3], which is similar to the method proposed by
Shewchuk [42] but with a single stage filter due to simplicity.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

More specifically, when the absolute value of determinant is
less than 10−10, the exact arithmetic routine provided by the
GMP library [43] is used.

Table 1 shows the comparison of performance of our B-rep
extraction algorithm with that of exact B-rep extraction algorithm
highlighted above. In practice, we observe that our algorithm is
5 to 8 times faster, and has a speed that can be employed in
the interactive applications (i.e., less than 5 seconds on moderate
size models). To provide a fair comparison, we used IEEE double
precision arithmetic to convert the plane-based representation into
the point-based representation on the resultant mesh surfaces.
This approach may not be robust when the three planes used to
define the position of a vertex are nearly parallel to each other.
A more robust way is to use exact arithmetic orSingular Value
Decomposition (SVD), which will take more time, as compared to
the timings reported in Table 1. Table 2 reports the peak memory
usage of both the exact approach and our method. We see that
memory costs are similar. This is because, when models are stored
by plane-based representations [3], [9], the exact arithmetic is only
temporarily used in computation which does not take too much
memory.

We use 64 bits (i.e., standard double precision variables) for
the coefficients in our implementation of exact BSP=> B-rep
algorithm since our point-based approach only uses 64 bits for
the coordinates of vertices. However, the orientation predicates
based on plane-based representation require more bits to compute
an exact answer (as mentioned in [42]). When the required
intermediate computation exceeds the hardware limit (e.g. 64 bits),
the computation becomes expensive. This is the major reason
why our approach using only IEEE double precision arithmetic
can generate the results much quickly. The running time for 3D
orientation predicates shown in Table 1 demonstrate the speedups.
Although the speedups depend on the number of bits employed
to represent the input, using too few bits to represent the input
BSP tree may not work; and there is no consensus on how
many bits are really needed to represent the input. Moreover,
during our experimental tests, when 32 bits are used to represent
the coefficients of plane equations on an input BSP tree, our
implementation of the exact approach runs faster than given a
64 bits input. Finally, the time spent in the region flooding step
of our clipping algorithm is also reported in Table 1. This part
takes less than 25% of the total running time on all the examples.

Generally, plane-based representations [3] together with exact
predicates have an expensive overhead in terms of running time.
To reduce the cost, Campen and Kobbelt [9] only compute BSP
trees locally in a few regions where intersections occur. In order
to compare our approach with theirs, we tested the intersection
removal implementation presented in section 6.3 on the cow model
with 6K faces, as used in [9]. A similar result is computed by our
algorithm (see Fig.10) in 2.7s, while the authors of [9] reported
that their algorithm takes 1.2s on the same model but using a more
powerful PC. The main reason our method takes longer is because
of the iterative computation performed on all the cells of the BSP
tree to determine their solidity by using [10]. More specifically,
when using Murali and Funkhouser’s algorithm [10] for model
repair, the entire BSP solid must be converted into connected
volumetric cells that lead to much higher memory requirements
and more time is spent on memory management.

The shape approximation errors between the models generated
by our BSP=> B-rep approach and the models produced by the
exact method are measured – using the publicly available Metro
tool [44]. Both the averageL2-norm and the Hausdorff distance
with respect to the diagonal length of models’ bounding boxes are

TABLE 3: Performance of Our Boolean Computation

Models Femur∩ Truss Pig \ Helix
Face # 5.00k & 39.3k 1.28k & 74.0k

BSP Construction 0.432 sec. 0.181 sec.
Boolean Operation 1.24 sec. 1.50 sec.
B-rep Extraction 3.14 sec. 6.86 sec.

ACIS R15 26.38 sec. 48.10 sec.
CGAL Failed 64.23 sec.

checked. Among all models shown in Table 1, only the Dutch-
ship and the Harp models have Hausdorff distances greater than
10−6 (i.e., 3×10−6 and 1×10−6 respectively). For the averageL2-
norm, all models have errors less than 10−6. Note that 10−6 is the
minimal error that can be reported by the Metro tool. This study
about shape approximation error shows that our approach can
reconstruct the two-manifold boundary surfaces very accurately.

Limitations
Although the experiments show that the results generated by our

BSP => B-rep algorithm are accurate, the shape approximation
error is actually affected by several issues.

• The source of the shape approximation error is the inaccurate
positions computed for the newly inserted vertices as well as
the epsilon-tweaking based point orientation predicate. Both
come from the edge splitting step. Positional errors depend on
the orientation of the clipping plane compared to the direction
of line segments to be clipped. Analysis shows that if they are
nearly parallel to each other, it tends to generate larger round-
off errors. In short, it depends on how the clipping planes are
defined during the BSP tree construction. A good heuristic
is to select a clipping plane which is nearly perpendicular to
the previous clipping plane (see [45]).

