
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, ACCEPTED 1

Computing Length-Preserved Free Boundary
for Quasi-Developable Mesh Segmentation

Charlie C.L. Wang, Member, IEEE

Abstract—Stretch-free surface flattening has been requested by a variety of applications. At present, the most difficult problem is

how to segment a given model into nearly developable atlases so that a nearly stretch-free flattening can be computed. The criterion

for segmentation is needed to evaluate the possibility of flattening a given surface patch, which should be fast computed. In this

paper, we present a method to compute the length-preserved free boundary (LPFB) of a mesh patch which speeds up the mesh

parameterization. The distortion on parameterization can then be employed as the criterion in a trial-and-error algorithm for

segmenting a given model into nearly developable atlases. The computation of LPFB is formulated as a numerical optimization

problem in the angle space, where we are trying to optimize the angle excesses on the boundary while preserving the constraints

derived from the closed-path theorem and the length preservation.

Index Terms— Boundary representations; Geometric algorithms, languages, and systems.

—————————— u ——————————

1 INTRODUCTION

HE request of computing a stretch-free parameteriza-
tion, via surface flattening, has been arisen by numer-
ous applications in computer graphics (e.g., texture

mapping [17], [27], [28], [29], [44], [45], [47], [48], [49], medi-
cal imaging [30], [36], toy fabrication [13], [21], [32], and
computer-aided design [1], [2], [3], [22], [39], [41]), where a
corresponding 2D region D for a given surface patch P is
determined. At present, the focus of interests has moved to
how to segment a given model M into surface patches each
of which can be flattened with less distortion. An ideal sur-
face flattening (parameterization) preserves the distances
between any two points on P and D – mathematically
named as isometric mapping, and also preserves the areas on
P and D. From differential geometry [8], we know that only
fully developable surface, which is a small class among all
freeform surfaces, can be flattened to give an isometric
mapping. Therefore, to be practical, a method is requested
to segment M into nearly developable (i.e., quasi-
developable) patches instead of fully developable ones. One
application for the patches like this is the toy fabrication (as
shown in Fig.1 of [13] and Fig.10 in this paper), where small
number of patches are desired since more patches yield
more stitching work in the fabrication. Most recent attempts
for this are [13] and [32], where the authors partitioned the
given model into several quasi-conical patches. However,
conical surface is not the only type of a developable surface.
A more general criterion for surface flattening is needed.
This is the motivation of our work – computing length-
preserved free boundary (LPFB) to speed up the parame-
terization so that the distortions on the resultant planar
mesh can serve as the criteria for quasi-developable mesh
segmentation.

The most straightforward criterion for developability is

the integral, ∫= dAKσ , of Gaussian curvature K or any
discrete form of its variants [23], [33] and [43] over the
given surface patch P. However, although discrete Gaussian
curvature works well on dart insertion to reduce the stretch
of flattening where the local developability is counted, it is
weak at distinguishing the degree of global developability
on nearly developable surfaces. For the examples shown in
Fig. 1, both are with very few non-developable vertices giv-
ing non-zero Gaussian curvature, and the value of Gaussian
curvature integral on the cylinder is greater than the cube.
However, the stretch on the cube is even more significant,
which can be detected from the checkboard texture. Fur-
thermore, using σ as criterion cannot prevent generating
the non-flattenable patches led by topological obstructions
(e.g., a cylinder cannot be flattenable without inserting a cut
to link its two openings). Note that as working on models
with polygonal meshes, the definition of developability is
generalized – simply, the less stretch is given on a flattened
mesh surface, the higher developability is with the surface.
On the other hand, even if the fastest linear parameteriza-
tion approach (e.g., [19] and [7]) is conducted, computing
the flattening with free boundaries is still time-consuming.
Therefore, it is impractical to directly employ it in a trial-
and-error algorithm to segment a model into nearly devel-
opable patches, where the measurement of developability
needs to be iteratively computed for numerous times. We
would like to request a criterion for developable mesh seg-
mentation which holds the following properties:

• Effectiveness – the criterion should consider the de-
velopability globally, so that the nearly developable
surfaces (e.g., the cylinder in Fig. 1) with few non-
developable vertices can be distinguished from those
non-developable patches (e.g., the cube in Fig. 1);

• Efficiency – as will be repeatedly evaluated when
separating the model into nearly developable atlases,
the criterion should be computed efficiently.

From observation, we find that for a fully developable sur-

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————

The author is with the Department of Mechanical and Automation
Engineering, The Chinese University of Hong Kong, Shatin, N.T.,
Hong Kong, P. R. China
E-mail: cwang@mae.cuhk.edu.hk; Fax: (852)2603 6002; Tel: (852)2609 8052

T

2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MANUSCRIPT ID

face P, both the area and the edge lengths on its flattening D
are coherent with P. Denoting the boundaries of P and D as

P∂ and D∂ , DP ∂=∂ is preserved on fully developable
surfaces. For a general surface P, by computing a optimal
length-preserved free boundary D∂ (in short, LPFB) which
minimizes the angle distortion between P∂ and D∂ while
preserving DP ∂=∂ , the distortion on the flattening of P
with D∂ fixed can serve as a good indicator for the devel-
opability – the less distortion, the more developable patch P
is. Experimental tests show that fixing LPFB acts as an am-
plifier for detecting the developability of a surface by the
distortion on D. More specifically, for quasi-developable
surface (like the cylinder in Fig.1), fixing LPFB reduces the
unexpected distortion from noisy points; on the other hand,
it enlarges the distortion on non-developable surfaces (as
the cube in Fig.1). Moreover, fixing D∂ speeds up the com-
putation D since we can decouple the x- and y- coordinates
to reduce the dimension of linear system.

The approach presented in this paper computes the
length-preserved free boundary (LPFB) and employs it to
accelerate the intrinsic parameterization (IP) of interior
mesh regions, where the distortions on resultant 2D meshes
are used in a trial-and-error approach as criteria for seg-
menting a given 3D mesh into quasi-developable atlases.

1.1 Previous Work

The work proposed in this paper relates to several previous
researches in the areas of: surface parameterization, texture
atlas generation, and surface flattening for pattern design,
which are consecutively reviewed below.

As having a lot of applications in various fields of science
and engineering, surface parameterizations have been stud-
ied for many years. The parameterization of a given three-
dimensional surface P computes its corresponding 2D para-
metric domain D, usually via surface flattening. An ideal
surface flattening preserves the distances between any two

points on P and D – mathematically named as isometric
mapping. Another very important property related to the
surface flattening is that the bijectivity always needs to be
satisfied on the mapping Ω as DP →Ω : and PD →Ω− :1 .
However for practical applications, neither the isometric
nor the bijectivity can be always satisfied. Therefore, a sur-
face parameterization always introduces distortion in either
angles or areas. All parameterization approaches in litera-
ture give strength on how to minimize the distortions in
some sense, which has been mentioned in the detail review
[10] by Floater and Hormann.

