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Abstract—We present a new approach to compute the approx-
imate Boolean operations of two freeform polygonal mesh solids
efficiently with the help of Layered Depth Images (LDI). After
applying the LDI sampling based membership classification,the
most challenging part, a trimmed adaptive contouring algorithm,
is developed to reconstruct the mesh surface from the LDI
samples near the intersected regions and stitch it to the boundary
of the retained surfaces. Our method of approximate Boolean
operations holds the advantage of numerical robustness as the
approach uses volumetric representation. However, unlikeother
methods based on volumetric representation, we do not damage
the facets in non-intersected regions, thus preserving geometric
details much better and speeding up the computation as well.
We show that the proposed method can successfully compute the
Boolean operations of freeform solids with a massive numberof
polygons in a few seconds.

Index Terms—Boolean operations, freeform solids, robust,
approximation, Layered Depth Images.

I. I NTRODUCTION

T HE conventional methods of Boolean operations for two
solids are based on the intersection computation and the

surface membership classification. Robustness and efficiency
are the major difficulties in implementing Boolean operations
on freeform solids with complex geometry, which are usually
represented by polygonal meshes. More specifically, when the
number of polygons involved is massive, it takes a long time
to detect and compute the intersection curves. Furthermore,
robustness problems are very common in this kind of approach
(e.g., two polygons are tangentially contacted or are only
intersected on one of their boundary edges). Simply using
approximate arithmetic to implement a conventional Boolean
operation algorithm makes the program unstable (e.g., see the
results in Fig.18). The inconsistencies arising from numerical
error can lead to incorrect topology (such as breaks in the
boundary or inconsistent intersection curves on two solids).
Although the techniques of exact arithmetic (ref. [5], [24],
[25], [34], [35], [50]–[52]) and interval computation (ref.
[22], [44], [45], [72]) have been employed in the algorithms
of Boolean operations, they are quite expensive in terms of
both computing time and memory. Moreover, conventional
algorithms can hardly be parallelized to borrow the advanced
computational power available on consumer PCs with GPU
or multi-core CPU. Another stream of research to solve
the robustness problem in Boolean operations is based on
volumetric representation (e.g., [26], [46], [54], [59], [77],
[78], [80]). Nevertheless, the procedure of surface-volume con-
version, processing and volume-surface conversion can easily
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lose the geometric details and other attributes of the given
models unless the geometry of the original models is retained.
Retaining the geometry is easier for point-sampled surfaces [2]
but much more difficult for mesh surfaces. The purpose of this
research is to develop a fast boundary evaluation method which
inherits the robustness of volume-based approach but only
introduces shape approximation error at intersected regions by
retaining facets at non-intersected regions.

We exploit a new approach to efficiently compute the
approximate Boolean operations of two freeform solids with
the help of Layered Depth Images (LDI). We assume that
the given two freeform solids are represented by non-self-
intersected closed triangular mesh surfaces. Firstly, thegiven
triangular meshes are sampled into LDIs. By a clustering
algorithm, each triangle on given models has at least one
or even more corresponding sample points in the LDIs. As
it will be detailed later, the LDIs actually give a semi-
implicit representation of the given models; therefore, Boolean
operations can be robustly and efficiently performed on them.
The resultant samples in the LDI are then employed to give
membership classification for triangles on the given models.
The model after membership classification is in a LDI/mesh
hybrid representation. Lastly, the most challenging part –
a trimmed adaptive contouring algorithm is developed to
reconstruct the mesh surface in the intersected region fromthe
LDI/mesh hybrid and stitch it to the boundary of the retained
mesh surfaces. The trimmed adaptive contouring algorithm is
different from a mesh hole filling (e.g., [6]). Since we do not
explicitly compute the intersection curves, the missed region
to be reconstructed in general has a larger area. The shape
of the missed region is however represented by LDI samples.
Therefore, the reconstructed surface must capture the shape
with geometric details rather than smoothly interpolatingthe
boundaries. Unlike the previous works of polytree (ref. [14],
[15]), extended octree (ref. [12], [13]) and adaptive contouring
(ref. [46], [48]) which reconstruct the whole mesh surface,we
take a similar strategy as [10], [19], [61], [79]

• to retain the surfaces that are far away from the inter-
sected regionΨ,

• to reconstruct the surfaces nearΨ,
• and produce the two-manifold boundary of a solid model

by stitching the retained and the reconstructed surfaces.

Sampling is adopted to approximate the boundary of the result
of a Boolean operation on triangulated solids and the resultof
reconstruction is a two-manifold mesh surface. The Hausdorff
error with respect to the correct result decreases with the
sampling rate.
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Fig. 1. A 2D illustration of Layered Depth Images (LDI), and the samples
sorted by ascending depth values in three pixels are also listed.

We do not reconstruct the intersected region of surfaces at
the finest resolution of a LDI. Instead, an octree is employed
to make the resolution of the reconstructed mesh adaptive to
1) topology complexity on retained surfaces and 2) geometry
complexity of the shape to be reconstructed. Building an
octree for partial reconstruction and stitching the reconstructed
surface to the boundary of the retained mesh surface is an
open problem. We propose a new algorithm in this paper to
solve this problem. Another major difference between [10],
[61], [79] and ours is that the membership classification is
accelerated by graphics hardware in our algorithm.

A. Previous work

The previous work about Boolean operations on 3D poly-
hedral objects can be classified into three broad categories:
approaches based on exact arithmetic and interval compu-
tation, special algorithms using approximate arithmetic,and
volumetric methods. In addition, another relevant stream of
research is the techniques in image space.

