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1. Operators for mesh cutting 

In our implementation, we iteratively introduce three 
operators on the edges belonging to the cutting path (see 
Fig. 1), which are  

• Hole open – for a given edge e on the cutting path, 
when neither of the two vertices are on the bound-
ary, this operator is applied to construct a hole by 
converting e into a boundary edge and adding an-
other boundary edge coincident to e. After this, 
both vertices have become boundary vertices. 

• Crack open – when one vertex vs on e is on the 
boundary, this operator is applied to create a crack 
along e by duplicating a vertex vnew to vs and a new 
edge enew for e, where enew links to vnew and vd – an-
other vertex on e.  

• Break open – when both vs and vd on e are on the 
boundary, we fully separate the left and the right 
portions of e by this break open operator (see Fig. 1). 

After opening the edges on a cutting path into boundary 
edges, the following Node open operator is applied to the 
boundary vertices finally. 

• Node open – For a boundary vertex vs linked with n 
(n>2) boundary edges, ((n-2)/2) new vertices coin-
cident to vs are constructed, and the edges and 
faces linking to vs are separated so that every ver-
tex is linked with only two boundary edges (see 
Fig. 1). 

2. Computation for matrices 

λB , θB  and Λ  in Eq. (12) can be efficiently evaluated. 

Statement 1 λB  is computed by 
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Statement 2 }/{ iJB θθ ∂−∂=  can be efficient evaluated by 
the following recursion formulas. 
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Proof.  From }/{}{ iJbB
i

θθθ ∂−∂== , we could have 
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This can be further simplified as follows. 

Case 1: When )( pi β≥ , )(1 pi β>+ , we have 
0),()1,( =Γ=+Γ ipip , 

which leads to 0),( =ipA . 

Case 2: For 1)( −= pi β , 0)1,( =+Γ ip ,  

ikpykpx lip )cossin(),( φλφλ +−=Γ , 
thus  

iipyipx lipA )cossin(),( φλφλ −= . 

Case 3: When 1)()( −<≤ pip βα , 
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so we can conclude that 
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Fig. 1. A mesh surface can be cut along a path by iteratively applying 
four operators: Hole Open, Crack Open, Break Open, and Node 
Open. 
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iipyipx lipipipA )cossin(),()1,(),( φλφλ −=Γ−+Γ= . 

Case 4: 1)( −= pi α , i.e., )(1 pi α=+ , which leads to 
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thus 0),( =ipA . 

Case 5: 1)( −< pi α , i.e., )(1 pi α<+ , for the same reason as 
above case, we have 0),( =ipA . 

By concluding all these five cases, we could have ),( ipA  as 
given in Statement 2. 

Q.E.D. 

Statement 3 For Λ , whose dimension is nm ×+ )32( , its i-th 
column vector is 
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with mp ,,1,0 L= . Every element of iΛ  can be evaluated by 
1,1 −=Λ i ,  
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Proof. By ii J θλ∂∂∂=Λ /
2 , we could have  

1,1 −=Λ i ,  

∑
−

=
++

∂

∂
−=Λ

1)(

)(
1,22 sin

p

pk
i

k
kkip l

β

α θ

φ
φ ,  

∑
−

=
++

∂

∂
=Λ

1)(

)(
1,32 cos

p

pk
i

k
kkip l

β

α θ

φ
φ . 

The following proof could be ignored as it is similar to the 
proof of statement 2. 

Q.E.D. 