Only a few parameterization schemes can generate a pla-
nar domain with a free boundary (e.g., [7], [12], [14], [18],
[19], [34], [35] and [46]). Among them, only [14], [34] and [35]
are the free-boundary methods that guarantee non-local-
overlap on the parameterization. The Angle Based Flattening
(ABF) method presented in [34] defined an angle preserva-
tion metric, by which the parameterization was computed in
the angle space and then converted into 2D coordinate.
When converting the parameterization from the angle space
into planar coordinates, natural boundaries were automati-
cally formed. Being nonlinear, the basic ABF method is rela-
tively slow. The basic ABF method was extended into the
ABF++ approach in [35], where the speed is improved by
some numerical techniques and the hierarchical flattening
technique. Borrowing the idea from [35], we compute the
length-preserved free boundary in the angle space, which is
also angle-based non-linear optimization. However, the di-
mension of our non-linear system is much smaller than [34]
and [35] so that can be computed faster. Being linear, the ap-
proach of Lévy [19] and Desbrun et al. [7] are the fastest
parameterizations which also give free boundaries. It is diffi-
cult to add special constraints about the shearing (for shape)
or stretching (for length) on boundaries in their linear sys-
tems. However, the positions of boundary vertices are more
important than interior vertices since the shape and the area
of a planar domain are essentially defined by the boundary
vertices. In [18], the authors conducted a virtual boundary
technique to generate a parameterization with free bounda-
ries. Recently, this problem has been further studied in [14]
to ensure the free boundaries yielding a planar embedding
(i.e., no flipped triangle). The approach of Zayer et al. in
[46] consecutively compute a conformal map with a fixed
boundary, a boundary-free conformal map, and a bound-
ary-free quasi-harmonic map to improve the quality of a
parameterization. Three linear equation systems need to be
solved in their approach, so it will not be as fast as ours
(with only one linear equation system). [11] and [12] are
also related to our work. The method of [12] is based on
measuring the conformality of a (non-degenerate) bivariate
linear function by the condition number of its Jacobian with
respect to the Frobenius-norm. The computation is based on
a non-linear minimization, therefore is relative slow. Gu
and Yau in [11] compute global conformal parameterization
on surfaces with nontrivial topologies. Their output param-
eterization preserves the conformality everywhere except
for a few points. None of above parameterization ap-
proaches addresses the problem of computing length-
preserved free boundary.

In order to generate a texture mapping with less distor-

Fig. 1. Two examples both have few vertices with non-zero Gaussian
curvature; however, one is nearly developable (the noisy cylinder – the
sharp points are noises) while another (the cube with the given five
cuts) is non-developable, where the black curves are cutting paths. The
second column images show the Gaussian curvature map, where blue
color represents zero Gaussian curvature and red denotes the maximal
value – the two corner vertices on the back of the cube are with high
Gaussian curvature since no cut passes them. The third column gives
the length-preserved free boundaries computed by our approach and
their corresponding surface flattening. The last column illustrates the
texture checkboard determined from the flattening – the smaller distor-
tion is shown, the higher developability is with the surface. The integral
of discrete Gaussian curvature (which is computed by [23]) over area
on the cylinder example is 8.930, which is even greater than the inte-
gral result 3.142 on the cube example – but the cylinder can obviously
be flattened with less stretch.

AUTHORS: COMPUTING LENGTH-PRESERVED FREE BOUNDARY FOR QUASI-DEVELOPABLE MESH SEGMENTATION 3

tion, many methods have employed mesh segmentations to
generate texture atlases. Some of the segmentation methods,
such as [15], [16] and [47], focus on feature-based segmenta-
tion. They segmented the given model into meaningful com-
ponents, which are typically far from being developable. In
[19], Lévy et al. segmented the model into texture atlases
using crease lines as boundaries. Charts are then further seg-
mented if the stretch after the parameterization is too high.
The authors in [37] presented a similar idea but in a trian-
gle-based on-the-fly approach – it is slow. The approach
presented in [48] segments a mesh model in a similar manner
but with a different surface parameterization method [49]
based on multidimensional scaling (MDS). These are all trial-
and-error methods, where a more efficient method for meas-

uring developability is desired to speed up the partition.
Some of the segmentation methods constructed nearly planar
charts [4], [20], [28], [29], and [42]. Although planar charts are
developable, most developable surfaces are obviously not
planar. Therefore, planar segmentations usually result in
more charts than necessary. Julius et al. [13] and Shatz et al.
[32] developed algorithms to separate a given model into
quasi-conical proxies. Again, it is a sufficient (but not neces-
sary) condition that a conical surface is developable. A more
general criterion for developable surface is needed. Recently,
in [43], the authors introduced a mesh segmentation algo-
rithm based on the integral of Gaussian areas over a patch.
However, this measurement cannot distinguish the develop-
ability on the patches shown in Fig. 1.

In the area of computer-aided design, the surface flatten-
ing for pattern design has been studied in various industries
(see [1], [2], [3], [22], [39], [40], and [41]). All these ap-
proaches have the common drawback – the computation is
very time-consuming. Therefore, it is not appropriate for
using them to repeatedly evaluate the developability.

1.2 Contribution

We conduct a boundary mapping technique to compute the
length-preserved free boundary (LPFB) which minimizes
angle distortion while preserving the length of boundary
edges. The LPFB is employed to accelerate the classical
parameterization for the interior mesh region using cotan-
gent weights, where the distortions on resultant 2D meshes
are conducted in a new trial-and-error algorithm to seg-
ment a 3D mesh into quasi-developable atlases.

The computation of LPFB together with the followed
parameterization (by decoupling two planar coordinates) is
even faster than the fastest flattening approach in literature
(e.g., [19] and [7]) – thus the requirement of efficiency is
satisfied.

Our method for computing LPFB overcomes the limita-
tion of disk-like topology – LPFB of a surface with multiple
loops can be successfully computed.

2 QUASI-DEVELOPABLE MESH SEGMENTATION

This section gives the overview of our trial-and-error algo-
rithm for segmenting a given mesh model H into nearly
developable patches. The basic idea is that: we firstly seg-
ment H into nearly planar charts; then the nearly planar
charts are incrementally merged back into larger quasi-
developable surface patches through a trial-and-error pro-
cedure where the merging criteria are efficiently evaluated
with the help of LPFB. As illustrated in Fig. 2, the segmen-
tation algorithm consists of four steps.

Step 1: Error controlled Variational Shape Approximation
First of all, a given model H is segmented into nearly

planar patches by the Variational Shape Approximation
(VSA) algorithm [4] – here we control the shape approxima-
tion error instead of the proxy number. Starting from one
seed, we incrementally add more seeds into the k-proxy
clustering algorithm until the maximal approximation error

1,2
max L shown on all charts is less than a given tolerance.
The error controlled VSA results in a number of small
patches on a complex model.

Fig. 2. Illustration for the quasi-developable mesh segmentation
algorithm: (a) the given model, (b) after error controlled VSA (with 68
patches), (c) after minimum-cut based boundary refinement (still with
68 patches), (d) after boundary denoising, (e) the result from LPFB
based patch merging (with 7 patches), and (f) the surface flattening
results where colors represent normal vectors on the original 3D
model.

4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MANUSCRIPT ID

Step 2: Minimum-Cut based boundary refinement
In this step, the boundaries of patches are refined by the

minimum-cut method akin to [16] so that the zigzag effects
are improved. Briefly, a fuzzy area Γ is determined around
the boundaries between different charts. After converting
the faces in Γ to the nodes of a weighted graph, the re-
partition of triangles is found by a minimal cut algorithm
on the graph weighted by dihedral angles (ref. [5]).