Exact arithmetic and interval computation
The algorithms for Boolean operations on 3D solid models

have been studied for many years (see [55], [63], [64]). When
implementing these algorithms (ref. [40]–[42]), the problem of
robustness is the major concern. Many of the researches use
exact arithmetic as it provides the most promising approach
to the numerical robustness problem. The authors in [5], [24]
and [25] considered Boolean operations on solids bounded by
piecewise linear surfaces, which are recently optimized and
integrated in CGAL (ref. [16], [34], [35]). More advanced
approaches of Boolean operations by exact arithmetic in
the curved domain can be found in [50]–[52]. Some other
approaches employ the technique of interval computation. The
rounded interval arithmetic was adopted in [44] and [45] to
compute Boolean operations on solids with spline surfaces.
Fang et al. [22] and Segal [72] conducted the tolerances
(which are actually intervals) to keep the information of the
algorithm’s decision-making history. That means, when a new
decision is to be made, the algorithm makes it consistent with

all previous ones by checking the tolerances. A more compre-
hensive review can be found in [68]. However, significant extra
computation and memory are required by the approaches based
on exact arithmetic and interval computation. It is impractical
to apply them on freeform solids with hundreds of thousands
of triangles as the examples shown in this paper.

Approximate arithmetic

Since how to effectively deal with degenerated surface-
surface intersections is one of the most challenging aspects
of exact solid modeling calculations, some approaches were
proposed to compute approximate Boolean operations instead
of the exact ones. Biermann et al. [8] introduced a method for
computing approximate results of Boolean operations applied
to freeform solids bounded by multi-resolution subdivision
surfaces. Different from the aforementioned algorithms, the
cutting and merging steps are applied at the coarse mesh
level, and the resultant coarse mesh is then fit to the given
detailed mesh surfaces. The robustness problem in intersection
computation is solved by the numerical perturbation method
applied to the coarse meshes. However, it becomes time-
consuming when applying such a perturbation method to the
given models with a massive number of polygons. Recently,
Smith and Dodgson [73] described a topologically robust
algorithm, which uses approximate arithmetic. After carefully
defining the relationship between a series of interdependent
operations, the consistency in output is ensured and therefore
a correct connectivity is guaranteed in the final results. One
major defect of the approach is its inability to borrow the
power of parallel computing, which is available at consumer
level PCs nowadays, since the operations are interdependent.
In addition, the implementation of such a complex algorithm
as [73] is not easy.

Volumetric methods

An alternative to directly computing on mesh surfaces is to
convert them into volumetric representation, and then the re-
sults of Boolean operations can be easily and robustly obtained
on volumetric data (e.g., the adaptive distance-field method in
[26] and the level-set based method in [59]). However, sharp
edges and corners of the original surface are removed by the
sampling process. As observed by Kobbelt et al. in [54], even
if an over-sampling is applied, the associated aliasing error
is not absolutely eliminated since the surface normals in the
reconstructed model usually do not converge to the normal
field of the original model. Therefore, the normal information
is encoded during the sampling in [54] and [46] to provide the
ability of reconstructing sharp features on resultant surfaces.
A variety of variants of [46] have been developed thereafter
trying to enhance the results in the aspects of topology
preservation (ref. [77], [78], [80]), intersection free [48], and
manifold preservation [71]. The authors in [2] employed the
octree structure to give inside-outside detection of surfels
that resulted in Boolean operations on surfel-bounded solids.
The major drawback of all these approaches except [2] is
that the surface-volume-surface conversion often damagesthe
geometric details and other attributes of the given models.
Nevertheless, our algorithm has overcome the problem.
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Fig. 2. An overview of our algorithm for fast approximation Boolean operation on large polyhedral solids. The vase-lionmodel and the dragon model have
400k and 277k triangles respectively — it is impractical to compute the Boolean operations on such models using exact arithmetic based commercial solid
modeling systems. Our algorithm consists of five steps: 1) LDI sampling and surface clustering, 2) Boolean operation on the LDI samples, 3) membership
classification, 4) trimmed adaptive contouring, and 5) post-processing. Note that, for the purpose of having a clear illustration, the LDI is only sampled at
128 × 128 in this figure.

Techniques in image space

Using graphics hardware to speed up the evaluation of
Boolean operations in image space has a long history (ref.
[4], [27], [29], [31]–[33], [49], [66], [67], [74]). The purpose
of these algorithms is to provide a quick feedback in rendering
rather than boundary evaluation, which indeed is our mission.

There are also many approaches in literature using graphics
hardware for interference and collision computations in the
image space, where a review can be found in [28] and
[75]. Among them, the approaches of [38], [60] and the
recent variants in [23] and [76] decompose a given non-self-
intersected closed object into Layered Depth Images (LDI)
through a specified viewing, where each pixel in a LDI
contains a sequence of numbers that specify the depths from
the intersections (between a ray passing through the center
of a pixel along the viewing direction and the object to be
sampled) to the viewing plane and the depths are sorted
in ascending order. Figure 1 gives a 2D illustration of the
samples stored in a LDI. Sampling a given model with LDI
along a single directiont will miss the surface regions that
are nearly perpendicular tot (e.g., the bottom region of the
surface shown in Fig.1). This situation of miss-sampling can be

improved by conducting another sampling along the direction
perpendicular tot. The sampling can be executed on graphics
hardware with the help of stencil-buffer and depth-buffer.For
a correctly sampled solid model represented by a LDI, the
number of sampled depths on a pixel must be even — this
can be guaranteed by stencil-buffer based peeling (see [38]).
The inside/outside detection can be conducted very efficiently
(see [23] and [76]), so a LDI can actually be considered as
a semi-implicit representation. LDI adopted in this paper is
indeed an extension of the ray-rep (or dexel) in solid modeling
(ref. [7], [21], [37], [43], [56]–[58], [69]). The common defect
of these approaches is similar to the volumetric representation
based ones – when contouring the computed results back into
mesh surfaces, many geometric details are easily destroyed.
The approaches using voxels (e.g., [11], [17], [20]) have the
same problem as ray-rep has in this aspect. Our algorithm
outperforms them on this by retaining the facets from original
models in non-intersected regions.

