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Abstract—Given a set of corresponding user-specified anchor points on a pair of models having similar features and topologies,

the cross-parameterization technique can establish a bijective mapping constrained by the anchor points. In this paper, we

present an efficient algorithm to optimize the complexes and the shape of common base domains in cross-parameterization

for reducing the distortion of the bijective mapping. The optimization is also constrained by the anchor points. We investigate

a new signature, Length-Preserved Base Domain (LPBD), for measuring the level of stretch between surface patches in cross-

parameterization. This new signature well balances the accuracy of measurement and the computational speed. Based on LPBD,

a set of metrics are studied and compared. The best ones are employed in our domain optimization algorithm that consists of two

major operators, boundary swapping and patch merging. Experimental results show that our optimization algorithm can reduce

the distortion in cross-parameterization efficiently.

Index Terms—complex domain, optimization, stretch, cross-parameterization, surface parameterization.
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1 INTRODUCTION

COMPUTATIONS of a bijective mapping among different
models are very useful for many geometry processing

applications, such as texture mapping, morphing, pair-wise
model editing, shape blending, details transfer, model com-
pletion, shape analysis, and model database preparation.
A general solution for constructing such a mapping can
be computed through the global parameterization approach
(ref. [1], [2], [3]). However, for applications like morphing
and database preparation, parameterization must be con-
strained by semantic features, which are correspondingly
specified as anchor points on the surface of input models.
A method called cross-parameterization was proposed in [4]
to solve this problem by constructing consistent domains on
a pair of models linking the anchor points, and Schreiner et
al. [5] presented an approach named as inter-surface mapping
for a similar purpose.

Without loss of generality, models that need to be cross-
parameterized usually have similar features, and the corre-
spondences between anchor points should respect such sim-
ilarities (i.e., hands mapped to hands as mentioned in [4]).
In addition, the constructed cross-parameterization should
preserve the shape of the models as much as possible.
Similar to the 3D-to-2D surface parameterization problem
(e.g., [6]), shape preservation is usually achieved by mini-
mizing the distortion occurring in the bijective mapping. A
relaxation based smoothing step was introduced in [4] for
this purpose. Nevertheless, our recent study shows that the
distortion is seriously affected by the shape dissimilarity of
domains between the cross-parameterized models, and such
distortion can hardly be reduced by the smoothing step in
[4]. This motivates our research.

Given two surface meshes, the source model Ms and
the target model Mt, which have the corresponding sets
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of anchor points Gs and Gt prescribed, linking the anchor
points on both models in a consistent way can construct
two triangular patch layouts Ps and Pt having the same
connectivity (e.g., the algorithms in [4], [7]). Following [7],
a polygonal mesh M is represented by a pair (V,K), where
V is a set of vertices and K is an abstract simplicial complex
that contains all the topological (i.e., adjacency) information.
For convenience, we also treat a triangular patch layout
as a special mesh with anchor points being the vertices
and curved patch boundaries being the edges. Assume that
each patch P i in a patch layout can find a corresponding
planar domain Bi (e.g., by [6]), we can obtain the 3D-to-2D
mapping

Γs : P i
s ⇒ Bi

s and Γt : P
i
t ⇒ Bi

t .

After establishing the mapping between 2D domains as Γst :
Bi

s ⇒ Bi
t (e.g., using mean-value coordinates [8]), we have

established the cross-parameterization

Γ = Γs · Γst · Γ
−1

t (1)

to map Ms to Mt. Basically, such a mapping is rarely stretch-
free (i.e., isometric). However, applications like model syn-
thesis and shape blending wish to minimize such distortion
as it leads to unwanted shape distortion on the results
– an example is shown in Fig.1. Many prior researchers
have dedicated on how to minimize distortions in 3D-to-
2D mappings as well as in 2D-to-2D mappings. Our recent
study finds that optimizing the topology of common base
domains in Ps and Pt can further reduce the stretch, and the
research presented in this paper works out an efficient al-
gorithm to optimize the topology of common base domains
for reducing the distortion in cross-parameterization. The
optimization is constrained by the anchor points. Specifi-
cally, every anchor point should be part of the simplicial
complex of the patch layout and the positions of anchor
points cannot be changed during the optimization.

After describing the overview of our domain optimization
algorithm in section 2, we investigate a new signature,
Length-Preserved Base Domain (LPBD) (in section 3), which
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Fig. 1: An example for illustrating the influence of an imper-
fect cross-parameterization on the result of shape blending.
(Top row) Unwanted distortions (circled by red dash lines)
are generated on the hand model synthesized from half of
the hand A and half of the hand B according to the cross-
parameterization of [4]. (Bottom row) Such unreal distortions
are vanished after applying our optimization algorithm to the
common base domains generated by [4].

can indicate the level of distortion between surface patch-
es in cross-parameterization efficiently and effectively by
measuring the dissimilarity between base domains. Based
on this new signature, a set of metrics are then studied (in
section 4) and the best ones are selected for our domain
optimization algorithm which is composed of two major
operators, boundary swapping and patch merging. Before pre-
senting the technical details, we review the previous work
and brief the contributions below.

1.1 Previous Work

As an essential step for many geometry processing ap-
plications, the construction of bijective mappings between
models or domains has been studied for many year. A
couple of the previous approaches require a base domain
in order to find such mappings. One of the most commonly
used base domains is the spherical domain [9], which
produces seamless and continuous parameterizations every-
where. However, it only works on genus-zero models. A
more general method is to use complexes based domains as
[4], [5], [7], [10], [11], [12]. The whole surface mesh is usually
partitioned into simplicial complexes, which are served as
base domains (or called base meshes in some approaches).
Once the base domains are obtained, the original meshes
can be parameterized to the base domain, and then through
which the cross-parameterization is established.

Although there are many excellent approaches in litera-
ture about domain construction (e.g., [2], [3]) and optimiza-
tion (e.g., [12]) for single model parameterization (see [13]
for the comprehensive survey), it is not straightforward to

Fig. 2: The flipping path operator proposed in [4] could make
the shape of base domains more irregular when the anchor
points are distributed very unevenly: (left) before applying the
operator and (right) after flipping paths.

extend them to multiple models when bijective mappings
between different models are needed. The main difficulty
is how to construct the consistent base domains on input
models having similar features and topology. Such com-
mon base domains are the basis for the rest of the cross-
parameterization.