Step 3 (optional): LSE based boundary denoising
In order to reduce the effect from noises, we further ad-

just the vertices located on the refined boundaries. This is
an optional step – those noise-free models do not need this.
For the faces f on a chart around a boundary vertex, the
normal vectors fn are assigned as the chart normal vector,
which is the normalized vector by summing area weighted
triangles normals on the chart (see [4] for details). Then, the
position of every boundary vertex vi is updated by mini-
mizing the following least square error (LSE) defined on the
faces

∑ ∑
∈ ∈

−⋅=

)(

2
))(()(

istarj Ff

jifi

ij

vvnvE

where)(istar denotes the 1-ring neighboring vertices of vi
and ijF represents the two faces that are adjacent to the
edge jivv .)(ivE can be iteratively minimized by the fol-
lowing update given in [38]

∑ ∑
∈ ∈

−+←′

)(

)(

istarj Ff

ij
T
ffii

ij

vvnnvv λ .

Step 4: LPFB based patch merging
This step shows the major contribution of the proposed

approach. The neighboring small charts are incrementally
merged into a larger patch if the new patch P is still quasi-
developable. We firstly compute the LPFB of P (the compu-
tation method will be detailed in section 3) and then em-
ploy the intrinsic parameterization [7] to determine the flat-
tening result D while fixing the boundary vertices. The dis-
tortions on D are employed to evaluate the developability.
The detail LPFB based patch merging will be presented in
section 4.

3 LPFB COMPUTING

3.1 Basic Method

The basic methodology for computing a length-preserved
free boundary (LPFB) is presented in this section. The prob-
lem for determining the planar coordinates of boundary
vertices on D∂ is going to be formulated as a constrained

optimization problem, where the objective functional is
derived from the following two energy terms for the differ-
ences between D∂ and P∂ .

Boundary Length Energy – From the length-preservation
requirement between D∂ and P∂ , we define the first en-
ergy term by the edge length on boundaries. For a polygo-
nal edge e on P∂ , letting 0

el and el representing its corre-
sponding length on P∂ and D∂ , the boundary length en-
ergy is defined as

∑
∂∈

−=Π

Pe

eeL ll
n

01
 (1)

where n presents the number of edges on P∂ . The bound-
ary length energy is straightforward. However, since

∈∂D R
2
 and ∈∂P R

3
, it is not easy to measure the shape

similarity between D∂ and P∂ by LΠ . Therefore, the sec-
ond energy term is introduced.

Boundary Morphological Energy – We employ angles to
measure the morphological difference between D∂ and P∂ .
For a vertex v on P∂ , suppose that its surface inner angle
on P is va and its inner turning angle on D is vθ (see the
illustration in Fig. 3), the shape similarity between D∂ and

P∂ is evaluated with the help of the following boundary
angle error together with the boundary length error.

∑
∂∈

−=Π

Pv

vva
n

θθ
1

 (2)

In θΠ , n is the number of vertices on P∂ which is actually
same as the number of edge on P∂ , and the surface inner
angle vα is the sum of all vertex angles at v on P.

Based on these boundary energy terms, we can compute
an optimal LPFB of P by the functional

0..minarg =ΠΠ
∂∈

L
Dv

tsθ (3)

However, as both LΠ and θΠ are complex in term of the
planar position of boundary vertices, directly solving the
problem defined in Eq.(3) is quite slow thus not practical.
The optimization functional needs to be reformulated. By
observation, we find that solving the above optimization
problem in the angle space could greatly simplify the for-
mulas. Then, the morphological term is converted into

∑ −=

i

iiE aJ 2)(
2

1
θ (4)

where iθ is the inner turning angle of a boundary vertex
Pvi ∂∈ , ia is the surface inner angle iv on P, and the index

i of boundary vertices is given anti-clockwise.
From the closed-path theorem (ref. [24]), we know that: for

a simple non-self-intersection planar closed path, if its path
is anti-clockwise, the total turning is π2 . As shown in Fig. 4,
its total turning by accumulating vertex turning angles is

∑ =
−

n

i
i

1
)(θπ ,

so the constraint below must be satisfied in the angle space

πθπ 2

1

≡−∑
=

n

i

in (5)

Besides EJ and the constraint comes from the closed-
path theorem, we still need to add position coincident con-
straints on some boundary vertices. After determining the

Fig. 3. Illustration of the surface inner angle and the inner turning
angle at a boundary vertex: (a) the given triangular mesh patch P
and (b) the boundary of its corresponding planar domain D.

AUTHORS: COMPUTING LENGTH-PRESERVED FREE BOUNDARY FOR QUASI-DEVELOPABLE MESH SEGMENTATION 5

inner turning angles iθ s and placing 1v at the origin, the
planar coordinate),(ii yx of a boundary vertex iv becomes

∑∑
−

=

−

=

==
1

1

1

1

sin,cos

i

k

kki

i

k

kki lylx φφ . (6)

As been illustrated in Fig. 4, we have)(2 βφπθ −−= ii at
the vertex iv with πφβ −= −1i , which leads to

1−+−= iii φθπφ . Together with 11 θπφ −= , the general
formula for iφ can be derived in terms of iθ as

∑
=

−=
i

b

bi i

1

θπφ . (7)

In order to ensure D∂ be closed, we must let),(11 ++ nn yx be
coincident with the origin, which leads to

0sin,0cos

11

≡≡ ∑∑
==

n

i

ii

n

i

ii ll φφ . (8)

Therefore, LPFB of a given patch P can be determined by
the following constrained optimization problem defined in
the angle space.

0sin,0cos,2..

)(
2

1
minarg

111

2

≡≡≡−

−

∑∑∑

∑

===

n

i

ii

n

i

ii

n

i

i

i
ii

llnts

a
i

φφπθπ

θ
θ

 (9)

The efficient numerical implementation for solving Eq.(9)
will be given in section 3.3. After obtaining the optimal iθ s,

the planar coordinates of boundary vertices can be easily
computed by Eq.(6) and (7). Eq.(6) and (8) here are similar
to the 2D blending approach presented in [31], but [31] nei-
ther explicitly constrained the self-intersection nor pre-
served edge lengths as what we give here.

3.2 Virtual-Cutting Scheme

The basic method above works well for a mesh surface with
disk-like topology (e.g., the one in Fig. 3); however, it shows
problems when computing LPFB of a surface with multiple
boundary loops. Therefore, the virtual cutting-scheme is
developed below to solve this problem. The algorithm con-
sists of six steps (illustrated with the example in Fig. 5):

1. Constructing a duplicated patch dP of P, where each
vertex di Pv ∈′ has a corresponding vertex Pvi ∈ ;

2. For every inner boundary loop on dP , a shortest path
from it to the outer loop is determined by the
Dijkstra’s algorithm [5] with multiple sources;

3. Cutting dP along the shortest paths (see Fig.5(b));
4. Applying the basic method for LPFB on dP (result-

ing in Fig.5(c));
5. Adding the coincident constraints of the vertices on

cutting paths into the optimization framework – so
that an improved LPFB is obtained (as Fig.5(d));

6. By the correspondences between di Pv ∈′ and Pvi ∈ ,
the planar coordinate for all boundary vertices on P
can be determined (see Fig.5(e)).

In the following, we will describe the technical details of
this scheme.

Step 1 and 2 are trivial. In step 3, we iteratively introduce
duplicated edges on the edges belonging to the cutting
path, while the coincident pairs are stored as the informa-
tion will be used in step 5. Step 4 takes the basic method for
computing LPFB – for the example shown in Fig. 5, the ex-
ample result after this step is as Fig. 5(c), where the newly
created cutting vertices are not coincident with their par-
ents. After getting result from the basic method, in step 5,
we will further deform the boundary to make the vertices
stored in coincident pairs become coincident. For this pur-
pose, the constraints defined in Eq.(9) needs to be adjusted.
Suppose)(pα and)(pβ represent the indices of the verti-
ces in the pth coincident pair, without loss of generality,
letting)()(pp βα < , the coincident constraint of)(pvα and

)(pvβ yields

0sin,0cos

1)(

)(

1)(

)(

≡≡ ∑∑
−

=

−

=

p

pk

kk

p

pk

kk ll

β

α

β

α

φφ ,

by Eq.(6). Together with 1)0(=α and 1)0(+= nβ , the con-
strained optimization problem in Eq.(9) is reformulated to

L,0sin,0cos,2..