B. Main results

We sample the given models into LDI solids by the graphics
hardware accelerated rasterization. Boolean operations are
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robustly conducted on the LDI solids. After applying LDI
sampling based membership classification, a trimmed adaptive
contouring algorithm is exploited to reconstruct triangular
faces for the intersected region by the samples of a LDI.
These result in a robust and fast method of approximate
Boolean operations on freeform solids with the help of LDI.
Our approach maintains the good property of robustness from
the volumetric approaches while keeping the triangles in
non-intersected regions, which can preserve geometric details
better than other volumetric approaches.

II. OVERVIEW

In order to sample a given freeform modelM well and also
ease the later surface reconstruction, we adopt a structured set
of LDIs consisting ofx-LDI, y-LDI and z-LDI sampled along
x−, y− and z−axis respectively. The images have the same
resolution and are located in a way that their rays intersectat
the w × w × w nodes of uniform grids. A similar sampling
can be found in the approaches of triple ray-rep in [7] and
[58], and the sampling of surfels in [62]. With the help of
structured LDIs, our algorithm can efficiently compute the
partial approximate Boolean operations on large polyhedral
solids in five steps.

Step 1: LDI sampling and surface clustering
The first step of our algorithm is to sample the piecewise-

linear surfaces of given models (see Fig.2(a)) into structured
LDIs. Two given modelsMA and MB are sampled into the
LDI solids LA and LB. To make the rays ofLA exactly
overlap the rays ofLB, the sampling ofMA and MB must
be conducted in the same working envelope — the common
bounding box ofMA and MB. The IDs of triangles onMA

and MB are transferred to the samples ofLA and LB with
the help of color buffer. We first assign a unique ID to every
triangle of MA and MB. The number of every ID is then
mapped into an RGB-color. Therefore, after rendering all faces
by the colors according to their IDs, we can easily identify
from which triangle the sample at a fragment is sampled by
its RBG-color. As each color component is represented by a
number with 8 bits, we can render up to224 = 16, 777, 216
distinguished triangles, which is much more than the required
number in practical use. For small triangles that are missed
during the sampling, we cluster them into the same region
group as that of their neighboring sampled triangles by a flood
fill method (see Fig.2(b) and 3). Note that this clustering does
not prevent recovering them by the LDI samples. In fact, they
are approximated by the polygons constructed in step 4.

Step 2: Boolean operation on LDI samples
The computation of a Boolean operation on two LDI solids

LA and LB is decoupled into the Boolean operation on the
overlapped raysrA

t (i, j) ∈ LA andrB
t (i, j) ∈ LB in parallel.

In other words,

Lres = ∀t={x,y,z}{(i, j)|rA
t (i, j) ⋄ rB

t (i, j)} (1)

with “⋄” denoting one of the Boolean operations: “∪”, “ ∩” or
“\”. From the definition of ray-rep, we know that the samples
on the rays actually represent a one-dimensional solid where
a ray enters into the solid at theodd-th samples and leaves

Fig. 3. The surface clustering by sampled triangles: (a) with many miss-
sampled triangles — displayed in dark-gray, and (b) with alltriangles having
region ID specified.

at theeven-th samples. Therefore, the Boolean operations on
them can be implemented by moving forward incrementally
on sorted samples of corresponding rays.

Step 3: Membership classification
In this step, the samples at the LDI solidLres are employed

to determine which triangles onMA and MB are to be
retained, and remove other triangles. Two given modelsMA

and MB have been sampled into LDI solidsLA and LB.
For the new solidLres obtained by Boolean operations, a
regionR ∈ MA (or ∈ MB) remains if and only if it has the
same number of corresponding samples inLres and LA (or
LB). Putting the triangles of the remaining region ofMA and
MB together, a mesh surfaceMP that is part of the resultant
solid is obtained.MP is an open surface. The samples in
Lres with their corresponding triangles removed are called
IR-samples(e.g., the black dots in Fig.2(d)), where “IR-”
stands for intersected region. The IR-samples are a discrete
representation of surfaces near the intersected regions onthe
Boolean result ofMA and MB. The IR-samples onLres

together withMP give a Mesh/LDI-hybrid representation of
the resultant solid. The surface regions represented by IR-
samples are named asintersected regions. Figure 2(d) shows
such a hybrid representation. Note that for the “\” operation,
the triangles fromMB must have their normals flipped by
reversing the order of their vertices. To ensureMP does not
contain any part not on the real resultant model, the regions
next to the boundary ofMP are removed as well.

Step 4: Trimmed adaptive contouring
This is the most difficult step of our algorithm. A trimmed

adaptive contouring algorithm is exploited to generate the
mesh surface approximating the shape represented by the
IR-samples while interpolating the boundary ofMP . We
first construct the octree structure according to the geometry,
topology and surface stitching criteria (see Fig.2(e)). Then the
mesh surfaceMI is contoured from the octree and stitched to
MP . An example is shown in Fig.2(f), where the red polygons
belong to MI . Details of the trimmed adaptive contouring
algorithm are presented in the following section.

