Computing Length-Preserved Free Boundary for QuasiDevelopable Mesh Segmentation

Charlie C.L. Wang

1. Operators for mesh cutting

In our implementation, we iteratively introduce three operators on the edges belonging to the cutting path (see Fig. 1), which are

- Hole open - for a given edge e on the cutting path, when neither of the two vertices are on the boundary, this operator is applied to construct a hole by converting e into a boundary edge and adding another boundary edge coincident to e. After this, both vertices have become boundary vertices.
- Crack open - when one vertex v_{s} on e is on the boundary, this operator is applied to create a crack along e by duplicating a vertex $v_{\text {new }}$ to v_{s} and a new edge $e_{\text {new }}$ for e, where $e_{\text {new }}$ links to $v_{\text {new }}$ and v_{d} - another vertex on e.
- Break open - when both v_{s} and v_{d} on e are on the boundary, we fully separate the left and the right portions of e by this break open operator (see Fig. 1). After opening the edges on a cutting path into boundary edges, the following Node open operator is applied to the boundary vertices finally.
- Node open - For a boundary vertex v_{s} linked with n $(n>2)$ boundary edges, $((n-2) / 2)$ new vertices coincident to v_{s} are constructed, and the edges and faces linking to v_{s} are separated so that every vertex is linked with only two boundary edges (see Fig. 1).

2. Computation for matrices

B_{λ}, B_{θ} and Λ in Eq. (12) can be efficiently evaluated.
Statement $1 \quad B_{\lambda}$ is computed by

$$
B_{\lambda}=\left(-\frac{\partial J}{\partial \lambda_{\theta}},-\frac{\partial J}{\partial \lambda_{0 x}},-\frac{\partial J}{\partial \lambda_{0 y}}, \cdots,-\frac{\partial J}{\partial \lambda_{m x}},-\frac{\partial J}{\partial \lambda_{m y}}\right)
$$

where

$$
\begin{gathered}
-\frac{\partial J}{\partial \lambda_{\theta}}=-(n-2) \pi+\sum_{k=1}^{n} \theta_{k} \\
-\frac{\partial J}{\partial \lambda_{p x}}=-\sum_{k=\alpha(p)}^{\beta(p)-1} l_{k} \cos \phi_{k}, \text { and }-\frac{\partial J}{\partial \lambda_{p y}}=-\sum_{k=\alpha(p)}^{\beta(p)-1} l_{k} \sin \phi_{k} .
\end{gathered}
$$

Statement $2 \quad B_{\theta}=\left\{-\partial J / \partial \theta_{i}\right\}$ can be efficient evaluated by the following recursion formulas.

Fig. 1. A mesh surface can be cut along a path by iteratively applying four operators: Hole Open, Crack Open, Break Open, and Node Open.

$$
\begin{gathered}
b_{\theta_{1}}=-\left(\theta_{1}-a_{1}\right)+\lambda_{\theta}+\sum_{p=0}^{m} \sum_{k=\alpha(p)}^{\beta(p)-1}\left(-\lambda_{p x} \sin \phi_{k}+\lambda_{p y} \cos \phi_{k}\right) l_{k} \\
b_{\theta_{i+1}}=b_{\theta_{i}}+\left(\theta_{i}-a_{i}\right)-\left(\theta_{i+1}-a_{i+1}\right)+\sum_{p=0}^{m} A(p, i),
\end{gathered}
$$

with

$$
A(p, i)=\left\{\begin{array}{cl}
\left(\lambda_{p x} \sin \phi_{i}-\lambda_{p y} \cos \phi_{i}\right) l_{i}, & \alpha(p) \leq i<\beta(p) \\
0, & \text { otherwise }
\end{array}\right.
$$

Proof. From $B_{\theta}=\left\{b_{\theta_{i}}\right\}=\left\{-\partial J / \partial \theta_{i}\right\}$, we could have

$$
b_{\theta_{i}}=-\left(\theta_{i}-a_{i}\right)+\lambda_{\theta}+\sum_{p=0}^{m} \sum_{k=\alpha(p)}^{\beta(p)-1}\left(-\lambda_{p x} \sin \phi_{k}+\lambda_{p y} \cos \phi_{k}\right) l_{k} \frac{\partial \phi_{k}}{\partial \theta_{i}}
$$