)(
2

1
minarg

1)(

)(

1)(

)(1

2

≡≡≡−

−

∑∑∑

∑
−

=

−

==

p

pk

kk

p

pk

kk

n

i

i

i
ii

llnts

a
i

β

α

β

α

θ

φφπθπ

θ

 (10)

where mp ≤≤0 with m pairs of coincident vertices that
were constructed in step 3.

After solving the optimization problem in Eq.(10), a
LPFB is determined with all the child-and-parent vertices
on cutting paths coincident (e.g., see Fig. 5(d)). The planar

1θ

...

iθ
2θ

1+iθ

nθ

1−nθ

1−iθ

...

y

x

2φ

1φ

iφ

1−iφ

1+iφ

β

β

il

1+il

2l

1l

nl1−nl 1θ

...

iθ
2θ

1+iθ

nθ

1−nθ

1−iθ

...

y

x

2φ

1φ

iφ

1−iφ

1+iφ

β

β

il

1+il

2l

1l

nl1−nl

Fig. 4. Closed-path constraints on the planar boundary.

Fig.5. Virtual-cutting scheme for surface patch with multiple bound-
ary loops: (a) the given mesh patch P, (b) a duplicated patch Pd of P
is generated and cut by the shortest path from inner loops to the
outer boundary, (c) LPFB of Pd determined by applying the basic
method, (d) LPFB obtained by adding position constraints of the
vertices on the cutting path, and (e) the resultant D computed by the
virtual cutting scheme.

6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MANUSCRIPT ID

coordinates of vertices on P∂ are then computed in the last
step from the corresponding vertices on dP∂ .

3.3 Efficient Numerical Implementation

The only left problem for computing LPFB on a given mesh
patch is how to efficiently solve the constrained optimiza-
tion problem defined above. Using the Lagrange multiplier

),,,,,,,,(00 mymxpypxyx λλλλλλλθ KK ,

the constrained optimization problem can be converted into
an augmented objective function

),,,,,,,,,,()(001 mymxpypxyxnJXJ λλλλλλλθθ θ KKK= ;

in detail,

∑ ∑∑ ∑

∑∑

=

−

==

−

=

==

++

−−+−=

m

p

p

pk

kkpy

m

p

p

pk

kkpx

n

k

k

n

i

ii

ll

naXJ

0

1)(

)(0

1)(

)(

11

2

sincos

))2(()(
2

1
)(

β

α

β

α

θ

φλφλ

θπλθ

, (11)

which can be minimized by the Newton’s method [25].

while 510)(−>∇ XJ
 solve)()(2 XJXJ −∇=∇ δ ;
 δ+← XX ;
end

The size of Hessian matrix)(2 XJ∇ is n+2m+3. For a com-
plex model, n in general is a large number so that it is time-
consuming to solve the linear equation system. Borrowing
the idea for speeding up a nonlinear optimization in [35],
we conduct the sequential linearly constrained program-
ming [25] to minimize)(XJ by neglecting the terms com-
ing from the second derivatives of the constraints in the
Hessian matrix)(2 XJ∇ . The equation

)()(2 XJXJ −∇=∇ δ

solved at each step is simplified into

=

Λ

ΛΙ

λ

θ

λ

θ

δ

δ

B

BT

0
 (12)

with),,,,,,,,,,(001 mymxpypxyxnX λλλλλλλθθ θ KKK= . In
this equation, Λ , θB and λB can all be efficiently evalu-
ated (see Appendix). Eq.(12) can then be solved by

λθλδ BBT −Λ=ΛΛ (13)

λθθ δδ TB Λ−= (14)

where TΛΛ is)32()32(+×+ mm as Λ is nm ×+)32(. Since
m is usually small (nm <<), Eq.(13) can be efficiently solved
using Gaussian elimination if 32)(+=ΛΛ mrank T , or it can
be solved by singular value decomposition (SVD) if not full
rank. By λδ determined in Eq.(13), θδ can be easily com-
puted from Eq.(14) – thus),(TT

λθ δδδ = is determined.
The same as all other nonlinear problems, giving a good

initial value can speed up the above computation. In our
implement, we choose ii a=θ and 1=== pypx λλλθ . The
computation usually converges in steps of tens.

4 LPFB-BASED PATCH MERGING

In this section, after introducing the measurements for clas-
sifying patches, details of the LPFB-based patch merging
algorithm are presented.

4.1 Measurements for Classification

The measurements employed in our segmentation algo-
rithm all rely on the flattening Ω of P in D with a fixed
LPFB. For this purpose, we conduct the following linear
equation system from the intrinsic parameterization method
[7] to calculate the planar coordinates on interior vertices.

VU =Μ (15)

where U is the vector of planar coordinate, V is the vector
for boundary condition that

∂∉

∂∈
=

Pi

Pii
Vi

,0

),(ψ
 (16)

with)(iψ representing the planar coordinate of vertex vi on
the LPFB of P, and Μ is a sparse matrix whose coefficients
are given by

=Μ−

∈+

=Μ ∑ ∈
∂∉

otherwise

ji

istarj

istark
ik

ijij

Piij

,0

,

)(),cot()cot(

)(
,

ξγ

. (17)

≠

=
=Μ ∂∈

ji

ji
Piij

,0

,1
, . (18)

In Eq.(17),)(istar denotes the 1-ring neighbors of vertex vi,
and ijγ and ijξ represent the opposite angles in the two
neighboring triangles of the edge vivj on P respectively. Why
this computation is faster than directly applying the intrin-
sic parameterization? The reason is that for a surface P with
n vertices the dimension of the linear system in Eq.(15) is

nn × since we can separately compute the x- and y-
coordinates. However, for the method in [7], when free
boundary is needed, both x- and y-coordinate should be
computed together in a nn 22 × linear system. The lower-
bound of the computing time for solving sparse linear sys-
tem is linear – therefore half of the computing time is re-
duced; however, in general, it depends on the pattern of the
matrix Μ . With the conjugate gradient solver, the upper
bound is in quadratic complexity. Our tests shows that by
reducing the dimension of Μ in half, the speed up is usu-
ally much more than half. Detail statistics will be shown in
section 5.

By Ω determined from LPFB of P, a hybrid classification
using three measurements is conducted. The measurements
include: the area distortion)(ΩA , the)(2 ΩL norm of tex-
ture stretch, and the global self-overlapping)(ΩS . The area
distortion computes the percentage of area change in D and
P by

%100)(
0

0

×
−

=Ω

∑
∑∑

T
T

T
T

T
T

A

AA

A (19)

where TA and 0
TA are respectively the areas of a triangle

PT ∈ in 2D and 3D. Although with a small)(ΩA is the
necessary condition for P being quasi-developable, it is
possible to have extreme cases that small)(ΩA is given on a
non-developable surface. Therefore, the 2L norm of texture
stretches from [28] is conducted to exclude these extreme
cases. It measures the surface distortion on Ω to P, where
1.0 is the lower bound on any parameterization. Above two
measurements cannot distinguish the global self-
overlapping on Ω (e.g., the self-overlapping in Fig. 5(c)).