Step 5: Post-processing
The post-processing step conducts the remaining work of

triangulating the quadrilateral faces onMI , eliminating the
non-manifold entities on the resultant mesh surface, and filling
the local topology information in the data structure of the mesh
surface — see the result in Fig.2(g).
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III. T RIMMED ADAPTIVE CONTOURING ON

MESH/LDI-H YBRID REPRESENTATION

A trimmed adaptive contouring algorithm is developed
to generate the mesh surfaceMI in intersected regions by
samples ofLres. Meanwhile, MI is stitched to the mesh
surfaceMP , which is obtained after membership classification.
The adaptivity is gained by using a hierarchical structure —
octree. The algorithm consists of two major steps: 1) octree
construction and 2) mesh generation and stitching. As a result,
MI and MP are tightly stitched together to produce the
resultant surface of Boolean operations. Although some small
holes (or gaps) are generated on the resultant mesh, they can
be easily eliminated by a cleaning process.

A. Octree construction

An octree is constructed to govern the mesh generation of
MI , where the space occupied by each node is defined as a
cell. However, different from the construction strategy of the
octree as shown in [71], [77], [78], we need to consider both
the topology and the shape ofMI and the boundary ofMP .
The octree is constructed in a top-down manner. Starting from
the root cell, the cells are recursively refined into eight sub-
cells based on the conditions of 1) the topology simplicity,
2) the geometry approximation, and 3) the surface stitching.
For a LDI with w ×w resolution and that has the orthogonal
distancer between rays, if we assume thatw = 2n + 1 with
n being an integer, we can define the root cell’s width as2nr
and locate the root cell to the position where its edges overlap
with rays in Lres. By this, the refined cells can always have
their edges overlapped with rays inLres as long as the widths
of the cells are≥ r. Therefore, the inside/outside status of the
eight nodes in a cell can be detected quickly.

Topology simplicity For the face of a cellC, when the
diagonal nodes on the face have the same inside/outside status,
the topology of the surface inside the cell is ambiguously
defined (e.g., the right face in Fig.4(a)). This is calledface
ambiguous. When any pair of diagonally opposite nodes in
the cell C has one sign (inside or outside) while the other
vertices have a different sign, the topology of the surface inside
the cell is also ambiguous (e.g., Fig.4(b)). This is named as
voxel ambiguous. When a cell has any of the above ambiguity,
it needs to be further refined to figure out the real topology
inside. Furthermore, as shown in Fig.4(c), when any edge of
a cell contains more than one LDI sample (i.e., have multiple
intersections between the ray and the real resultant surface),
the cell also contains complex topology and needs to be further
subdivided.

A cell that contains a part of the surface but all its eight
nodes are detected asinside is defined as afake solid volume.
If a cell is a fake solid volume, its inside topology is complex.
For a cell whose width is greater thanr, such a case can be
detected by checking if any LDI sample is in the cell when the
cell’s eight nodes are allinside the resultant solid. A similar
situation occurs when a cell has afake solid face— a face
with all its four nodes inside (or outside) but having some
1D solids from the LDI passing through. Figure 5 gives some

Fig. 4. Examples of cells with complex topology. (a) The topology of
the right-face of cell is ambiguously defined by the inside/outside status of
nodes. (b) The topology in the cell is ambiguously defined by the nodes’
configuration. (c) The cell holding an edge with multiple samples (the blue
ones) has complicated topology.

Fig. 5. Examples of a fake solid volume (left) and a fake solidface (right;
at the bottom) — we assume that the width of the cell is greaterthan r and
the cavities can be sampled by rays of the LDI.

examples. Fake empty volumes and fake empty faces can be
checked in a similar way.

For a cellC with its width longer thanr, if it is in any of
the following cases,

• face ambiguous;
• voxel ambiguous;
• having more than one sample on a cell-edge;
• being a fake solid (or empty) volume;
• having a fake solid (or empty) face;

the cell C must be further subdivided into eight sub-cells.
To find the right balance between speed and accuracy, the
refinement is bounded by the resolution of the LDI.

Geometry approximation The samples ofLres inside a
cell C can be considered as a set of Hermite data points
which specify the geometry inC. The normal vector of a
Hermite point inLres is obtained by the triangle from which
the point is sampled. In the later mesh generation algorithm,
the geometry of a leaf-node cellC containing the reconstructed
surfaceMI is approximated by a vertex and its adjacent faces.
The vertex is located at aQEF-minimizing-pointqc, whose
position minimizes theQuadratic Error Function (QEF),
QF (qc) =

∑
hi

((qc − hi) · nhi
)2, defined by all Hermite

data points(hi,nhi
) in C. To be robust, the positionqc

minimizing QF (qc) can be computed by the singular value
decomposition (SVD). Therefore, to control the geometry
approximation error onMI , we check the error betweenqc

and the planes defined by the Hermite samples. If∃(hi,nhi
)

that|(qc−hi)·nhi
| > εg, the cellC needs to be further refined.

εg is a coefficient used to control the shape approximation
error. We chooseεg = 0.1r in all our examples.
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Fig. 6. Illustrations of the only two configurations in a cellC with simple
boundary topology: (a)C contains a single boundary edge (in red), and (b)C

contains two adjacent boundary edges and their shared vertex (in yellow). (c)
Complex topology is presented inC if it contains only two adjacent boundary
edges but not their shared vertex – the yellow vertex is outside the cell.

Surface stitching According to the IR-samples defined
in the previous section, a cellC can be classified into the
following different categories.

• reconstructed-interior-cell: if all samples ofLres inside
C are IR-samples;

• retained-interior-cell: if no sample insideC is an IR-
sample;

• boundary-cell: others that have both IR-samples and other
LDI samples.