Praun et al. [7] used the connectivity of a predefined
template base domain and then traced the boundary of
patch layouts on each of the input meshes by linking
the given feature points in a consistent way as that in
the template base domain. The method that links feature
points in a consistent manner is based on 1) finding the
shortest paths between feature points and 2) preventing
the paths from intersecting, blocking and being in wrong
cyclical order. Kraevoy et al. [4] and Schreiner et al. [5]
further extended the idea of Praun et al. by automating
the generation of the template base domain. Kraevoy et
al. [4] first compute the shortest paths between all feature
points, and then select the best pair of corresponding paths
from a priority queue sorted by the sum of path lengths on
meshes. By trial-and-error until all the patches have been
triangulated, they eventually obtain the patch layout for
the base domain. Nevertheless, the topology and the shape
of the patch layouts are not optimized to have less dis-
tortion in the cross-parameterization. Specifically, when the
distribution of anchor points are very uneven, the distortion
of mappings is still significant after applying the flipping
path operator and the relaxation based smoothing operator
which is proposed in [4] for reducing the distortion in cross-
parameterization. The main reason why their flipping path
operator does not work is that their metric for governing
the operator only considers the valences of base domain
(i.e., the number of paths linking to an anchor point).
For example, on the model shown in Fig.2, after applying
the flipping paths operator, the valences at anchor points
become closer to six (i.e., regular); however, the shape of
domain patches becomes more irregular. The new signature,
Length-Preserved Base Domain (LPBD) proposed in this paper,
can solve this problem. The approach of Schreiner et al. [5]
constructs the base domain in a manner similar to [4], and
tried to reduce the distortion in the coarse-to-fine mapping
optimization. However, they only change the connectivity
of common base domains by adding points to resolve the
domain construction problem on high genus models.

Wang et al. [15] extended the skin algorithm [16] by
simultaneously growing two skins with identical connec-
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Fig. 3: An example for illustrating the overview of our domain optimization algorithm. The left most column shows the two input
hand models with prescribed anchor points (in green). (First and second rows) The topology and shape of common base domains
on Ms and Mt are changed during the optimization. (Third row) A uniform mesh of the source model, Ms, is transferred onto the
target model, Mt, using the established cross-parameterization where the transferred mesh on the target model should be smooth
if the cross-parameterization has small distortion. (Last row) The distortion of cross-parameterization can also be visualized by
the distribution of L

2-stretch [14] on the transferred mesh model.

tivity over different skeleton models. This algorithm has
less topological constraints on the models to be approx-
imated, and the input models could be mesh, polygonal
soap or point clouds. Another recent mesh fitting based
approach for generating compatible mesh surfaces is [17],
where the authors approximate the input geometry with a
linearized biharmonic surface. These template fitting based
approaches [15], [17], [18] in general are slower than the
cross-parameterization based remeshing approaches.

Some researches focus on mapping between models with
different topologies [19], [20], [21]. The work of Zhang
et al. [19] decomposes a given model by branches of its
reeb graph, and the approach of Bennett et al. [20] is
based on an initial alignment scheme that allows users to
identify topological changes. Recently, Li et al. proposed
a pants decomposition in [21] to partition input models

into pants which are genus-zero with three boundaries.
After matching each corresponding pant with two regular
hexagonal domains, the bijective mapping between two
models is obtained. Their method can handle models with
different genus numbers while ours focuses on solving
distortion minimization problem by optimizing the common
base domains.

1.2 Contributions

We develop a domain optimization algorithm for reduc-
ing the distortion in cross-parameterization, which is con-
strained by the prescribed anchor points. The efficiency
and effectiveness of this optimization algorithm is benefited
by a new signature, Length-Preserved Base Domain (LPBD),
investigated in this paper. Based on LPBD, a set of metrics
are studied and the best ones are selected for the domain
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Fig. 4: Illustration of base domain construction in [4].

optimization algorithm, which manipulates the connectivity
of common base domains with two operators, boundary
swapping and patch merging. The major novelty comes from
using the new signature, LPBD, to convey the distortion
in cross-parameterization to the shape dissimilarity of base
domains therefore speed up the computation.

2 DOMAIN OPTIMIZATION ALGORITHM

Our domain optimization algorithm starts from the common
base domains constructed by the method in [4] which is
briefly introduced as Pre-step, and the three major steps of
our algorithm are presented after that. An example is shown
in Fig.3 to illustrate the functionality of each step.

Pre-step: Initial base domain construction
The algorithm presented in [4] is implemented in this

step. Firstly, the shortest paths along polygonal edges be-
tween all feature points are computed. Then, the best pairs
of corresponding paths in terms of the sum of path lengths
are chosen as boundaries to construct the common base
domains. Again,the selection should prevent the paths from
intersecting, blocking and being in wrong cyclical order
(similar to [7]). Finally, flipping path and smoothing op-
erators are applied to generate the initial common base
domains (see Fig.4).

Step 1: Boundary stretching
This is a step to reduce the differences between the actual

boundary shape of a surface patch in the patch layout and
the shape of its corresponding planar domain. The stretch-
ing operator developed in [22] is applied to the boundary
curves one by one. The principle of this curve stretching
operator is to convert a curve into a geodesic curve locally
by using an edge operator and a node operator to make
the curve shorter dynamically – details can be found in
[22]. After several iterations, the curve under stretching
approximates a geodesic curve linking its two endpoints on
the given mesh surface. Note that the stretched curve does
not necessarily pass along the edges of given mesh models
any more. The intersection between a curve under stretching
and other static curves must be prevented by the intersec-
tion avoidance method presented in [7]. The resultant patch

layouts should have very smooth boundaries for all patches.
However, it is not difficult to find from the example shown
in Fig.3 that the distortion in the cross-parameterization is
still very significant although stretching the boundary of
patches can reduce the distortion slightly.

Step 2: Boundary swapping

In this step of our algorithm, the patch layouts on both
models, Ms and Mt, are adjusted iteratively and local-
ly to reduce the distortion in cross-parameterization. The
boundary swapping operator is conducted to optimize the
topology of the patch layouts. Without loss of generality, for
two patches sharing a common boundary curve, applying
the boundary swapping operator on them will convert the
patches into two new patches by replacing the boundary
curve by a new one linking its opposite anchor points in the
triangular patches. The new boundary curve is constructed
by first finding the shortest path along the mesh edges
linking the opposite anchor points and then stretching the
curve by the method in [22]. Again, the intersection between
the new curve and other existing curves must be prevented.
The priority list of applying the boundary swapping oper-
ator is built and maintained based on the metrics of the
shape similarity of base domains, and serves as a signature
to indicate the level of distortion in cross-parameterization.
Detailed studies about the new signature, Length-Preserved
Base Domain (LPBD), are presented in section 3.