AUTHORS: COMPUTING LENGTH-PRESERVED FREE BOUNDARY FOR QUASI-DEVELOPABLE MESH SEGMENTATION 7

Numerically detecting the self-overlapping is usually time-
consuming. To speed-up, here we seek help from the graph-
ics hardware. After drawing all triangles in the blending
mode with the value of transparency 0.25, the pixel drawn
more than once (so that leads to overlap) can be easily de-
tected by its pixel color value. When overlapping is found,
the measurement)(ΩS gives 1; otherwise, 0)(=ΩS is re-
turned. As long as the resolution of discretization is high
enough, the self-intersection can be effectively detected in a
given tolerance.

4.2 Merging Algorithm

We incrementally merge neighboring small patches into a
larger patch if the new patch can still be flattened without
stretching. Therefore, the measurements for classification
need to be repeatedly evaluated – our LPFB-based tech-
nique shows its strength on the speed here.

The merging can be conducted in the patch-based or the
boundary-based manner. We find that the boundary-based
method can generate patches with lager areas comparing to
the patch-based merging when adopting the same criteria.
The reason can be simply explained by the example shown
in Fig. 6. For the patch-based approach, after merging patch
PA and PB into a new PA

new
, the two patches PA

new
 and PC can-

not pass the developability test since their merging will
lead to a non-developable surface. However, if the bound-
ary-based strategy is conducted, after eliminating the
boundary between PA and PB, we can still merge PC into PA

new

by removing the boundary curve between PB and PC (see
Fig. 6). Note that the dangling edges are allowed in our ap-
proach, which will be converted into cuts when generating
charts from the segmentation results.

The following boundary-based merging algorithm is
conducted to merge small nearly planar patches into larger
nearly developable patches.

1. Every boundary curve between different patches is
inserted into a maximum heap Ψ which sorts the
area of two patches aside the boundary curve;

2. If Ψ is empty, stop the algorithm;
3. Remove the top curve ζ from Ψ ;
4. Duplicate a patch P simulating the merged patch

by eliminating ζ ;
5. Compute the LPFB and then the parameterization

Ω of P from the fixed LPFB;
6. Evaluate)(ΩA , if %10)(>ΩA go back to step 2;
7. Evaluate)(2 ΩL , if 0.2)(2 >ΩL go back to step 2;

8. Evaluate)(ΩS , if 1)(=ΩS go back to step 2;
9. Merge the patches aside ζ into a new one P

new
 by

removing ζ ;
10. For the remained boundary curves on P

new
 , update

their positions in the heap Ψ ;
11. Go back to step 2.

This algorithm can efficiently merge small planar patches
into nearly developable large patches. The two thresholds,
10% and 2.0, are determined from a supervised learning
process [9] with a set of training mesh surfaces. Figure 2(d)-
(e) show an example for the LPFB-based patch merging,
and more examples will be given in the following section.

5 RESULTS AND DISCUSSION

The computing method for length-preserved free boundary
has been tested on several freeform mesh surfaces, and
compared with the intrinsic parameterization [7] (IP), the
least squares conformal maps [19] (LSCM), and the angle-
based flattening [34] (ABF) in several aspects – including
the computing time, the area change, the texture distortion,
and the variation of boundary length and shape on the flat-
tening results (see Table 1). The first two examples tested are
the cylinder and the cube which have already been shown in
Fig.1. The cylinder model is a quasi-developable surface (i.e., a
developable surface with few non-developable noisy vertices),
and the cube is absolutely a non-developable surface. The re-
sults from our method shown in Fig.1 can be successfully dis-
tinguished by the area variation (see the statistics in Table 1).
However, results of both the cylinder and the cube from IP
(and LSCM) are greatly distorted (see Fig.7). This is because
that they minimize the angle variation on all vertices, so that
noisy vertices on the cylinder affect the computation to yield
great distortion. It is hard to distinguish them by the results
from IP and LSCM, which has also been proved by the statis-
tics shown in Table 1. Note that we fix the two endpoints of the
longest boundary edge when solving the linear systems in IP
and LSCM. Our results are quite similar to the results of ABF;
however the computation time of ABF is much longer. In the
third example – the two-hole patch (see Fig. 5 and 8), all four
approaches give the similar results but ours generates the most
similar result to ABF (see the statistics in Table 1). The follow-
ing example is a mesh with about 27k triangles which is gen-
erated by the segmentation algorithm presented in this paper.
Again, our result is similar to ABF but much faster.

From the statistics listed in Table 1, it is easy to find that our
method generate results very close to ABF, IP and LSCM on
quasi-developable meshes. While on the non-developable
mesh (e.g., the cube in Fig. 1 and 7), as mentioned at the be-
ginning of this paper, fixing LPFB acts as an amplifier which
enlarges the distortion. This characteristic satisfies the effec-
tiveness property requested for the developable mesh segmen-
tation criterion. Now, let us take a look at the computational
time. The time needed in our approach is much less than the
other three methods. We solve the sparse linear systems in IP
and LPFB+IP by the Preconditioned Biconjugate Gradient method
from [26]. The code for LSCM is downloaded from the web-
site: http://www.loria.fr/~levy/, where the sparse linear sys-
tem is solved by the Jacobi Preconditioned Conjugate Gradient
method. The results for ABF are generated by the software

(a)

(b)

Flattening

PA

PB

PC

PA
new

PC

??

PA
new

PC

(a)

(b)

Flattening

PA

PB

PC

PA
new

PC

??

PA
new

PC

Fig. 6. Comparison for the merging strategy: (a) patch-based vs. (b)
boundary-based.

8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MANUSCRIPT ID

Graphite which is also downloaded from the above website. All
the examples are tested on a PC with 3.0GHz Pentium CPU +
1GB RAM. Note that since we generate the results of ABF by
Graphite, the computational time on ABF is approximately
counted. We also test IP, LSCM, and LPFB+IP by a sparse di-
rect solver – SuperLU [6] on a refined Squirrel model with
435K faces and 220K vertices (see the last row in Table 1). Our
method also performs better than IP and LSCM on this solver.
In summary, both the effectiveness and the efficiency require-
ments have been satisfied by our approach.

The segmentation algorithm based on LPFB has been
tested on several models, where the small patches gener-
ated in the error controlled VSA step can be successfully
merged into larger nearly developable patches. The first test
is given on the moai model (see Fig.2), where the result from
error-controlled VSA consists of 68 small patches. With the

help of LPFB, our algorithm finally merges them into 7 nearly
developable patches that can be flattened without overlap. The
second test (see Fig.10) is on a CSG-like model – every surface
on it is planar. Our merging algorithm generates a result with
5 pieces out of 16. The last two tests are given on models with
more complex geometry (also shown in Fig.10). Our algorithm
merges 78 small patches into 7 on the squirrel model and joins
61 pieces into 11 patterns on the bunny rabbit finally. In sum-
mary, the patch merging criteria based on the distortion on the
result of LPFB+IP work well with the quasi-developable mesh
segmentation algorithm. One interesting application of the
atlases generated in our approach is to make toys from them
by either paper or textile (see Fig.10).

