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1. Operators for mesh cutting

In our implementation, we iteratively introduce three
operators on the edges belonging to the cutting path (see
Fig. 1), which are

Hole open — for a given edge e on the cutting path,
when neither of the two vertices are on the bound-
ary, this operator is applied to construct a hole by
converting e into a boundary edge and adding an-
other boundary edge coincident to e. After this,
both vertices have become boundary vertices.

Crack open — when one vertex v, on e is on the
boundary, this operator is applied to create a crack
along e by duplicating a vertex v, to v, and a new
edge e, for e, where ¢ links to v, and v, — an-
other vertex on e.

Break open — when both v, and v, on e are on the
boundary, we fully separate the left and the right
portions of e by this break open operator (see Fig. 1).

After opening the edges on a cutting path into boundary
edges, the following Node open operator is applied to the
boundary vertices finally.

Node open — For a boundary vertex v, linked with n
(n>2) boundary edges, ((1-2)/2) new vertices coin-
cident to v, are constructed, and the edges and
faces linking to v, are separated so that every ver-
tex is linked with only two boundary edges (see
Fig. 1).

2. Computation for matrices

B,, By and A in Eq. (12) can be efficiently evaluated.
Statement1 B, is computed by
B_(_BJ_BJ _ o/ dJ  dJ
AT 0y g, gy Ody Oy
where
oJ o
———=—(1-2)7+ ) 6,
4y =
3 ,B(Zp):—l ,B(Zp):—l
- =— l; cos@y , and — =— l; singy .
Ry Moy L2atn
Statement2 B, ={-0J/06;} can be efficient evaluated by

the following recursion formulas.
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Fig. 1. A mesh surface can be cut along a path by iteratively applying
four operators: Hole Open, Crack Open, Break Open, and Node
Open.
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This can be further simplified as follows.
Case 1: When i > B(p), i+1> B(p), we have

I'(p,i+1)=T(p,i)=0,
which leads to A(p,i)=0.
Case 2: For i= B(p)—1, I'(p,i+1)=0,

T(p.i) = (=4, sing, + A, cos@)l;,
thus
A(p,i)= (A, sing; — A, cos@;)l;.

Case 3: When a(p)<i< f(p)-1,

T(p,i+])= Zﬁ PR singy + 4, c0s gl s

k=i+1

. B(p)-1 .
L(p,i)= Zk:j (—lpx sin g, + /1py cos @)l »

so we can conclude that



A(p,i)=T(p,i+1)=L(p,i)=(A,, sing; — 4, cos@;)I; .
Case4: i=a(p)—1,i.e., i+1=a(p), which leads to
B(p)-1
I(p,i+D)=0(p,i)=
(pi+D=T(p.iy=3 7" |
thus A(p,i)=0.

Case 5: i< a(p)—1,ie. i+1<a(p), for the same reason as
above case, we have A(p,i)=0.

(A singy + 4, cos @)l

By concluding all these five cases, we could have A(p,i) as
given in Statement 2.

Q.E.D.

Statement 3 For A, whose dimension is (2m+3)Xn , its i-th
column vector is
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with p=0,1,---,m . Every element of A; can be evaluated by
Ay =-1,

Aopiaint =Noppai + B(p,D),
Agpizint =Napysi + D(p.i),
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B(p,i) ={

Dip.i)= {l,- cosg;, a(p)<i<f(p)

0, otherwise

Proof. By A, =9°J/04d6;, we could have

Al,i =-1,
Bp)-1 . ¢,
Agpioint = _Zk:a(p)lk sin ¢ R
B(p)-1 a9,
Aopizin = Zk:a(p)lk cos g ﬁ :

The following proof could be ignored as it is similar to the
proof of statement 2.

Q.E.D.
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