Step 3: Patch merging

A curved boundary shared by two patches will be re-
moved in this step if such a removal helps reduce the
distortion in the cross-parameterization. Apart from the
reduction of distortion, other properties of the base domain
(like the convexity and the flattenability) are also considered
during patch merging to generate a valid and optimal result.

Following these main steps, the given mesh surfaces are
trimmed by the boundary curves of the new patch lay-
outs using the Constrained Delaunay Triangulation (CDT)
[23]. The newly constructed patch layouts lead to a cross-
parameterization with less distortion (see Fig.3 for an ex-
ample).

3 LENGTH-PRESERVED BASE DOMAIN

This section investigates a new signature, Length-Preserved
Base Domain (LPBD), indicating the level of stretch (i.e., dis-
tortion) induced in a cross-parameterization. This signature
can be efficiently evaluated on the patch layouts for the
common base domains of cross-parameterization.

3.1 LPBD as a Signature for Distortion

From the problem description presented at the beginning of
this paper, we know that a cross-parameterization is com-
posed of three mapping functions: Γs, Γst and Γt. Different
from the domain optimization approach for a single model
[12] that always employs regular triangles as the planar base
domain in the mapping, we allow the shape of the base
domain to vary in 2D. Specifically, the planar domain Bi

for a 3D patch P i on the given model is constructed by

1) preserving the length of boundary curves on P i (i.e.,
having invariant length of boundaries),

2) straightening each of the 2D boundary curves,
3) trying to mimic the shape of P i in 2D,
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Fig. 5: A study of the robustness of using the dissimilarity on LPBDs to measure the distortion in cross-parameterization. For
a given source model Ms shown in the upper-left corner of the figure, we test the distortions between it and various of target
models Mt, where the developability of patches keeps decreasing from left to right for patches in the same row and the boundaries
of patches are changed for the patches in the same column. The L

2-stretches [14] in the cross-parameterization, L2(Γ), and the
L
2-stretches on the planar base domains, L2(Γst), are also listed in the figure. Note that only the big triangles linking the anchor

points used to evaluate planar domain distortion, L2(Γst). The color maps are used to visualize the distribution of L
2 stretches

generated by the cross-parameterization.

where the whole boundary of a patch is subdivided into
curves by the anchor points. Obviously, the planar base
domains generated in this way, named as Length-Preserved
Base Domain (LPBD), have different shapes and sizes. The
dissimilarity between the planar base domains Bi

s and Bi
t

is a good signature to indicate the cross-parameterization
from P i

s to P i
t .

By retaining the length of boundary curves, the map-
ping from P i to Bi is stretch-free along the boundaries. If
the boundary curves on P i are geodesic curves, flattening
them into straight planar line segments leads to a stretch-
free mapping around/across the lines. If P i

s and P i
t are

developable surfaces, the mappings Γs and Γt from P i
s

and P i
t to the LPBD, Bi

s and Bi
t , are stretch-free too. As

the cross-parameterization Γ from P i
s to P i

t is series-wound
mappings, Γs ·Γst ·Γ

−1

t , the distortion of Γ is only introduced
by the 2D-to-2D mapping Γst : B

i
s ⇒ Bi

t in this scenario. In
other words, the dissimilarity between Bi

s and Bi
t measures

the distortion of cross-parameterization Γ.

A more interesting study relates to how significantly the
distortion in Γst contributes to the overall distortion in the
cross-parameterization Γ when the patches P i

s and P i
t are

not developable. With a given planar shape Bi, we can
assume that the distortion in the 3D-to-2D mapping from
P i to Bi has been minimized – in our implementation,
the mean-value coordinates based parameterization [8] is

used for this purpose. The mapping Γst is again estab-
lished by mean-value coordinates [8]. We now study how
the developability of a 3D patch affects the robustness of
using the signature, LPBD, to measure the stretch in cross-
parameterization. As shown in Fig.5, for an unchanged
source model Ms, when the target model Mt becomes more
and more nondevelopable while still keeping the same
boundary, the stretch error of the cross-parameterization
does not show a significant change. However, when keep-
ing the geometric details (i.e., the level of developability)
of patches but changing their boundaries (i.e., the shape
of LPBD), the stretch errors of the cross-parameterization
change significantly (see the changes in Fig.5 by columns).
In summary, the dissimilarity between the LPBDs, Bi

s and
Bi

t , is a robust signature to indicate the stretch in the overall
cross-parameterization. Different from the original cross-
parameterization approach [4] that constructs base domains
by linking anchor points with straight lines in 3D, mapping
geodesic curves of the patch boundaries into planar straight
lines conveys more surface dissimilarity to the shape of 2D
domains, Bi

s and Bi
t . This enhances the robustness of the

LPBD signature.

3.2 LPBD Computing

The Length-Preserved Base Domain (LPBD), Bi, of a patch
P i ∈ ℜ3 on the given model can be easily computed
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by a constrained optimization framework similar to the
computation of Length-Preserved Free Boundary (LPFB) in
[24]. Assume that the boundary of P i is determined by
linking n anchor points with approximate geodesic curves,
we compute the optimal planar angles αi on the i-th anchor
point by solving a constrained optimization problem as

min
∑n

i=1

1

2
(αi − θi)

2

s.t. nπ −
∑n

i=1
αi ≡ 2π∑n

i=1
li cosφi ≡ 0∑n

i=1
li sinφi ≡ 0

(2)

where θi is the surface angle of the patch at the i-th anchor
point, and li denotes the length of the boundary curve be-
tween the i-th and the (i+1)-th anchor points on the patch.
The computation is taken in the angle space by setting the
angle variations as objective function to generate a planar
domain with a shape similar to the patch’s boundary in
3D. The first hard constraint is derived from the closed-
path theorem to prevent self-intersection, and the latter two
hard constraints are employed to ensure the generation of
a closed boundary loop with

φi = iπ −
∑i

b=1
αi.

Once the 2D angles on anchor points are determined, we
can easily locate the i-th anchor point of LPBD at

(
∑i

b=1
lb cosφb,

∑i

b=1
lb sinφb).

The LPBD can be computed very efficiently because for a
patch circled by n boundary curves, only n variables plus
three constraints are involved in the computation (i.e., a (n+
3)×(n+3) linear equation system). This can be easily solved
by the Quasi-Newton’s method. Notice that we can directly
compute the planar shape of a base domain by the lengths
of its boundaries if the domain is triangular.