The two examples shown in Fig. 11 are to compare our seg-
mentation algorithm with the most closely related segmenta-
tion approach in [43]. One drawback of [43] is that it is hard to
determine the number of charts as the input of their algorithm.
Giving small number of charts may yield bad segmentation
results. For example, when using the same number of charts in
our segmentation results (i.e., 5 for the CSG-like model and 7
for the squirrel), the output of [43] is as shown in Fig. 11(a).
Using more patches can reduce the distortion in some degree
(see Fig. 11(b)); however, this will greatly increase the difficulty
of the stitching job in the applications like toy fabrication.

The authors in [18] presented a method to determine the
free boundary for parameterization which is similar to ours,
but they did not preserve the length of boundary edges. They

Fig. 9. The flattening results comparison on a large mesh with more
than 27K faces. The 3D mesh patch is generated by our segmenta-
tion algorithm from the squirrel model.

Fig. 7. The flattening results (and their corresponding checkboard dis-
play) of the two models previously shown in Fig. 1 are determined by
IP [7], LSCM [19], and ABF [34].

Fig. 8. The results of IP, LSCM and ABF on the two-hole patch that
has been previously shown in Fig. 5.

AUTHORS: COMPUTING LENGTH-PRESERVED FREE BOUNDARY FOR QUASI-DEVELOPABLE MESH SEGMENTATION 9

conducted a 2D polygon morphing technique [31] to let the
free boundary mimic the boundary on 3D mesh surface. We
find that their method does not work well on the 3D meshes
whose boundaries are far from planar (e.g., the examples in
Fig. 12). Besides, their approach does not prevent the local self-
intersection, which yields great distortions as shown in the left
model in Fig. 12. Our LPFB does not have these drawbacks.

5.1 Limitations

Serving as a model to compute the distortion criterion for
developable mesh segmentation, the resultant mesh from
LPFB+IP needs to be robustly computed. The computation
method presented in this paper relies on the surface inner
angles on boundary vertices since they are the reference
angles to reach in the numerical optimization framework. If
the boundary of a segmented patch contains vertices with
high curvature, the result of LPFB may be weird. However,
this has been naturally avoided by VSA – the first step of
our segmentation algorithm. Besides, in practice, there is no
guarantee that noises will not be shown on the boundary of
a surface patch. Therefore, the first limitation of our ap-
proach is that the method for computing LPFB is not robust
enough. This is also the reason why the boundary denois-
ing (step 3) is needed in our segmentation algorithm. Tests
show that our method works well if the boundary denois-
ing step is applied together.

The second limitation of our approach is that: although
the constraints derived from the closed-path theorem has
been added to the numerical optimization framework so
that the local-self-intersection (e.g., the case shown in
Fig.13(a)) is prevented, there is no constraint for avoiding
the global-self-intersection on the computed LPFB (e.g.,
Fig.13(b)). Therefore, in the measurements for classification,

we need the)(ΩS term. The method for preventing global-
intersection is still under investigation. The angle expan-
sion method for self-intersection from [34] seems to be a
good candidate.

Thirdly, finding the thresholds for the classifiers in our
segmentation algorithm is by no means an easy job. We
determine them by supervised learning: samples of nearly
developable surface and non-developable surface are first
selected to train the classifier. The values of)(2 ΩL and

)(ΩA are computed on LPFB+IP of the sample patches.
Then, the thresholds are drawn so that most samples can be
classified into a correct category. Therefore, the thresholds
depend on the samples employed to train the classifier
which is not robust enough.

Lastly, the toy fabrication and the texture mapping ap-
plications may wish to have patterns with smooth bounda-
ries. Therefore, we plan to replace the 2

nd
 step of our seg-

mentation algorithm by a new method that can generate
more smooth boundaries.

6 CONCLUSION

This paper presents the method about how to efficiently
compute a length-preserved free boundary (LPFB) for a
given mesh surface patch, and employs it to speed up the
following intrinsic parameterization (IP). Therefore, distor-
tions generated on the flattening result are used as criteria
to detect whether a given patch is quasi-developable. The
computation of LPFB is formulated as a numerical optimi-
zation problem in the angle space, where we are trying to
optimize the angle excesses on the boundary while preserv-
ing the constraints derived from the closed-path theorem

TABLE 1
COMPUTATIONAL STATISTICS

Model Face No. Vertex No. Method Figure 2L)(ΩA LΠ θΠ Time (s)

IP Fig.7 1.68 13.5 % 1.14 3109.8 −× 2.41

LSCM Fig.7 1.75 49.6 % 0.26
2

103.1
−× 1.45

ABF Fig.7 1.00 0.28 % 3103.1 −× 4106.5 −× ~ 4
Cylinder 6,239 317 / 3,279

LPFB+IP Fig.1 1.00 0.59 % 0.0 4102.1 −× 0.49 (0.001)

IP Fig.7 1.59 30.4 % 3108.3 −× 2109.3 −× 0.062

LSCM Fig.7 1.88 44.9 % 0.23 2109.3 −× 0.031

ABF Fig.7 1.43 37.9 % 0.21 2109.3 −× < 1
Cube 7,768 80 / 425

LPFB+IP Fig.1 1.88 50.9 % 0.0 2109.3 −× 0.031 (0.001)

IP Fig. 8 1.02 10.1 % 3106.1 −× 3104.9 −× 0.14

LSCM Fig. 8 1.05 10.8 % 3104.5 −× 3108.9 −× 0.094

ABF Fig. 8 1.05 9.0 % 2105.4 −× 2101.1 −× < 1
Two-Hole Patch 1,128 198 / 662

LPFB+IP Fig. 5(e) 1.04 9.5 % 0.0 3105.8 −× 0.047 (0.001)

IP Fig. 9 1.74 15.4 % 0.44 2109.3 −× 68.27

LSCM Fig. 9 1.06 7.91 % 2102.4 −× 3104.6 −× 108.27

ABF Fig. 9 1.01 2.41 % 2102.1 −× 3109.5 −× ~ 24
Squirrel 27,542 1,448 / 14,496

LPFB+IP Fig. 9 1.01 0.10 % 0.0 3106.1 −× 6.78 (0.016)

IP - 1.25 8.74% 0.31 3102.3 −× 43.76

LSCM - 1.17 3.74% 0.25 3104.3 −× 45.39

Refined Squirrel
(with the solver –

SuperLU [6])
435,066 5,762 / 220,415

LPFB+IP - 1.02 0.05% 0.0 4104.8 −× 22.23 (0.078)

* In the column of vertex number, the previous value is the number of boundary vertices while the later one is the number of all vertices. IP
means the intrinsic parameterization with free boundary [7], LSCM is for the least squares conformal maps [19], ABF represents the angle-based
flattening [34], and LPFB + IP denotes the computation of length-preserved free boundary followed by the intrinsic parameterization with fixed
boundary (i.e., our approach). The time listed in brackets is the time for computing LPFB only.

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MANUSCRIPT ID

and the length preservation. By introducing a virtual-
cutting scheme, the method has been further extended to
overcome the limitation of disk-like topology. Based on
LPFB+IP, a trial-and-error mesh segmentation has been de-
veloped in this paper to partition a given model into nearly
developable atlases. Numerous examples have been tested

on the computation method for LPFB and the segmentation
algorithm to demonstrate the effectiveness and the effi-
ciency of our approach.

ACKNOWLEDGMENT

The authors would like to thank the AIM@SHAPE Shape
Repository for sharing some of the models in this paper.

APPENDIX

λB , θB and Λ in Eq. (12) can be efficiently evaluated.