• After edge splitting, the operations in the face clipping and
the cell separation steps may slightly amplify the errors while
enforcing the topology of clipping results.

• Lastly, as the resultant inexact cells will be further clipped
into smaller ones, errors embedded on the cells can be further
propagated. Therefore, the final error also depends on the
depth of the given BSP tree. In short, a much deeper BSP
tree will likely lead to higher shape approximation error.

On the other hand, although the clipping algorithm is resistant to
degeneracies, the BSP=> B-rep algorithm does not have theo-
retical error bounds on its results. However, the geometric error
could be small (e.g., less than 10−5 in our examples) if we tend
to select the clipping plane defined in a BSP node perpendicular
to the plane used in its parent node when constructing BSP trees.
The resulting mesh surfaceMH generated by our algorithm is a
good approximation of the real boundary surface∂H of H.

6 Applications
In this section, we highlight several applications of this BSP=>
B-rep algorithm, including Boolean operations, model repair and
mesh reconstruction.

6.1 Boolean operations

Our computation of Boolean operations is based on the approach
described in [4], where linear programming is used to check
the feasibility of regions represented by leaf-nodes of the BSP
tree. The resultant BSP tree corresponding to the Booleans is
obtained by removing all the infeasible regions, and the B-rep
is generated by our extraction method. The first example shown



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

Fig. 12: Our result of Boolean operation on the truss model and the
femur model. The small and sharp features are preserved by our
polygonization algorithm. The model is very complex in terms of
shape and topology, however it still can be successfully reconstructed
by our method.

TABLE 4: Statistics of Model Repair

Models Fig. Input f# Time (sec.) Result f#

Dutch-ship 3 15,812 4.91 45,984
Harp 3 10,652 4.67 45,853

Spider 9 4,999 4.68 36,317
Turtle 9 5,499 3.57 29,386

David-egea 9 16,532 6.27 62,521
Cow 10 5,804 2.86 25,988

Oil-rig 15 45,326 7.90 83,672

in Fig.12 comes from the tissue engineering. The goal is to
generate the scaffold of a femur by performing an intersection
operation between a truss model and the femur. The second
example corresponds to subtracting a helix from a pig model, and
Fig.11 shows the surface generation result. We have also compared
the performance of our algorithm with ACIS R15 [14] and CGAL
[20], where the CGAL implementation uses the kernel with exact
predicates and exact constructions. The performance in Table 3
shows that our algorithm is more efficient and stable.

6.2 Model repair

BSP trees can be used for model repair [9], [10]. After construct-
ing the connected complex cells, the algorithm described in [10]
can be adopted to assign the solidity of each cell in terms of
global optimization. However, when this method is applied to a
self-intersecting closed mesh surface, a solid with interlaced solid
and empty shells will be generated (see the middle of Fig.14).
Given such a solid with interlaced shells, we apply a flooding
step to the connected cells similar to [9]. The inside of the model
is defined as the volume that is not reachable from infinity (i.e.,
the unbounded cells) without crossing the surface. The results of
our approach are shown in Figs.3, 9, 10, and 13-15.

Our BSP=> B-rep algorithm is fast, which gives it the benefit
of providing a very good model repair function (by using [10])
in an interactive speed. Table 4 shows the statistics of the model
repair implementation using our BSP=> B-rep algorithm. The
repair on most models can be completed in less than five seconds
on a moderate level PC, where the reported time includes all
three steps of the model repair: 1) BSP construction, 2) solidity
correction [10], and 3) B-rep extraction.

6.3 Mesh reconstruction

As shown in Fig.16, the above mesh repair technique is also
employed to fix the mesh surface that is reconstructed from point
cloud using a parallel local triangulation method (e.g., [47]),
which can generate the mesh surfaces in an interactive speed. The
mesh surfaces generated by this local triangulation based method

Fig. 13: Self-intersection removal on the harp model (previously
shown in Fig.3): (left) the problematic regions correspondingto small
features – the strings, and (right) our repaired result which preserves
the small features.

Fig. 14: Example of self-intersection removal. From left to right, the
given model with self-intersection, inside of the given model, the
processed result generated by [10] with interlaced solid and empty
shells, and the final model generated by our algorithm.

usually have the problem of non-manifold entities, holes, as well
as inconsistent orientations (see Fig.16). These models can be
repaired into closed two-manifold mesh surfaces by our approach.