4 BOUNDARY SWAPPING

Edge swapping (or called edge-flip) is a widely used opera-
tor to improve the quality of triangular meshes in mesh op-
timization (e.g., [25], [26], [27]); we employ a similar concept
to optimize the shape similarity of common base domains.
Different from the edge swapping operator, performing
swapping on the curved boundaries of base domains is
more difficult because of the following four reasons:

1) The shapes of domains on both the source and the
target models need to be considered.

2) The shapes of 2D domains after swapping a curved
boundary cannot be predicted by that of 2D domains
before swapping.

3) The shape of a 2D domain after swapping could be
degenerated, where the length of one boundary curve
is longer than the sum of the other two so that the
computed planar triangle could be an invalid LPBD.

4) The computation of measuring the distortion in cross-
parameterization based on dense meshes is time-
consuming.

Our target here is to exploit an effective metric that can be
efficiently evaluated.

Before going to the study of finding a good metric, let’s
assume that such a metric for boundary swapping has been

well defined on every boundary curve ṽavb, as Υ(ṽavb).

For two patches ∆̃vavbvl and ∆̃vavbvr defined on four
anchor points va, vb, vl and vr and sharing the common

Fig. 6: The boundary swapping operator applied on a curved

boundary edge ṽavb shared by two patches ∆̃v
a
v
b
v
l and

∆̃v
b
v
a
v
r replaces ṽavb by a new curve ṽlvr and therefore

forms two new triangular patches ∆̃v
a
v
r
v
l and ∆̃v

b
v
l
v
r on the

surface.

Algorithm 1 GreedyBndSwapping

1: Initialize an empty maximum heap H ;

2: for every pair of ṽas vbs ∈Ms and ṽat v
b
t ∈Mt do

3: Evaluate the metric Υ(ṽavb) on them;

4: Insert the curve ṽavb into H when Υ(ṽavb) > 0;
5: end for
6: while H is NOT empty do

7: Remove a curved boundary edge ṽavb from H ;

8: Apply the swapping operator on ṽavb;

9: for any of ṽavl, ṽavr , ṽbvl and ṽbvr do
10: Evaluate the metric Υ(· · ·) on the boundary curve;
11: if the boundary curve is in H then
12: Update its position in H ;
13: else
14: Insert the curve into H when Υ(· · ·) > 0;
15: end if
16: end for
17: end while

boundary curve ṽavb, applying the boundary swapping
operator on them converts them into two new patches

∆̃vavrvl and ∆̃vbvlvr (see Fig.6). The metric Υ(ṽavb) re-
turns a value to indicate the level of distortion reduction in
cross-parameterization by swapping ṽavb to ṽlvr , the value
of which is the greater the better. Based on this metric, a
greedy algorithm can be developed to conduct boundary
swapping by using a maximum heap keyed on Υ(· · ·).
Pseudo-code of the basic algorithm is given in the Algorith-
m GreedyBndSwapping. Notice that, when considering the

new boundary ṽlvr , we need to prevent the paths from
intersecting, blocking and being in wrong cyclical order.
Moreover, we need to verify the validity of LPBD. If invalid
LPBDs will be generated after swapping, the operation must
be prevented. On the other hand, if a boundary swapping
can convert invalid LPBDs into valid LPBD, it must have
the highest priority to perform.

4.1 Metrics Based on Dense Meshes

A kind of obvious metrics for Υ(ṽavb) is the ones mea-
sured by the deformation between the dense meshes
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of ∆̃vas v
b
sv

l
s and ∆̃vas v

r
sv

b
s and their transformed shapes

Γ(∆̃vas v
b
sv

l
s) and Γ(∆̃vas v

r
sv

b
s), which are defined by the

cross-parameterization Γ. The metrics based on angle dis-
tortion or L2-stretch on these dense meshes are presented
below.

Angle Distortion

Borrowing the idea of Sheffer et al. from [28], for any

triangle fi ∈ ∆̃vas v
b
sv

l
s or ∆̃vas v

r
sv

b
s, we define that angle dis-

tortion measures the change of its three angles ai,1, ai,2 and
ai,3 on the source model compared with the corresponding
angles a′i,1, a′i,2 and a′i,3 after applying the mapping Γ.
If there are |f | triangles in these two patches, the angle
distortion on the patches can be calculated by

Eang(ṽavb) =
1

3|f |

|f |∑

i=1

3∑

j=1

(
ai,j − a′i,j

ai,j
)2 (3)

which has a lower bound zero on examples without distor-
tions. The boundary swapping metric based on the angle
distortion is then defined by the difference between the

angle distortions Eang(ṽavb) and Eang(ṽlvr).

ΥAD(ṽavb) = Eang(ṽavb)− Eang(ṽlvr) (4)

The angle distortion for the whole model, Eang(Ms), can
be evaluated in a way similar to Eq.(3) by including all
triangles on Ms.

L2-Stretch

Another widely used method for measuring the distortion
of surface parameterization is the L2-stretch introduced
by Sander et al. in [14]. For a triangle fs ∈ Ms and its
corresponding shape defined by the mapping Γ as Γ(fs),
the L2-stretch is defined by computing the Eigen values of
the Jacobian formed by partial derivatives of a unique affine
mapping between fs and Γ(fs). To ease the computation,
for fs with three vertices (p1,p2,p3) in ℜ3, we define a
local planar frame on Γ(fs) to obtain the planar coordinates
of its three vertices as (sk, tk) (k = 1, 2, 3). Then, the
L2-norm defined on the triangle fs based on the cross-
parameterization is

L2(fs) =
√

(τs · τs + τt · τt)/2 (5)

with

τs = ((t2 − t3)p1 + (t3 − t1)p2 + (t1 − t2)p3)/(2A(Γ(fs)))
τt = ((s2 − s3)p1 + (s3 − s1)p2 + (s1 − s2)p3)/(2A(Γ(fs)))

and A(· · ·) defining the area of a triangle. Therefore, the
normalized L2-stretch of all triangles in a particular region
Ω is

EL2(Ω) =

√∑
fi∈Ω

A(Γ(fi))
∑

fi∈Ω
((L2(fi))2A(fi))

(
∑

fi∈Ω
A(fi))2

, (6)

which has a lower bound of 1.0. The boundary swapping
metric based on the L2-stretch on dense meshes is then
defined on all triangles ∆̃vas v

b
sv

l
s, ∆̃vas v

r
sv

b
s, ∆̃vavrvl and

∆̃vbvlvr as

ΥL2(ṽavb) = EL2(ṽavb)− EL2(ṽlvr). (7)

Similarly, the L2-stretch of the whole model, EL2(Ms), can
also be evaluated by including all triangles on Ms in the
computation of Eq.(6).