Statement 1 λB is computed by

),,,,,(
00 mymxyx

JJJJJ
B

λλλλλθ
λ

∂

∂
−

∂

∂
−

∂

∂
−

∂

∂
−

∂

∂
−= L

where

∑
=

+−−=
∂

∂
−

n

k

kn
J

1

)2(θπ
λθ

,

∑
−

=

−=
∂

∂
−

1)(

)(

cos

p

pk

kk
px

l
J

β

α

φ
λ

, and ∑
−

=

−=
∂

∂
−

1)(

)(

sin

p

pk

kk
py

l
J

β

α

φ
λ

.

Statement 2 }/{ iJB θθ ∂−∂= can be efficient evaluated by
the following recursion formulas.

∑ ∑
=

−

=

+−++−−=
m

p

p

pk

kkpykpx lab

0

1)(

)(

11)cossin()(
1

β

α

θθ φλφλλθ ,

∑
=

++ +−−−+=
+

m

p

iiii ipAaabb
ii

0

11),()()(
1

θθθθ ,

with

 <≤−

=
otherwise

pipl
ipA

iipyipx

,0

)()(,)cossin(
),(

βαφλφλ
.

Statement 3 For Λ , whose dimension is nm ×+)32(, its
i-th column vector is

1)32(

1)(

)(

1)(

)(

1

2

sin

cos

))2((

×+

−

=

−

=

=

∂

∂
∂

∂

−−
∂

∂

=
∂∂

∂
=Λ

∑

∑

∑

m

p

pk
kk

i

p

pk
kk

i

n

k
k

i

i
i

l

l

n

J

L

β

α

β

α

φ
θ

φ
θ

θπ
θ

θλ
,

with mp ,,1,0 L= . Every element of iΛ can be evaluated
by

1,1 −=Λ i ,

),(,221,22 ipBipip +Λ=Λ +++ ,

),(,321,32 ipDipip +Λ=Λ +++ ,

with

 <≤−

=
otherwise

pipal
ipB

ii

,0

)()(,sin
),(

βφ
,

 <≤

=
otherwise

pipal
ipD

ii

,0

)()(,cos
),(

βφ
.

Fig. 11. It is difficult to determine the number of charts by [43]. (a) The
results by using 5 pacthes for the CSG-like model and 7 patches for
the squirrel model, which are the same as our segmentation results in
Fig. 10 – it is easy to find that the resultant segmentation on the CSG-
like model is non-flattenable as there is topological obstruction (left)
and great distortions are shown at the head of squirrel (right). (b) Dis-
tortion on the squirrel model can be reduced by increasing the number
of patches from 7 to 14, but still shows large distortion at the patch
near foot. (c) Our segmentation result can have less distortion on 7
patches.

Fig. 12. The flattening results with the free boundaries that are deter-
mined by the 2D polygon morphing method in [18].

(a) (b)(a) (b)

Fig. 13. Two cases for self-intersection: (a) local-self-intersection
which has been prevented by the constraints from the closed-path
theorem, and (b) global-self-intersection which has to be detected after
computing the length-preserved free boundary.

AUTHORS: COMPUTING LENGTH-PRESERVED FREE BOUNDARY FOR QUASI-DEVELOPABLE MESH SEGMENTATION 11

REFERENCES

[1] P.N. Azariadis and N.A. Aspragathos, “Design of Plane Devel-

opment of Doubly Curved Surface,” Computer-Aided Design, vol.

29, pp. 675–685, 1997.

[2] M. Aono, D.E. Breen and M.J. Wozny, “Modeling Methods for the

Design of 3D Broadcloth Composite Parts,” Computer-Aided De-

sign, vol. 33, pp. 989–1007, 2001.

[3] M. Aono, D.E. Breen and M.J. Wozny, “Fitting a Woven-Cloth

Model to a Curved Surface: Mapping Algorithms,” Computer-

Aided Design, vol. 26, pp. 278–292, 1994.

[4] D. Cohen-Steiner, P. Alliez, and M. Desbrun, “Variational Shape

Approximation,” ACM Trans. Graphics, SIGGRAPH 2004, vol.23,

pp. 905-914, 2004.

[5] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduc-

tion to Algorithms (2nd ed.), MIT Press, 2001.

[6] J.W. Demmel, S.C. Eisenstat, J.R. Gilbert, X.S. Li, and J.W.H. Liu,

“A supernodal approach to sparse partial pivoting,” SIAM Journal

on Matrix Analysis and Applications, vol.20, no.3, pp.720–755, 1999.

[7] M. Desbrun, M. Meyer, and P. Alliez, “Intrinsic Parameterizations

of Surface Meshes,” Computer Graphics Forum, Proc. of Eurographics

2002, vol. 21, pp. 209–218, 2002.

[8] M.P. Do Carmo, Differential Geometry of Curves and Surfaces, Engle-

wood Cliffs, NJ, Prentice Hall, 1976.

[9] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification (2nd

Edition), pp.20-160, Wiley: New York, 2001.

[10] M.S. Floater and K.Hormann, “Surface Parameterization: a Tuto-

rial and Survey,” Advances in Multiresolution for Geometric Model-

ling, N.A. Dodgson, M.S. Floater, and M.A. Sabin (eds.), Springer-

Verlag, Heidelberg, pp.157-186, 2005.

[11] X. Gu, S.-T. Yau, “Global Conformal Surface Parameterization,”

Proc. of the 2003 Eurographics/ACM SIGGRAPH Symposium on Ge-

ometry Processing, pp.127-137, 2003.

[12] K. Hormann, and G. Greiner, “MIPS: An Efficient Global Pa-

rametrization Method,” Curve and Surface Design Saint-Malo 1999

(P.-J. Laurent, P. Sablonnire, and L. Schumaker eds.), pp.153-162,

Vanderbilt University Press.

[13] D. Julius, V. Kraevoy, and A. Sheffer, “D-Charts: Quasi-

Developable Mesh Segmentation,” Computer Graphics Forum, Proc.

of Eurographics 2005, vol. 24, pp. 581-590, 2005.

[14] Z. Karni, C. Gotsman, and S.J. Gortler, “Free-Boundary Linear

Parameterization of 3D Meshes in the Presence of Constraints,”

Proc. of Shape Modeling International, pp. 266-275, June, 2005.

[15] S. Katz, G. Leifman, and A. Tal, “Mesh Segmentation using Fea-

ture Point and Core Extraction,” The Visual Computer, Special Issue

of Pacific Graphics 05, vol. 21, no. 8-10, pp. 649-658, 2005.

[16] S. Katz and A. Tal, “Hierarchical Mesh Decomposition using

Fuzzy Clustering and Cuts,” ACM Trans. Graphics, Proc. SIG-

GRAPH 2003, vol.22, no. 3, pp. 954-961, 2003.

[17] V. Kraevoy, A. Sheffer, and C. Gotsman, “Matchmaker: Construct-

ing Constrained Texture Maps,” ACM Trans. Graphics, Proc. SIG-

GRAPH 2003, vol.22, no. 3, pp. 326-333, 2003.

[18] Y. Lee, H-S Kim, and S. Lee, “Mesh Parameterization with a Vir-

tual Boundary,” Computers & Graphics, vol. 26, pp. 677-686, 2002.

[19] B. Levy, S. Petitjean, N. Ray and J. Maillot, “Least Squares Con-

formal Maps for Automatic Texture Atlas Generation,” ACM

Trans. Graph, SIGGRAPH 2002, vol. 21, pp. 362–371, 2002.

[20] J. Maillot, H. Yahia, and A. Verroust, “Interactive Texture Map-

ping,” Proc. SIGGRAPH 93, pp. 27-34, 1993.