7 Conclusions and FutureWork

We present an efficient polygonization algorithm for solids repre-
sented using BSP trees. The main contribution is a novel clipping
algorithm for degenerate convex polyhedra using IEEE double
precision arithmetic. In our algorithm, the clipping operations
combinatorially ensure the output of two objects with genus zero
topology when using standard IEEE double precision arithmetic
– the benefit of hardware support is retained. Based on this novel
clipping scheme, we have developed a stable and efficient B-rep
extraction method for BSP solids. The initial results are quite
promising and our algorithm can accurately reconstruct sharp
features.

There are many avenues for future work. We would like to
further improve our algorithm to provide bounds on geometric
and topological errors. We can also combine the algorithm with
octrees (similar to [9]) and further improve its performance. In
the approach presented in this paper, we basically assume that
the BSP tree is constructed ‘exactly’ and try to compute the
corresponding B-rep. Our future work would take into account
the error in constructing the BSP tree and its impact on the
final B-rep. Another possible area for future work is to design
efficient and specialized algorithms for “BSP=> CSG => B-
rep conversion”. Lastly, as our algorithm proceeds in a divide-
and-conquer manner, it may be possible to develop out-of-core
implementation to handle very large and complex models by using
a method similar to [48].



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

Fig. 15: Example of the oil-rig model with self-intersection removed by our approach (top) versus the mesh repair result from the PolyMender
algorithm of [46] (bottom). The zoomed views from top to bottomshow: the given mesh model with self-intersections, the repaired mesh
model generated by our method, the repaired mesh model with preserved small features by our method, the small features not preserved by
the octree based PolyMender algorithm [46].

Acknowledgment

The authors would like to thank the valuable comments given
by anonymous reviewers. This work was partially supported by
HKSAR Research Grants Council (RGC) General Research Fund
(GRF) CUHK/417508 and CUHK/417109, and it was also sup-
ported by NSF grants 1000579 and 1117127. The authors would
like to thank Pu Huang and Hoi Sheung who help implement the
algorithm of [4] and [47].

References

[1] R.A. Schumacker, R. Brand, M. Gilliland, and W. Sharp, “Study for
applying computer-generated images to visual simulation,”U.S. Air
Force Human Resources Laboratory (AFHRL-TR-69-14), 1969.

[2] H. Fuchs, Z. M. Kedem, and B.F. Naylor, “On visible surfacegener-
ation by a priori tree structures,” inProceedings of SIGGRAPH’80,
1980, pp. 124–133.

[3] G. Bernstein and D. Fussell, “Fast, exact, linear Booleans,” Computer
Graphics Forum, vol. 28, no. 5, pp. 1269–1278, 2009.

[4] M. Lysenko, R. D’Souza, and C.-K. Shene, “Improved binaryspace
partition merging,” Computer-Aided Design, vol. 40, no. 12, pp.
1113–1120, 2008.

[5] A. Paoluzzi, V. Pascucci, and G. Scorzelli, “Progressive dimension-
independent boolean operations,” inProceedings of ACM SM ’04,
2004, pp. 203–211.

[6] R. Banerjee and J. Rossignac, “Topologically exact evaluation
of polyhedra defined in CSG with loose primitives,”Computer
Graphics Forum, vol. 15, no. 4, pp. 205–217, 1996.

[7] B.F. Naylor, J. Amanatides, and W. Thibault, “Merging BSPtrees
yields polyhedral set operations,” inProceedings of SIGGRAPH ’90,
1990, pp. 115–124.

[8] W.C. Thibault and B.F. Naylor, “Set operations on polyhedra using
binary space partitioning trees,”SIGGRAPH Comput. Graph., vol.
21, no. 4, pp. 153–162, 1987.

[9] M. Campen and L. Kobbelt, “Exact and robust self-intersections for
polygonal meshes,”Computer Graphics Forum, vol. 29, no. 2, 2010.

[10] T.M. Murali and T.A. Funkhouser, “Consistent solid andboundary
representations from arbitrary polygonal data,” inProceedings of
ACM I3D’97, 1997, pp. 155–162.

[11] P. Huang and C.C.L. Wang, “Volume and complexity bounded
simplification of solid model represented by binary space partition,”
in Proceedings of ACM Symposium on Solid and Physical Modeling,
2010.