Both of these two metrics, Eang(Ms) and EL2(Ms), reflect
the distortion of a cross-parameterization in their own as-
pects. An ideally optimized cross-parameterization should
reduce both of them.

4.2 Metrics Based on Shape of Domains

The main problem of directly applying these metrics to the
domain optimization for cross-parameterization is that the
evaluation of them is generally time-consuming (especially
when the given models have very dense triangular meshes).
Therefore, we have studied some other metrics which are
defined directly on the LPBD signature and wish to find
one that well balances the quality of results and the speed of

computation. As the metrics, ΥAD(ṽavb) and ΥL2(ṽavb), are
tightly coupled with the quality of cross-parameterization,
the results of applying them in the Algorithm GreedyB-
ndSwapping are served as benchmarks for the selection of
a good metric below.

Area Similarity
The first tested metric is stimulated by the analysis given

in [24] that a surface parameterization with small distortion
usually has small area variations (e.g., flattening a devel-
opable mesh surface). Therefore, an area similarity metric is
defined as

Υarea(ṽavb) = Earea(ṽlvr)− Earea(ṽavb) (8)

where

Earea(ṽcvd) = (ψ(P l
s)− ψ(P l

t ))
2 + (ψ(P r

s )− ψ(P r
t ))

2

with P l and P r denoting the surface patches on the left

and the right of the curved boundary ṽcvd in the patch
layout. The function ψ(P i) returns a value based on the
area difference between a surface patch, P i, and its LPBD,
Bi.

ψ(P i) =

{
A(P i)/A(Bi) (A(P i) ≥ A(Bi))

−A(Bi)/A(P i) (A(P i) < A(Bi))

A(Bi) is the area of a base domain, which can be directly
calculated by Heron’s formula using the lengths of boundary
curves on P i. However, it should be noted that the Heron’s
formula which is base on lengths may fail if the length
of a boundary curve is larger than the sum of other two
boundary curves’ lengths – i.e., a degenerated case happens.
For a degenerated case, we simply define the area of Bi with
a very small value (e.g., 10−8).

Domain Angle Distortion
In order to measure the similarity of triangular domain-

s, one of the methods is to calculate the difference of
corresponding angles in the planar domains, Bi

s and Bi
t .

Therefore, using the notation illustrated in Fig.6 as the
angles in LPBDs, we can define the following metric to
govern the swapping operator.

ΥDAD(ṽavb) =

6∑

k=1

(
αk
s − αk

t

αk
s

)2 −

6∑

k=1

(
βk
s − βk

t

βk
s

)2 (9)

Again, a curved boundary edge ṽavb is inserted into the

priority list only when ΥDAD(ṽavb) > 0.

Domain L2-Stretch
Another method that measures the similarity between

the triangular domains is through the L2-stretch which
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Fig. 7: An example to illustrate the fact that highly irregular
shapes in LPBDs will also lead to high distortion in cross-
parameterization (top row). The color map shows the distri-
bution of L

2-stretch. The distortion can be reduced by using
domains with more regular shapes (bottom row).

has been used in section 4.1. Differently, the L2-stretch
here measures the difference between a planar triangular
domain of the source model and its corresponding domain
of the target model. For example, L2(∆pipjpk) gives the
L2-stretch between ∆pisp

j
sp

k
s and ∆pitp

j
tp

k
t . For triangular

domains adjacent to a curved boundary edge (as illustrated
in Fig.6), the metric of domain L2-Stretch is defined as

ΥDL2(ṽavb) = EL2(ṽavb)− EL2(ṽlvr) (10)

with

EL2(ṽavb) = L2(∆papbpl) + L2(∆pbpapr), (11)

EL2(ṽlvr) = L2(∆paplpr) + L2(∆pbprpl). (12)

Shorter Diagonal Length

During our experimental tests, we find that the distortion
in cross-parameterization will still be high if the shapes
of LPBDs of two models are similar (not exactly same)
to each other but are far from regular triangles. See Fig.7
for an extreme example to demonstrate this observation.
Therefore, the fourth metric tries to make the common
base domains on both the source and the target models
become ‘regular’ triangles. A rule employed in the mesh
optimization to generate regular triangles is that a diagonal
edge will be swapped if the swapped one is shorter. The
metric ΥSDL below is introduced for the same purpose.

ΥSDL(ṽavb) = 2− (
‖ṽlsvrs‖

‖ṽas vbs‖
+

‖ṽltv
r
t ‖

‖ṽat v
b
t‖

), (13)

where ‖ṽavb‖ denotes the length of the curve linking the

anchor points va and vb, while ‖ṽlvr‖ denotes the length
of the curve linking the anchor points vl and vr . In this
metric, the length changes of the boundary curves on both
the source and the target models are considered. Swapping
is prohibited if either side has become much worse after

swapping – e.g., when ‖ṽlsvrs‖ < ‖ṽas vbs‖ but ‖ṽltv
r
t ‖ >

2‖ṽat v
b
t‖. Similarly if the curves are elongated on both Ms

and Mt, the swapping is also prevented since the value
of ΥSDL is negative. When the patches P i

s and P i
t for

the common based domains on both models approaches
regular triangles, the shapes of their corresponding LPBDs,
Bi

s and Bi
t , should be similar to each other as well (i.e., the

distortion in the mapping Γst is reduced).

Greatest Angle Reduction

In mesh optimization, another widely used rule which
detects the possibility of applying the edge swapping oper-
ator is based on checking whether the greatest angle in two
triangles adjacent to the edge is reduced. Assuming that αk

and βk (k = 1, . . . , 6) are the six angles in the two LPBD

triangles adjacent to the edge ṽavb and the swapped one

ṽlvr respectively – see Fig.6 for an illustration, we define
the greatest angle reduction metric as

ΥGAR(ṽavb) = max
k

{αk
s , α

k
t } −max

k
{βk

s , β
k
t }. (14)

The swapping is applied only when ΥGAR(ṽavb) > 0. Simi-
lar to using ΥSDL to govern boundary swapping, the metric
ΥGAR also tends to make the shapes of based domains on
both models approach regular triangles. Therefore, it can
reduce the distortion in cross-parameterization. It should be
remarked that, all the angles of LPBDs in 2D are calculated
by the length of the boundary curves directly using the Law
of Cosine. For the degenerated cases (e.g., the length of one
side is longer than the sum of the other two), the computed
value ς for arccos by the Law of Cosine does not fall in the
range [−1, 1]. For these cases, we simply assign the angle
as −ςπ (∀ ς < −1) or (1− ς)π (∀ ς > 1).