[21] J. Mitani and H. Suzuki, “Making Papercraft Toy from Meshes

Using Strip-based Approximate Unfolding,” ACM Trans. Graphics,

SIGGRAPH 2004, vol.23, no.3, pp259-263, 2004.

[22] J. McCartney, B.K. Hinds and B.L. Seow, “The Flattening of Trian-

gulated Surfaces Incorporating Darts and Gussets,” Computer-

Aided Design, vol. 31, pp. 249–260, 1999.

[23] M. Meyer, M. Desbrun, P. Schroder, and A.H. Barr, “Discrete Dif-

ferential-Geometry Operators for Triangulated 2-Manifolds,” Proc.

of Visualization and Mathematics, 2002.

[24] M.E. Mortenson, Geometric Modeling (2nd Edition), pp.282-310,

Wiley: New York, 1997.

[25] J. Nocedal, and S.J. Wright, Numerical Optimization, Springer-

Verlag, 1999.

[26] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,

Numerical Recipes in C: The Art of Scientific Computing, Cambridge:

Cambridge University Press, pp.71-89, 1995.
[27] P. Sander, S. Gortler, J. Snyder, and H. Hoppe, “Signal-Specialized

Parametrization,” Eurographics Workshop on Rendering 2002, pp.87-
100, 2002.

[28] P.V. Sander, J. Snyder, S.J. Gortler, and H. Hoppe, “Texture Map-

ping Progressive Meshes,” Proc. of SIGGRAPH 2001, pp. 409-416,

2001.

[29] P.V. Sander, Z. Wood, S.J. Gortler, J. Snyder, H. Hoppe, “Multi-

Chart Geometry Images,” Proc. of First Symposium on Geometry

Processing 2003, pp. 146-155, 2003.

[30] L. Saroul, O. Figueiredo, and R.D. Hersch, “Distance Preserving

Flattening of Surface Sections,” IEEE Trans. Visualization and Com-

puter Graphics, vol.12, pp.26-35, 2006.

[31] T.W. Sederberg, P. Gao, G. Wang, H. Mu, “2-D shape blending: an

intrinsic solution to the vertex path problem,” Proc. of SIG-

GRAPH’93, pp.15-18, 1993.

[32] I. Shatz, A. Tal, and G. Leifman, “Paper Craft Models from

Meshes,” The Visual Computer, Pacific Graphics 2006, vol.22, no.9-

11, pp.825-834, 2006.

[33] A. Sheffer, “Spanning Tree Seams for Reducing Parameterization

Distortion of Triangulated Surfaces,” Proc. of International Confer-

ence on Shape Modeling and Applications 2002, pp. 61-66, 2002.

[34] A. Sheffer, and E. de Sturler, “Parameterization of Faceted Sur-

faces for Meshing Using Angle Based Flattening,” Engineering

with Computers, vol. 17, no. 3, pp. 326-337, 2001.

[35] A. Sheffer, B. Lévy, M. Mogilnitsky, and A. Bogomjakov, “ABF++:

Fast and Robust Angle Based Flattening,” ACM Tran. Graphics,

vol. 24, no. 2, pp. 311-330, 2005.

[36] G. Stylianou and G. Farin, “Crest Lines for Surface Segmentation

and Flattening,” IEEE Trans. Visualization and Computer Graphics,

vol.10, pp.536-544, 2004.

[37] O. Sorkine, D. Cohen-Or, R. Goldenthal, and D. Lischinski,

“Bounded-distortion Piecewise Mesh Parameterization,” Proc. of

IEEE Visualization 2002, pp.355-362, 2002.

[38] G. Taubin, “Linear Anisotropic Mesh Filtering,” Technical Report of

IBM Research, TR-RC2213, 2001.

[39] C.C.L. Wang, S.S.F. Smith, and M.M.F. Yuen, “Surface Flattening

Based on Energy Model,” Computer-Aided Design, vol.34, no.11,

pp.823-833, 2002.

[40] C.C.L. Wang, and K. Tang, “Achieving Developability of a Po-

lygonal Surface by Minimum Deformation: a Study of Global and

Local Optimization Approaches,” The Visual Computer, vol.20,

pp.521-539, 2004.

[41] C.C.L. Wang, K. Tang, and B.M.L. Yeung, “Freeform Surface Flat-

tening by Fitting a Woven Mesh Model,” Computer-Aided Design,

vol. 37, pp. 799-814, 2005.

[42] H. Yamauchi, S. Lee, Y. Lee, Y. Ohtake, A. Belyaev, and H.-P.

12 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MANUSCRIPT ID

Seidel, “Feature Sensitive Mesh Segmentation with Mean Shift,”

Proc. Shape Modeling International 2005, pp. 236-243, 2005.

[43] H. Yamauchi, S. Gumhold, R. Zayer, and H.-P. Seidel, “Mesh

Segmentation Driven by Gaussian Curvature,” The Visual Com-

puter, vol. 21, no.8-10, pp. 659-668, 2005.

[44] J Yan, X. Yang, P. Shi, and D. Zhang, “Mesh Parameterization by

Minimizing the Synthesized Distortion Metric with the Coeffi-

cient-Optimizing Algorithm,” IEEE Trans. Visualization and Com-

puter Graphics, vol.12, pp. 83-92, 2006.

[45] S. Yoshizawa, A.G. Belyaev, and H.-P. Seidel, “A Fast and Simple

Stretch-Minimizing Mesh Parameterization,” Proc. Shape Modeling

and Applications, pp. 200-208, June 7-11, 2004, Genova, Italy.

[46] R. Zayer, C. Rössl, and H.-P. Seidel, “Setting the Boundary Free: A

Composite Approach to Surface Parameterization,” Proc. of the

Third Eurographics Symposium on Geometry Processing, pp.91-100,

2005.

[47] E. Zhang, K. Mischaikow, and G. Turk, “Feature-based Surface

Parameterization and Texture Mapping,” ACM Trans. Graphics,

vol. 24, no. 1, pp. 1-27, 2005.

[48] K. Zhou, J. Synder, B. Guo, H.-Y. Shum, “Iso-charts: Stretch-driven

Mesh Parameterization using Spectral Analysis,” Proc. Eurograph-

ics Symposium on Geometry Processing, Nice, France, July, 2004.

[49] G. Zigelman, R. Kimmel, and N. Kiryati, “Texture Mapping Using

Surface Flattening via Multidimensional Scaling,” IEEE Trans.

Visualization and Computer Graphics, vol.8, pp.198-207, 2002.

Charlie C. L. Wang is currently an Assistant Professor at the Depart-
ment of Mechanical and Automation Engineering, The Chinese Univer-
sity of Hong Kong. He gained his B.Eng. (1998) in Mechatronics Engi-
neering from Huazhong University of Science and Technology, M.Phil.
(2000) and Ph.D. (2002) in Mechanical Engineering from The Hong
Kong University of Science and Technology. He is a member of IEEE
and ASME. His current research interests include geometric modeling
in computer-aided design and manufacturing, biomedical engineering,
and computer graphics, as well as computational physics in virtual
reality.

Fig. 10. Testing our mesh segmentation algorithm on three models: (a) a CSG-like model, (b) a squirrel model, and (c) a bunny rabbit. The re-
sults are given in three steps. The colorful segmentations of given models are the results from error-controlled VSA, and then the results after
LPFB-based patch merging are given in gray. The flattening layout is shown in colors which represent normal vectors on the original 3D mod-
els. Finally, the photographs for the physical models make by these patterns are shown.