As we will stitch the vertices generated in the leaf-node
cell to the boundary curves of the open surfaceMP , the
topology of the boundary embedded in a cellC must also
be considered when constructing the octree. Every boundary-
cell spans the space intersectingMA (or MB) that has some
triangles removed and some retained. Thus, it must hold some
boundary curves ofMP . The surfaceMP in the cellC has a
boundary curve with simple topology ifC contains

• a single boundary edge ofMP (e.g., Fig.6(a)), or
• two adjacent boundary edges and their shared vertex (e.g.,

Fig.6(b)).

By this rule, all cells containing boundary edges ofMP are
classified assimple-boundary-cells– cells containing bound-
ary with simple topology, orcomplex-boundary-cells– other
cells holding boundary edges ofMP . If the cell C is a
boundary-cell, the refinement ofC only stops when it is a
simple-boundary-cell.

This criterion is adopted to ensure that the final mesh
surface generated from the octree can be tightly stitched
to MP . Details of the stitching are discussed in the sub-
section of surface stitching below. In practice, to speed upthe
computation, topology simplicity and geometry approximation
error are only detected on thosereconstructed-interior-cellsas
the mesh surfaceMI is only constructed by thereconstructed-
interior-cellsandboundary-cells. The pseudo-code is as shown
in Procedure 1. Calling Procedure CellRefinementwith the
root cell and all boundary edges onMP can construct the
octreeTr for mesh generation and stitching. The refinement
of cells can be run in parallel on multi-core CPUs.

B. Mesh generation and stitching

After constructing the octreeTr, the mesh surfaceMI

stitching to the retained mesh surfaceMP (obtained by
surface membership classification) is generated by contouring
the octree. Similar to other octree contouring algorithms in
[46], [77], [78], the polygonal faces are only constructed on

Procedure 1CellRefinement (cellC, edge-listE)
Require: E containing the boundary edges ofMP

Ensure: the edges inE intersect the domain ofC
1: if (IsCellRefinementNeeded(C, E)) then
2: Subdivide cellC into eight sub-cellsCi (i=1,...,8);
3: SubdivideE into eight listsEi corresponding toCi;
4: for all i such that1 ≤ i ≤ 8 do
5: Call CellRefinement(Ci, Ei); {Recursively}
6: end for
7: end if

Procedure 2 IsCellRefinementNeeded (cellC, edge-listE)
1: if the width ofC ≤ r then
2: return false;
3: else if no LDI sample inC is an IR-samplethen
4: return false;
5: else if C is NOT with a simple topologythen
6: return true;
7: end if
8: Compute theQEF-minimizing-pointqc by all Hermite

samples(hi,nhi
) in C;

9: for all i do
10: if |(qc − hi) · nhi

| > εg then
11: return true;
12: end if
13: end for
14: if C is complex-boundary-cellthen
15: return true;
16: end if
17: return false;

minimal-edges ofTr that exhibit a sign change on their two
endpoints. Theminimal-edgeis an edge on the leaf-node cell
that does not properly contain an edge of a neighboring leaf.
Mesh generation can be compactly implemented by recursively
calling the functions to process the volumes, the faces and
the edges of cells. More implementation details of contouring
an octree can be found in [70]. Here, we only focus on the
difference between our trimmed adaptive contouring algorithm
and standard contouring.

First of all, we do not construct faces for all minimal-
edges with a change of sign. In conventional contouring,
quadrilateral (or triangular) faces are constructed around the
minimal edges that exhibit a sign change when the minimal
edges are adjacent to four (or three) leaf-node cells. However,
we are going to generate the mesh surfaceMI , which is a
mesh surface only in the space spanned byboundary-cellor
reconstructed-interior-cell.

The remarks and propositions below prove how a watertight
result can be produced byMP andMI .

Remark 1 Faces ofMI are only constructed on the sign-
changed minimal-edges whose neighboring cells are either
boundary-cellor reconstructed-interior-cell.

As illustrated in Fig.7(a), if there are four cells around a
minimal-edge and one cell among them is aretained-interior-
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Fig. 7. Illustrations of mesh generation in partial adaptive contouring: (a) no
face is constructed as there is aretained-interior-cell, and (b) a face (in gray)
is constructed to link the vertices in theboundary-celland thereconstructed-
interior-cells. The vertex in thereconstructed-interior-cellis displayed in
purple.

cell, no face is generated for the minimal edge. When all four
cells are eitherboundary-cellor reconstructed-interior-cell, a
quadrilateral face is generated during the contouring (e.g., the
case shown in Fig.7(b)).

Proposition 1 If all leaf boundary-cellsin the octree are
with simple topology, the meshMI generated by the above
method has the same boundary topology as that ofMP .

Proof. For the leaf cells of the octree constructed by the afore-
mentioned method,reconstructed-interior-cellsand retained-
interior-cells are separated byboundary-cells and empty
(solid) cells. The polygons are constructed only accordingto
the sign changed minimal-edges, thus the boundary on the
reconstructed mesh surfaceMI is only from theboundary-
cells. If a boundary-cellCb is a simple cell, the topology of
MP ’s boundary inCb is the same as that of the boundary
formed by the reconstructed faces ofMI . Therefore,MI and
MP have the same boundary topology. ⋄

Vertices of the reconstructed meshMI are created in
both the reconstructed-interior-cellsand theboundary-cells
adjacent to sign changed minimal-edges. The vertices in the
reconstructed-interior-cellsare placed at the position of their
QEF-minimizing-points(e.g., the purple vertex in Fig.7(b)).
A more difficult problem about how to locate vertices in the
boundary-cellsis discussed below.