[12] Rhino3d, Rhinoceros ver 4.0, http://www.rhino3d.com, 2009.
[13] Autodesk,Maya, http://www.autodesk.com, 2009.
[14] Spatial, 3D ACISModeler R15, http://www.spatial.com, 2008.
[15] C.L. Bajaj and V. Pascucci, “Splitting a complex of convex polytopes

in any dimension,” inProceedings of ACM SCG, 1996, pp. 88–97.
[16] C.L. Bajaj, A. Paoluzzi, and G. Scorzelli, “Progressive conversion

from B-rep to BSP for streaming geometric modeling,”Computer-
Aided Design and Applications, vol. 3, no. 5, pp. 577–586, 2006.

[17] W.C. Thibault, Application of binary space partitioning trees to



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

Model Point # Triangle # Repair Time (Sec.) Resultant Face #

Armadillo 25k 108,241 25.1 231,322
Buddha 25k 105,578 23.9 238,119
Filigree 25k 106,018 31.4 246,027

Fig. 16: Mesh repair for surfaces reconstructed from point clouds. From left to right, point clouds, mesh surfaces with problems (where the
problematic regions are displayed by bolded lines), and repaired two-manifold mesh surfaces. The reported time includes the time for 1) BSP
construction, 2) solidity repair [10] and 3) boundary surface extraction.

geometric modeling and ray-tracing, Ph.D. thesis, Atlanta, GA,
USA, 1987, Director-Naylor, Bruce F.

[18] Supplementary Document, “Exact vs. approximate predicates and
point-based vs. plane-based representation,” 2010.

[19] A.A.G. Requicha and H.B. Voelcker, “Boolean operations in solid
modeling: Boundary evaluation and merging algorithms,”Proceed-
ings of the IEEE, vol. 73, no. 1, pp. 30–44, 1985.

[20] CGAL, CGAL - Computational Geometry Algorithms Library,
http://www.cgal.org/, 2010.

[21] J. Rossignac, “Blist: A Boolean list formulation of CSG trees,” 1998.
[22] A. Rappoport and S. Spitz, “Interactive Boolean operations for

conceptual design of 3-D solids,” inSIGGRAPH ’97: Proceedings
of the 24th annual conference on Computer graphics and interactive
techniques, 1997, pp. 269–278.

[23] J. Hable and J. Rossignac, “Blister: GPU-based rendering of Boolean
combinations of free-form triangulated shapes,” inSIGGRAPH ’05:
ACM SIGGRAPH 2005 Papers, 2005, pp. 1024–1031.

[24] J. Hable and J. Rossignac, “CST: Constructive solid trimming for
rendering breps and CSG,”IEEE Trans. on Vis. and Comp. Graph.,
vol. 13, no. 5, pp. 1004–1014, 2007.

[25] B. R. Vatti, “A generic solution to polygon clipping,”Commun.
ACM, vol. 35, no. 7, pp. 56–63, 1992.

[26] G. Greiner and K. Hormann, “Efficient clipping of arbitrary poly-
gons,” ACM Trans. Graph., vol. 17, no. 2, pp. 71–83, 1998.

[27] D. Pavic, M. Campen, and L. Kobbelt, “Hybrid booleans,”Computer
Graphics Forum, vol. 29, 2010.

[28] M. Kazhdan, A. Klein, K. Dalal, and H. Hoppe, “Unconstrained
isosurface extraction on arbitrary octrees,” inProceedings of Euro-



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

graphics SGP ’07, 2007, pp. 125–133.
[29] S. Bischoff, D. Pavic, and L. Kobbelt, “Automatic restoration of

polygon models,” ACM Trans. Graph., vol. 24, no. 4, pp. 1332–
1352, 2005.

[30] T. Ju, F. Losasso, S. Schaefer, and J. Warren, “Dual contouring of
hermite data,” inProceedings of SIGGRAPH ’02, 2002, pp. 339–346.

[31] P. Brunet and I. Navazo, “Solid representation and operation using
extended octrees,”ACM Trans. Graph., vol. 9, no. 2, pp. 170–197,
1990.

[32] Chris Wojtan, Nils Tḧurey, Markus Gross, and Greg Turk, “Physics-
inspired topology changes for thin fluid features,”ACM Trans.
Graph., vol. 29, no. 4, pp. 1–8, 2010.

[33] C.M. Hoffmann, “Robustness in geometric computations,”ASME
Journal of Computing and Information Science in Engineering, vol.
1, pp. 143–156, 2001.

[34] G. Barequet, “Using geometric hashing to repair CAD objects,”
IEEE Comput. Sci. Eng., vol. 4, no. 4, pp. 22–28, 1997.

[35] C. DeCoro and N. Tatarchuk, “Real-time mesh simplificationusing
the GPU,” inProceedings of ACM I3D 2007, 2007, pp. 161–166.