Analysis and discussion of all metrics

In order to select the ‘best’ metric for the GreedyBndSwap-
ping algorithm whose purpose is to reduce the distortion
in cross-parameterization through optimizing the shape of
common base domains, we apply the algorithm to a variety
of models by using all above metrics. The distortion in cross-
parameterization based on the resultant base domains is
measured by warping a source model Ms to the shape of
the target model Mt and calculating the angle distortion
Eang(Ms) and the L2-stretch EL2(Ms). Figure 8 shows the
bar charts for the statistics of Eang(Ms) and EL2(Ms) on
different models.

When analyzing the results, several interesting phenom-
ena can be observed.

• Firstly, the evaluation results obtained from using
Eang(Ms) and EL2(Ms) to measure the distortion in
cross-parameterization are not consistent with each
other. Take David-egea models as an example, after
using the angle distortion metric ΥAD based on dense
meshes to optimize the common base domains, the L2-
stretch, EL2(Ms), becomes even worse than the cross-
parameterization before domain optimization. Another
example is the models of men. Using the L2-stretch
metric ΥL2 to govern the boundary swapping turns out
have enlarged the global angle distortion, Eang(Ms).

• Secondly, the results obtained from using the L2-stretch
metric ΥL2 are better than that obtained from using the
metric Υang in terms of the L2-stretch error, EL2(Ms).
However, using Υang does not always give the result
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Fig. 8: The statistics of using different metrics in the greedy
algorithm when applying the boundary swapping operator to
improve the shape similarity of common base domains and
thus reduce the distortion in cross-parameterization. The top
bar chart shows the angle distortion Eang(Ms), and the bottom
one gives the results of EL2 (Ms).

that a smaller value is on Eang(Ms) than the results
obtained by using ΥL2 in the optimization.

• Thirdly, when using the metrics defined on the dissimi-
larity of LPBDs to govern optimization, ΥDL2 results in
cross-parameterizations with less distortion than Υarea

and ΥDAD – based on the evaluations of both EL2(Ms)
and Eang(Ms).

• Lastly, after considering the regularity on the shape of
base domains, the optimizations using metrics ΥSDL

and ΥGAR always give better results than one using
the metrics, Υarea, ΥDAD and ΥDL2 , that consider only
the dissimilarity. Among them, using ΥSDL generates
better results in most cases.

Based on these observations, we can conclude that the
metric ΥSDL is the best choice (based on the results of
our experimental tests) to reduce the distortion in cross-
parameterization under the greedy boundary swapping al-
gorithm. Furthermore, the metric ΥDL2 gives better results
in measuring the similarity of base domains than ΥDAD .

4.3 Balanced Algorithm

Using the metrics defined on the shape of LPBDs instead
of dense meshes can gain some speedup in the optimiza-
tion procedure; however, we find that a more significant
speedup can be obtained if some of the swapping operations
on boundary curves are skipped. Specifically, we skip the
operations on those ‘similar-enough’ common base domain-
s. In detail, the balanced algorithm for boundary curve
swapping consists of three major steps.

• Step 1) The domain L2-stretch, EDL2(ṽavb), defined on

Fig. 9: The patch merging operator applied on a curved bound-

ary edge ṽavb (the one shown in dash line) adjacent to two
triangular patches.

Algorithm 2 GreedyPatchMerging

1: Initialize an empty maximum heap Hm;

2: for every pair of ṽas vbs ∈Ms and ṽat v
b
t ∈Mt do

3: Evaluate the metric Υmerge(ṽavb) on them;

4: Insert ṽavb into Hm when Υmerge(ṽavb) > 0;
5: end for
6: while H is NOT empty do

7: Remove a curved edge ṽavb from Hm;

8: if Υmerge(ṽavb) > 0 then

9: Apply the patch merging operator on ṽavb;

10: Remove the edges ṽavl, ṽavr , ṽbvl and ṽbvr from
Hm if any of them has already been in Hm;

11: end if
12: end while

every curved boundary edge ṽavb is first evaluated by
Eq.(11).

• Step 2) Among all curved boundaries, only those hav-
ing EDL2 > 2.0+ (1−ϕ)max{EDL2 − 2.0} are defined
as active boundary curves. The golden ratio, i.e., 0.618,
is selected for ϕ.

• Step 3) Applying the greedy boundary swapping algo-
rithm only on the active boundary curves and the de-
generated cases to optimize the common base domains
by using the metric ΥSDL.

This balanced algorithm gives a good trade-off between the
quality and the speed. Around 5 to 15 times speedup can
be gained – more discussion on the results can be found in
section 6.

5 PATCH MERGING

The patch merging operator can be applied to further reduce
the distortion in cross-parameterization. Without loss of
generality, when applying the patch merging operator to

a curved boundary edge ṽavb adjacent to two triangular

patches ∆̃vavbvl and ∆̃vbvavr , the triangular patches are

merged into a quadrilateral patch ♦̃vavrvbvl. Although
merging patches into n-sided patches (n > 4) could possibly
further reduce the distortion in cross-parameterization, a
polygon with n > 4 is easier to have concave corners –
using which as the 2D domain may violate the correctness
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Fig. 10: The shape of a blended model of a dinosaur and a man
can be improved by the optimized cross-parameterization. (Top
row) The initial common base domains generated by [4], and
(Middle row) the optimized base domains – the L

2-stretches
are shown by the color map. (Bottom row) The blending results
obtained by the cross-parameterizations before vs. after domain
optimization, where the red dash lines circle the unreal distor-
tions caused by the large stretch in cross-parameterization.

of cross-parameterization (see the discussion in detail be-
low). Thus, we choose not to do that in order to ease the
implementation and shorten the computing time.

The metric for governing the order of patch merging
is defined based on the shape similarity of the LPBDs
measured by angle distortions.

Υmerge(ṽavb) =
1

6

6∑

k=1

|αk
s − αk

t | −
1

4

4∑

k=1

|γk
s − γk

t |, (15)

where αk and γk are angles on the LPBDs before and after
merging respectively (as illustrated in Fig.9). More than that,
the metric is set to be −∞ or removed from heap to prevent
patch merging operation when any of the following cases

Fig. 11: The base domains of horse-camel models before (top
row) vs. after (middle row) optimization, and their correspond-
ing L

2-stretches in the color map. The triangles belonging
to different domains are displayed in different colors. Note
that, the smoothing technique presented in [4] has already
been applied to reduce the distortion. Bottom row shows the
shape interpolation results before (left) and after (right) domain
optimization.

occurs.