The vertices of the meshMI in those leaf boundary-cells
are positioned by stitching to the boundary of the mesh surface
MP .

Remark 2(a) For a simple-boundary-cellC with two adja-
cent boundary edges, their shared vertexvc is adopted as the
vertex in this cell.

Remark 2(b) The vertexv in a simple-boundary-cellC
(whose QEF-minimizing-point isqc) contains only a single
boundary edgee, and the position ofv is computed by the

Fig. 8. Illustrations of stitching a vertex in asimple-boundary-cellholding
only one boundary edgee (in red): (left) the QEF-minimizing-pointqc is
computed, (middle)qc is projected to its closest point one, and (right) a
vertexv is created to split the original face.

Fig. 9. Illustrations of a more complex example of stitchingthe reconstructed
mesh surfaceMI to the boundary edges of the retained mesh surfaceMP .

closest point toqc on e.

The boundary edgee and its adjacent face must be split by the
vertexv of cell C so thatMI andMP match inC not only
geometrically but also topologically. An illustration is given in
Fig.8. A more complex case is that one boundary edgee passes
through a few boundary cells (as shown in Fig.9). Therefore,in
our implementation, we separate the projection and splitting.
After projecting all vertices in thesimple-boundary-cells, the
created vertices are attached toe and sorted by their positions
on e. The splitting is conducted thereafter as a face may be
split into more than one triangle (see Fig.9).

Proposition 2 If the reconstructed mesh surfaceMI and
the open meshMP have the same boundary topology,MI

andMP are connected in watertight by locating the boundary
vertices onMI in the way of Remark 2.

The proof of this proposition is straightforward. However,
the leaf boundary-cells in the octree areNOT intrinsically with
simple topology. Morecomplex-boundary-cellsare generated
when the sampling distance of LDI solids is much larger than
the size of triangles on given models (e.g., as the case shown
in Fig.3). Increasing the sampling rate of LDI decomposition
helps reduce the number ofcomplex-boundary-cellsin the
octree. However, having a very high resolution may greatly
increase the time and memory requested, which is impracti-
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cal. Therefore, three filters are developed and consecutively
applied to amendMP before mesh generation.

• Edge-Splitfilter: For a boundarye in a leaf boundary-
cell C, if no endpoint ofe is in C, a new vertexvm is
inserted to splite at the middle point ofe’s part inside
C. Meanwhile, the adjacent face ofe is also split. Note
that, the splitting is conducted after all new vertices have
been introduced as one triangle may be split into more
than two triangles (e.g., Fig.10(b)).

• Node-Collapsefilter: For a leaf boundary-cellC, all
boundary vertices ofMP in C are collapsed into one
boundary vertexvc — the relevant edges are merged and
the faces are eliminated as well. See Fig.10(b) and (c)
for the illustration. Implementation details can be found
in [36].

• Node-Positionfilter: For acomplex-boundary-cellC, the
only boundary vertexvc obtained after applying the
Node-Collapsefilter is moved to itsQEF-minimizing-
point.

Figure 10 illustrates the procedure of processing the boundary
of MP by these filters. After applying theEdge-Splitfilter
and then theNode-Collapsefilter on all leaf boundary-cells
in the octreeTr, each boundary vertex of the remaining mesh
surfaceMP is in a different leafboundary-cellin Tr. Although
these filters do not fully convert the topology in thecomplex-
boundary-cellsto a simple one, they make the resultant mesh
surfaceMI stitch toMP with a very limited number of holes.
The number of holes can also be reduced by increasing the
resolution of LDI sampling (e.g., Fig.11).

Similar to the cell refinement step, the mesh generation step
can also be parallelized and run on multi-core CPUs. How-
ever, mesh generation is memory-access intensive rather than
compute intensive. Therefore, the speed up by parallelization
is not significant for mesh generation.

Since only one vertex is constructed in each cell, the
complex topology inside a cell cannot be successfully recon-
structed if the sampling rate is insufficient. In other words, the
resultant model of our approach would not be homeomorphic
to the correct result as ours only approximates the real shape
and topology at the intersected regions. This however can be
improved by increasing the sampling rate of the LDI.

C. Processing for two-manifold topology

To generate a two-manifold mesh surface as the result of
Boolean operations, we need to carefully process the topology
entities when reconstructing the mesh surfaceMI for stitching.
When creating a trianglefnew to link three verticesvp, vq and
vr, the existing topological entities around the vertices must
be checked. For verticesvp and vq, if there is already an
edgevpvq that has triangles on both its sides, we give up
constructing the trianglefnew. The construction offnew is
also canceled when a similar case occurs on the edgevqvr

or vrvp. As a result, the resultant surface stitching toMP is
either a two-manifold surface or an open mesh surface with
a few hanging vertices. The generation of hanging edges is
prevented.

Fig. 10. Illustrations of filtering the boundary of the mesh surface in leaf
boundary-cells. (a) The mesh surfaceMP leads tocomplex-boundary-cells.
(b) After applying theEdge-Split filter, new vertices and new edges are
introduced (in cyan). (c) The result obtained after using the Node-Collapse
filter, where the vertices in (b) circled by orange dash linesare collapsed into
one vertex in the cell – the related triangles and edges are eliminated and
merged as well. The hole will be filled by the quadrilateral faces constructed
on the sign-changed minimal edges.

Fig. 11. Scattered small holes are generated on the result ofour stitching
algorithm. The boundaries of holes are displayed by bold black segments.
With the increase in the LDI solids’ resolution, the number of holes is reduced
quickly.

The following Node-Openoperator is applied to eliminate
the hanging vertices on the boundary.