Letting

$$
\Gamma(p, i) \equiv \sum_{k=\alpha(p)}^{\beta(p)-1}\left(-\lambda_{p x} \sin \phi_{k}+\lambda_{p y} \cos \phi_{k}\right) l_{k} \frac{\partial \phi_{k}}{\partial \theta_{i}}
$$

together with

$$
\frac{\partial \phi_{k}}{\partial \theta_{i}}= \begin{cases}0, & k<i \\ -1, & k \geq i\end{cases}
$$

we could have
$\Gamma(p, i) \equiv \begin{cases}\sum_{k=\alpha(p)}^{\beta(p)-1}\left(-\lambda_{p x} \sin \phi_{k}+\lambda_{p y} \cos \phi_{k}\right) l_{k}, & i \leq \alpha(p)<\beta(p) \\ \sum_{k=i}^{\beta(p)-1}\left(-\lambda_{p x} \sin \phi_{k}+\lambda_{p y} \cos \phi_{k}\right) l_{k}, & \alpha(p)<i<\beta(p) \\ 0, & \alpha(p)<\beta(p) \leq i\end{cases}$
This can be further simplified as follows.
Case 1: When $i \geq \beta(p), i+1>\beta(p)$, we have

$$
\Gamma(p, i+1)=\Gamma(p, i)=0,
$$

which leads to $A(p, i)=0$.
Case 2: For $i=\beta(p)-1, \Gamma(p, i+1)=0$,

$$
\Gamma(p, i)=\left(-\lambda_{p x} \sin \phi_{k}+\lambda_{p y} \cos \phi_{k}\right) l_{i},
$$

thus

$$
A(p, i)=\left(\lambda_{p x} \sin \phi_{i}-\lambda_{p y} \cos \phi_{i}\right) l_{i} .
$$

Case 3: When $\alpha(p) \leq i<\beta(p)-1$,

$$
\begin{gathered}
\Gamma(p, i+1)=\sum_{k=i+1}^{\beta(p)-1}\left(-\lambda_{p x} \sin \phi_{k}+\lambda_{p y} \cos \phi_{k}\right) l_{k}, \\
\Gamma(p, i)=\sum_{k=i}^{\beta(p)-1}\left(-\lambda_{p x} \sin \phi_{k}+\lambda_{p y} \cos \phi_{k}\right) l_{k},
\end{gathered}
$$

so we can conclude that

$$
A(p, i)=\Gamma(p, i+1)-\Gamma(p, i)=\left(\lambda_{p x} \sin \phi_{i}-\lambda_{p y} \cos \phi_{i}\right) l_{i}
$$

Case 4: $i=\alpha(p)-1$, i.e., $i+1=\alpha(p)$, which leads to

$$
\Gamma(p, i+1)=\Gamma(p, i)=\sum_{k=\alpha(p)}^{\beta(p)-1}\left(-\lambda_{p x} \sin \phi_{k}+\lambda_{p y} \cos \phi_{k}\right) l_{k}
$$

thus $A(p, i)=0$.
Case 5: $i<\alpha(p)-1$, i.e., $i+1<\alpha(p)$, for the same reason as above case, we have $A(p, i)=0$.
By concluding all these five cases, we could have $A(p, i)$ as given in Statement 2.
Q.E.D.

Statement 3 For Λ, whose dimension is $(2 m+3) \times n$, its i-th column vector is

$$
\Lambda_{i}=\frac{\partial^{2} J}{\partial \lambda \partial \theta_{i}}=\left(\begin{array}{c}
\frac{\partial}{\partial \theta_{i}}\left((n-2) \pi-\sum_{k=1}^{n} \theta_{k}\right) \\
\frac{\partial}{\partial \theta_{i}} \sum_{k=\alpha(p)}^{\beta(p)-1} l_{k} \cos \phi_{k} \\
\frac{\partial}{\partial \theta_{i}} \sum_{\substack{k=\alpha(p) \\
\beta(p)-1}}^{l} l_{k} \sin \phi_{k} \\
\ldots
\end{array}\right)_{(2 m+3) \times 1}
$$

with $p=0,1, \cdots, m$. Every element of Λ_{i} can be evaluated by

$$
\begin{gathered}
\Lambda_{1, i}=-1 \\
\Lambda_{2 p+2, i+1}=\Lambda_{2 p+2, i}+B(p, i) \\
\Lambda_{2 p+3, i+1}=\Lambda_{2 p+3, i}+D(p, i)
\end{gathered}
$$

with

$$
\begin{gathered}
B(p, i)=\left\{\begin{array}{cc}
-l_{i} \sin \phi_{i}, & a(p) \leq i<\beta(p) \\
0, & \text { otherwise }
\end{array},\right. \\
D(p, i)=\left\{\begin{array}{cc}
l_{i} \cos \phi_{i}, & a(p) \leq i<\beta(p) \\
0, & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

Proof. By $\Lambda_{i}=\partial^{2} J / \partial \lambda \partial \theta_{i}$, we could have

$$
\Lambda_{1, i}=-1
$$

$$
\begin{aligned}
& \Lambda_{2 p+2, i+1}=-\sum_{k=\alpha(p)}^{\beta(p)-1} l_{k} \sin \phi_{k} \frac{\partial \phi_{k}}{\partial \theta_{i}} \\
& \Lambda_{2 p+3, i+1}=\sum_{k=\alpha(p)}^{\beta(p)-1} l_{k} \cos \phi_{k} \frac{\partial \phi_{k}}{\partial \theta_{i}}
\end{aligned}
$$

The following proof could be ignored as it is similar to the proof of statement 2 .
Q.E.D.