[36] J. Comba and B. Naylor, “Conversion of binary space partitioning
trees to boundary representation,” inProceedings of Theory and
Practice of Geometric Modelling, 1996.

[37] Qhull, “Qhull 2010.1,” UIUC Geometry Center, QHull Computa-
tional Geometry Package, 2010.

[38] L. de Floriani and A. Hui, “A scalable data structure forthree-
dimensional non-manifold objects,” inEurographics Symposium on
Geometry Processing, 2003, pp. 72–82.

[39] J. Rossignac and D. Cardoze, “Matchmaker: manifold BRreps for
non-manifold r-sets,” inProceedings of Fifth Symposium on Solid
Modeling, 1999, pp. 31–41.

[40] T.K. Dey and S. Goswami, “Tight cocone: a water-tight surface
reconstructor,” inProceedings of ACM SM’03, 2003, pp. 127–134.

[41] C.C.L. Wang, “Approximate boolean operations on large polyhedral
solids with partial mesh reconstruction,”IEEE Trans. Vis. and Comp.
Graph., 2010.

[42] J.R. Shewchuk, “Adaptive precision floating-point arithmetic and fast
robust geometric predicates,”Discrete & Computational Geometry,
vol. 18, pp. 305–363, 1997.

[43] GMP, The GNU Multiple Precision Arithmetic Library,
http://gmplib.org/, 2010.

[44] P. Cignoni, C. Rocchini, and R. Scopigno, “Metro: measuring error
on simplified surfaces,”Computer Graphics Forum, vol. 17, no. 2,
pp. 167–174, 1998.

[45] E. Langetepe and G. Zachmann,Geometric Data Structures for
Computer Graphics, A K Peters, Ltd., 2006.

[46] T. Ju, “Robust repair of polygonal models,”ACM Trans. Graph.,
vol. 23, no. 3, pp. 888–895, 2004.

[47] C. Buchart, D. Borro, and A. Amundarain, “GPU local triangula-
tion: an interpolating surface reconstruction algorithm,”Computer
Graphics Forum, vol. 27, no. 3, pp. 807–814, 2008.

[48] T. K. Dey, J. A. Levine, and A. Slatton, “Localized delaunay
refinement for sampling and meshing,”Computer Graphics Forum,
vol. 29, no. 5, pp. 1723–1732, 2010.

Charlie C. L. Wang is currently an Asso-
ciate Professor at the Department of Me-
chanical and Automation Engineering, the Chi-
nese University of Hong Kong, where he be-
gan his academic career in 2003. He gained
his B.Eng. (1998) in Mechatronics Engineer-
ing from Huazhong University of Science and
Technology, M.Phil. (2000) and Ph.D. (2002) in
Mechanical Engineering from the Hong Kong
University of Science and Technology. He is
a member of ASME and IEEE, and Chair-

man of Technical Committee on Computer-Aided Product and Pro-
cess Development (CAPPD) of ASME. Dr. Wang has received a few
awards including the ASME CIE Young Engineer Award (2009), the
CUHK Young Researcher Award (2009), the CUHK Vice-Chancellor’s
Exemplary Teaching Award (2008), the Best Paper Awards of ASME
CIE Conferences (in 2008 and 2001), and the Prakash Krishnaswami
CAPPD Best Paper Award of ASME CIE Conference in 2011. His current
research interests include geometric modeling in computer-aided design
and manufacturing, biomedical engineering and computer graphics, as
well as computational physics in virtual reality.

Dinesh Manocha is currently a Phi Delta
Theta/Mason Distinguished Professor of Com-
puter Science at the University of North Car-
olina at Chapel Hill. He received his Ph.D. in
Computer Science at the University of Califor-
nia at Berkeley 1992. He has published more
than 330 papers in computer graphics, geo-
metric computation, robotics and many-core
computing and received 12 best-paper awards.
Some of the software systems developed by his
group on collision and geometric computations,

interactive rendering, crowd simulation, and GPU-based algorithms
have been downloaded by more than 100K users and widely licensed by
commercial vendors. Manocha has served in the program committees
of more than 100 leading conferences and in the editorial board of
more than 10 leading journals. He has won many awards including
NSF Career Award, ONR Young Investigator Award, Sloan Fellowship,
IBM Fellowship, SIGMOD IndySort Winner, Honda Research Award and
UNC Hettleman Prize. He is a Fellow of ACM, AAAS, and IEEE and
received Distinguished Alumni Award from Indian Institute of Technology,
Delhi.