• Node-Openoperator: For a boundary vertexvs linked
with n(n > 2) boundary edges,((n−2)/2) new vertices
coincident tovs are constructed, and the edges and faces
linking to vs are separated so that every vertex is linked
with only two boundary edges (see Fig.12).

Now every boundary vertex onMres has two boundary edges
only. It is easy to walk along the boundary edges to link them
into closed boundary loops (i.e., holes). Then, we apply the
dynamic programming based triangulation technique in [6] to
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Fig. 12. The hanging vertices on the boundary can be eliminated by the
Node-Openoperator.

Fig. 13. The configuration with the longest distance from a surface pointp
to the samples — the yellow ones on the LDI inside a cell.

fill every hole by an optimal set of triangles that minimize
the total area of filled triangles. The resultant surfaceMres is
obtained.

IV. D ISCUSSION

A. Sampling

We have not analyzed whetherLres can provide enough
samples for surface membership classification and reconstruc-
tion.

Definition The point setS sampled from the modelM is
defined as ad-covering ofM if any pointp on M can find a
point q ∈ S that ‖p− q‖ ≤ d.

Lemma A modelM sampled into a structured set of LDIs
gives ad-covering ofM with d bounded by

√
3r, wherer is

the sampling distance in the LDI.

Proof. The rays from a structured set of LDIs actually form
many cubic cells. The samples of LDIs are located at the
edges of the cells. After analyzing the possible configurations
of surface inside the cells, the configuration with the longest
distance from a surface pointp to the samples on the LDI is
as shown in Fig.13. The distances fromp to the intersections
on the cell edges are

√
3r. Therefore, after sampling a given

model M into LDIs with sampling distancer, the obtained
point setS gives ad-covering ofM with d ≤

√
3r.

⋄
Obviously, Lres = LA ⋄ LB gives the same result as a
LDI solid sampled fromMres = MA ⋄ MB. By the above
Lemma, we can conclude that:Lres is a d-covering of
Mres = MA ⋄MB. Therefore,Lres provides enough samples
for the surface membership classification and the subsequent
surface reconstruction.

B. Robustness enhancement on tangential contact

The most difficult problem in a boundary evaluation based
implementation of Boolean operations is how to handle the
tangential contact. Here, it is solved by computing the Boolean
operation on LDI solids instead of mesh surfaces — i.e.,

Fig. 14. Illustrations of the tangential contact: (a) two solids A andB and
their corresponding LDI solidsLA and LB , (b) the samples are randomly
removed by the intrinsic moving forward algorithm for Boolean operations,
and (c) all the samples on one solid are retained at the tangentially contacted
region using the strategy of Remark 3.

the tangentially contacted samples are merged (or eliminated)
when computingLres. On a ray, the 1D volumes (or gaps)
whose thickness are smaller thanǫ are removed from the 1D
volumes of the resultant LDI samples.ǫ = 10−5 is chosen
in our implementation. This is because the depth values are
encoded in single precision floats on graphics hardware, and
ǫ = 10−5 is slightly larger than the smallest number that can
be presented by single precision float (i.e., with 32 bits).

However, when merging is conducted intrinsically by the
moving forward algorithm for Boolean operations, the tangen-
tially contacted samples onLA andLB are removed randomly.
This may lead the LDI based membership classification to
mistakenly remove the contacted triangles. For example, as
shown in Fig.14, when computing union of two modelsA
andB, the intrinsic merging may cause some samples fromA
and some fromB to be removed at the tangentially contacted
region (see Fig.14(b)). In the worst case, there is no triangle
at the contacted region with its corresponding samples all re-
tained after the union operation — thus, no triangle is retained
after membership classification. Although the surface can be
reconstructed later in the reconstruction step, the unnecessary
removal and reconstruction waste much computing time and
may introduce unnecessary geometric errors. Such a mistaken
removal of triangles can be prevented if the method below is
adopted in Boolean operations.

Remark 3 When merging two tangentially contacted sam-
ples on two overlapped rays fromLA and LB, the one with
a greater (or smaller) value in its corresponding triangle ID is
removed consistently.

C. About self-intersection removal

The algorithm proposed in this paper requires that the
surfaces of two given models are closed non-self-intersected
mesh surfaces. For objects that are incorrectly presented by
mesh surface with small-holes, we fill the holes by the method
in [6]. If the models are with big holes, they can be processed
by the method in [47] or [9]. Although holes on mesh surfaces
can be easily detected, the detection of self-intersections by
the mesh representation is difficult. Nevertheless, they can
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Fig. 15. The illustration of removing (a) a local self-intersection, (b) a global
self-intersection and (c) a more complicated self-intersection, where the blue
LDI samples are removed.

be detected and removed from the LDI solid by a counting
algorithm.

For a ray, we assign each segment aNormal Index. Starting
from zero, we increase the index by one when meeting a
Hermite sample whose normalnp is opposite to the ray’s
direction nr (i.e., np · nr < 0); conversely, the index is
decreased by one when meeting a sample thatnp · nr > 0.
Note that according to the ray-casting based sampling method
of LDI, no sample having its normal perpendicular tonr

can be obtained. After specifying theNormal Index, only the
samples whose neighboring segments are labeled as(0, 1) or
(1, 0) are retained. The formal proof of this algorithm has gone
beyond the scope of this paper and can be found in [39]. Figure
15 shows the illustration of the algorithm. The blue ones in
Fig.15 are those samples removed in this way to eliminate
self-intersections on the input model.