• Any of the patches adjacent to the curved boundary

ṽavb is a quadrilateral patch.
• There is one edge of the to-be-merged quadrilateral

patch longer than the sum of the other three – this will
lead to a degenerated result when computing the LPBD
of the patch.

• ∃γk > π among k = 1, . . . , 4. This case is prevented
since any angle greater than π will make LPBD a
concave polygon, which will generate self-overlaps on
the 3D-to-2D parameterization such that the bijective
mapping for the cross-parameterization cannot be es-
tablished. Detailed discussion about self-overlapping in
mesh parameterizations can be found in [29].

Again, we use the greedy strategy with the metric

Υmerge(ṽavb) to perform patch merging. See the pseudo-
code in Algorithm GreedyPatchMerging for more informa-
tion.

6 RESULTS AND DISCUSSION

We have implemented the proposed algorithm in C++ plus
OpenGL. All the experimental tests shown in this paper are
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Fig. 12: An example of head models – David and Egea. (Top)
The cross-parameterization by [4]. (Bottom) The result after
optimizing the common base domains by our approach.

Fig. 13: Morphing between a dilo model and a mannequin can
be established by the cross-parameterization with optimized
common base domains.

run on a standard PC with Intel Core 2 Duo CPU E6750 at
2.67GHz plus 2GB RAM.

The first example is a pair of hand models. From the
blending result shown in Fig.1, we can see that the un-
wanted distortion in the blending can be eliminated after
optimizing the common base domains by our method. More
examples, a dinosaur-man pair, a horse-camel pair, a pair
of head models – David and Egea, and a dilo-man pair,
are shown in Figs.10-13. The results are quite encouraging.
The distortions in cross-parameterization (measured by the
L2-stretch [14] and displayed by the color map) on all
pairs of models are significantly reduced after applying
the proposed domain optimization approach. Note that, all
results shown in Figs.10-13 are generated by the balanced
boundary swapping algorithm in optimization. The initial
base domains are generated by our implementation of ap-
proach in [4].

The global angle distortion Eang(Ms) and the L2-stretch
EL2(Ms) on the resultant models are listed in Table 1 and
compared between the original cross-parameterization re-
sults of [4] and the optimized ones by the metrics defined on
the dense meshes, Υang and ΥL2 . The balanced boundary
swapping algorithm followed by the GreedyPatchMerging
algorithm generates results that are similar to that of the
optimization which is based on the ‘real’ parameterization
(i.e., the metrics evaluated on the dense meshes). However,
the speed of the balanced algorithm is about 5 to 15 times
faster (see the statistics shown in Table 1). In short, the LPBD
signature newly introduced in this paper and the proposed

Fig. 14: The statistics of results obtained by using different met-
rics in the GreedyBndSwapping algorithm on the hand example
shown in Fig.3 but having different sets of feature points. The
top bar chart shows the angle distortion Eang(Ms), and the
bottom one gives the results of EL2 (Ms).

balanced algorithm can efficiently improve the quality of
cross-parameterization results by optimizing the shape of
common base domains, which are constrained by the anchor
points.

In the boundary swapping algorithm, we do not explicit
prevent letting the boundary curves pass through the highly
stretched area; however, as it will enlarge the dissimilarity
on the LPBD signatures, such cases will be avoided auto-
matically by the metrics according to LPBDs.

Another interesting study is about how the positions of
feature points (constraints) affect the distortion in cross-
parameterization. See the statistics in Fig.14 on the same
pair of hand models shown in Fig.3 before, the level of
distortion could change significantly when different sets of
feature points are specified. Such variation occurs even if the
same number of feature points are used. To compare with
the results generated by [4], we apply our approach on a
pair of head models provided by authors of [4] on their
webpage (see Fig.15). We tried several sets of feature points
on this pair of models, and our method can always further
reduce the overall L2-stretch, EL2(MS), from 1.164 to 1.043,
1.037 and 1.035 respectively. The color maps for illustrating
the value of L2-stretch are also shown in Fig.15. In these
tests, as the input models are not provided by the authors
of [4], we can only work on the remeshed models (i.e., using
the output of [4] as our input). Although this is not a direct
comparison to the original implementation in [4], it still
somewhat proves the performance of our approach.

In order to further verify the performance of our opti-
mization algorithm, we change the way to construct initial
common base domains in [4], where the query is based
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TABLE 1: Comparisons between different optimization methods.

Models (Ms/Mt) Hand1/2 Dilo/Man Dinosaur/Man Horse/Camel David/Egea Male1/2 Female1/2
Sizes (#v) 14k / 1,515 27k / 11k 56k / 11k 20k / 9,770 50k / 8,268 3,856 / 8,950 11k/2230

Feature points # 28 52 53 29 24 37 50

Original [4]
EL2 (Ms) 1.459 1.750 1.441 1.483 1.368 1.163 1.158
Eang(Ms) 0.54 0.69 0.46 0.42 0.36 0.20 0.20

By ΥAD

EL2 (Ms) 1.111 1.579 1.267 1.195 1.383 1.042 1.027
Eang(Ms) 0.18 0.67 0.38 0.20 0.21 0.05 0.04
Time (sec.) 159 200 285 183 162 180 96

By ΥL2

EL2 (Ms) 1.087 1.456 1.217 1.112 1.076 1.018 1.026
Eang(Ms) 0.14 0.55 0.40 0.15 0.18 0.3 0.04
Time (sec.) 149 286 345 157 208 158 90

Balanced
EL2 (Ms) 1.142 1.522 1.298 1.229 1.131 1.039 1.040
Eang(Ms) 0.23 0.47 0.41 0.34 0.19 0.05 0.07
Time (sec.) 17 52 51 9 23 24 7

+ Merging
EL2 (Ms) 1.136 1.484 1.287 1.196 1.130 1.039 1.038
Eang(Ms) 0.23 0.46 0.4 0.28 0.18 0.05 0.08
Time (sec.) 19 58 61 11 25 26 7

* [4] is the original cross-parameterization before re-meshing. The reported time is the processing time of domain optimization.