V. EXPERIMENTAL RESULTS

We have implemented the above algorithm in C++ plus
OpenGL and tested various examples with a massive number
of triangles (see Fig. 1, 16 and 17) on a consumer level PC
with Intel Core 2 Quad CPU Q6600 2.4GHz + 4GB RAM and
GeForce 8800 GT graphics card. The implementation of LDI
sampling is based on the code of OpengGL in [38] which takes
advantage of the excellent computational power provided by

modern graphics hardware, and the construction of the octree
is parallelized using OpenMP.

In order to compare the proposed algorithm with the
state-of-the-art, we also implemented two other programs for
Boolean operations. One calls the API functions provided by
the commercial software package ACIS R15 [1], and the other
employs the Boolean operation functions on 3D selective Nef
Complexes in the newest version of CGAL library [16]. The
comparisons of computing time are listed in Table I. It can
be found that our method works well on the freeform models
with a massive number of triangles (e.g., the models in Fig.2,
16 and 17), which cannot be computed by ACIS and CGAL.
Moreover, it is surprising that, although the exact arithmetic is
conducted, ACIS fails in the two tangential contact examples
from the jewelry industry while ours works well in them
(see Fig.16(e) and (f)). CGAL can work out the example
(though very slowly) with two rings in Fig.16(f) but fails
in the example of ring and bars in Fig.16(e). We also test
the models on the commercial software Rhinoceros [65] that
claims to offer robust and very fast Boolean operations. It
fails in several example models tested here (see Table I). Inthe
failed examples, sometimes the program stops the computation
after several seconds and does not modify the input models.
In some examples, incorrect results are generated. Figure 18
shows the examples with incorrect output from Rhinoceros.
For those examples where correct models can be generated by
Rhinoceros, the speed of Rhinoceros is much slower than ours
(see also the statistics shown in Table I).

Successfully computing the examples shown in Fig.2, 16
and 17 in a few seconds has verified the efficiency and the
robustness of our algorithm presented in this paper. Another
interesting phenomenon is that, when increasing the resolution
of LDI sampling, most of the additional time is spent on the
sampling part. Specifically, when the resolution is increased
to two or four times, the time cost of our approach rises much
more slowly than that of the increase in resolution.

As our proposed algorithm computes the approximate
Boolean operations, the surface errors are measured using the
publicly available Metro tool [18] by comparing with the exact
Boolean operation’s result obtained from CGAL. From Table
II, it is not difficult to conclude that our method generates
accurate models, and the accuracy converges while increasing
the sampling rate.

Why do we not simply reconstruct the resultant mesh
surface fromLres? This is because the full reconstruction from
Lres often damages the geometric details in non-intersected
regions and also takes a longer computational time. To prove
this, some tests are conducted to fully reconstruct mesh
surfaces fromLres (i.e., letMP = φ and reconstructMI from
all samples inLres). In these tests, we choose the moderate
resolution —513× 513 LDI solids. The statistics of both the
computing time and the shape error are listed in Table III,
which verify our analysis above.

Limitations The major limitation of our algorithm is that
self-intersection may happen on the resultant mesh because
the mesh generation method is akin to dual-contouring. More
details can be found in [48], where the authors have given an
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Fig. 16. Examples of our fast approximate Boolean operationalgorithm on various models: (a) ((Cube∪ Sphere)∩ Sphere2) and ((Cube\ Sphere)∩
Sphere2), (b) (Chair\ Octa-Flower), (c) (Pig∪ Filigree), (d) (Helix\ Multi-slices ∩ Cylinder), (e) (Ring∪ Bars\ Bars) – the “\” operation needs to handle
tangential contact, and (f) the union of tangentially contacted Ring-A and Ring-B.

TABLE III
STATISTICS OFFULL RECONSTRUCTION FROMLres AT THE MODERATE

RESOLUTION— 513 × 513

Example Emean(%)* Computing Time

Chair− Octa-Flower 9.30 × 10−4 2.90 (sec.)
Helix − Slices 2.21 × 10−3 4.29 (sec.)

(Helix − Slices)∩ Cylinder 3.19 × 10−3 4.15 (sec.)
Ring-A ∪ Ring-B 1.67 × 10−4 3.59 (sec.)

* The errors are reported in percentage with reference to the
diagonal lengths of the models’ bounding boxes.

improved contouring algorithm. We will further study it to see
how their technique can be integrated into our algorithm. In
our current implementation, we simply employ the above self-
intersection elimination method to process input models. The

second limitation of our algorithm is that complex topology
inside the finest resolution of a cell is collapsed, which may
miss features whose sizes are smaller than that of the finest
cell. However, this can be avoided if the sampling rate of the
Layered Depth Images is assigned to bound thed-covering
(see Lemma 1). An alternative is to use the method presented
in [3] to predict the topology inside the finest cell and then
adjust the method to generate polygons.

VI. CONCLUSION

In this paper, we have presented an approximate Boolean
operation algorithm using Layered Depth Images (LDI) for
freeform solids, which are bounded by mesh surfaces with a
massive number of triangles. The major parts of our algorithm
are the sampling based membership classification using LDI,
and the trimmed adaptive contouring to reconstruct the mesh
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Fig. 17. Boolean operation examples on freeform solids witha massive number of faces: (Dragon\ Bunny) and (Buddha∪ Vase-Lion) — triangles at the
non-intersected regions are NOT modified.

Fig. 18. Incorrect results are generated by Rhinoceros [65].

surface in the intersected regions from the LDI. The advantage
in numerical robustness of other approaches using volumetric
representations is inherited in our algorithm; however, unlike
other volumetric representation based methods, we do not
damage the facets in non-intersected regions, thus preserving
geometric details and also speeding up the computation. The
efficiency and robustness of our algorithm have been verified

by various example models with complex geometry and topol-
ogy.
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