Fig. 15: Applying our approach on the result of cross-parameterization generated by [4], the L
2-stretch can still be further reduced:

(a) the result of cross-parameterization downloaded from the webpage of authors [4], (b) our result generated on the set of feature
points shown in the left - the L

2-stretch is EL2 (MS) = 1.043, (c) the result on another set of feature points with EL2 (MS) = 1.037,
and (d) the result with 1.035 being the value of L

2-stretch.

on computing the shortest path between feature points by
the Dijkstra’s algorithm. Here, the priority query is keyed
according to the sum of Geodesic distances between feature
points (see Fig.16 for an example), and we compute the
Geodesic distances approximately by the method in [22].
It is found that using Geodesic distances can somewhat
improve the shape of initial common base domains thus also
the cross-parameterization. However, our algorithm can still
further reduce the distortion by optimizing the topology of
base domains. Table 2 gives the related statistics.

Lastly, we test the results of cross-parameterization con-
structed by our method in two applications. The first ap-
plication shown in Fig.17 is to establish a human body
database from the scanned 3D models. After reconstructing
a mesh surface from the scanned point cloud by [30],
we wish to generate consistent connectivity for all human
models stored in the database. More than that, the semantic

features predefined on the template model must be able
to be easily transfered to all the models by the consistent
connectivity. As shown in Fig.17, if large distortions are
embedded in the cross-parameterization, the semantic fea-
ture curves will be highly distorted, which is intolerable
for downstream applications (e.g., mannequin fabrication).
The second application is to apply the optimized cross-
parameterization in design automation of apparel products.
After constructing correspondences between the triangles
on the source model Ms and the target model Mt, we can
use some deformation transformation [18] techniques or
spatial warping techniques [31], [32] to deform an apparel
product designed for the model Ms to a new shape fit for the
new model Mt. However, if large distortions are embedded
in the cross-parameterization, the resultant model of the ap-
parel product will have highly uneven distortions – i.e., the
shape of the new product is unacceptable. From Fig.18, we
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Fig. 16: The initial common base domains constructed according to Geodesic distances instead of the lengths of shortest paths
(as [4]) can still be improved by our optimization approach, which can be seen from the color map for L

2-stretches in cross-
parameterization. The statistic data has been listed in Table 2.

TABLE 2: Statistics of distortions on the initial base domains
constructed by Geodesic distances and the optimization results.

Models (Ms/Mt) Hand1/2 Horse/Camel
Feature points # 28 29

Geodesic distances
EL2 (Ms) 1.202 1.305
Eang(Ms) 0.28 0.40

Time† (sec.) 728 956

By ΥAD

EL2 (Ms) 1.112 1.160
Eang(Ms) 0.17 0.21
Time (sec.) 125 174

By ΥL2

EL2 (Ms) 1.090 1.109
Eang(Ms) 0.13 0.15
Time (sec.) 102 147

Balanced
EL2 (Ms) 1.150 1.238
Eang(Ms) 0.20 0.34
Time (sec.) 13 11

+ Merging
EL2 (Ms) 1.144 1.212
Eang(Ms) 0.19 0.33
Time (sec.) 14 13

†Construction according to the Geodesic distances takes a very
long time to obtain the initial base domains.

can find that the shape of an automatically designed dress
for a new client (i.e., Mt) has been improved to an accept-
able level by using the optimized cross-parameterization.

6.1 Limitation

The main limitation of the approach proposed in this paper
is that, like other greedy algorithm based mesh optimization
techniques, the result of this approach may be only a local
optimum as it depends heavily on how good the given
common base domains (generated by [4]) are. Some topo-
logical obstacles may prevent the algorithm from generating
a further optimized common base domains. We plan to
develop a new common base domain construction method
to generate common base domains which have better shape
similarities from the beginning of domain construction. This
will be our near future work.

Fig. 17: An application of data preparation for establishing
human body database. From left to right, the given source
model Ms served as a template model, the input mesh surface
as a target model Mt, the result based on the original cross-
parameterization [4] (with unwanted distortion on the semantic
feature curves), and the result based on optimized domains.

7 CONCLUSION

We present a new signature, Length-Preserved Base Domain
(LPBD), in this paper for measuring the level of stretch
between surface patches in cross-parameterization. This
new signature well balances the accuracy of measurement
and the computational speed. A set of metrics have been
studied and compared to find a good criterion to gov-
ern the optimization of common base domains. A greedy
optimization algorithm is adopted to reduce the distor-
tion in cross-parameterization by repeatedly applying two
operators, boundary swapping and patch merging, to the
input base domains. A variety of models have been tested
to demonstrate the functionality of our approach. Exper-
imental tests prove that our method can efficiently and
effectively improve the quality of cross-parameterization
through optimizing the connectivity of the common base
domains, which are constrained by the anchor points.
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D. Dobkin, “MAPS: multiresolution adaptive parameteriza-
tion of surfaces,” in SIGGRAPH ’98: Proceedings of the 25th
annual conference on Computer graphics and interactive techniques,
New York, NY, USA, 1998, pp. 95–104, ACM.

[12] N. Pietroni, M. Tarini, and P. Cignoni, “Almost isometric mesh
parameterization through abstract domains,” IEEE Trans. on
Vis. and Comp. Graph., vol. 16, no. 4, pp. 621–635, 2010.

[13] A. Sheffer, E. Praun, and K. Rose, “Mesh parameterization
methods and their applications,” Found. Trends. Comput. Graph.
Vis., vol. 2, no. 2, pp. 105–171, 2006.

[14] P.V. Sander, J. Snyder, S.J. Gortler, and H. Hoppe, “Texture
mapping progressive meshes,” in SIGGRAPH ’01: Proceedings
of the 28th annual conference on Computer graphics and interactive
techniques, New York, NY, USA, 2001, pp. 409–416, ACM.

[15] Y. Wang, C.C.L. Wang, and M.M.F. Yuen, “Duplicate-skins
for compatible mesh modelling,” in SPM ’06: Proceedings of
the 2006 ACM symposium on Solid and physical modeling, New
York, NY, USA, 2006, pp. 207–217, ACM.

[16] L. Markosian, J.M. Cohen, T. Crulli, and J. Hughes, “Skin:
a constructive approach to modeling free-form shapes,” in
SIGGRAPH ’99: Proceedings of the 26th annual conference on
Computer graphics and interactive techniques, New York, NY, US-
A, 1999, pp. 393–400, ACM Press/Addison-Wesley Publishing
Co.

[17] I.-C. Yeh, C.-H. Lin, O. Sorkine, and T.-Y. Lee, “Template-based
3d model fitting using dual-domain relaxation,” IEEE Trans.
on Vis. and Comp. Graph., 2010, accepted.
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