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Abstract—We present a new approach to compute the approx- lose the geometric details and other attributes of the given
imate Boolean operations of two freeform polygonal mesh sils  models unless the geometry of the original models is retaine
efficiently with the help of Layered Depth Images (LDI). After  pataining the geometry is easier for point-sampled susfé2je
applying the LDI sampling based membership classificationthe but h difficult h f Th f thi
most challenging part, a trimmed adaptive contouring algoithm, utmuc _more imcult tor mesh surfaces. _epurposeo ,'S
is developed to reconstruct the mesh surface from the LDI researchis to develop a fast boundary evaluation methochwhi
samples near the intersected regions and stitch it to the bawlary  inherits the robustness of volume-based approach but only

of the.retained surfaces. Our method of fipproximate Boolean introduces shape approximation error at intersected nsgiy
operations holds the advantage of numerical robustness ahe retaining facets at non-intersected regions.

approach uses volumetric representation. However, unlikether . o
methods based on volumetric representation, we do not damag e _epr0|t a new approz_;\ch to efficiently compute the
the facets in non-intersected regions, thus preserving gewtric approximate Boolean operations of two freeform solids with

details much better and speeding up the computation as well. the help of Layered Depth Images (LDI). We assume that
\éve |Sh°W that the pro?‘?seﬁ methof.' dca“ .Skll‘ccess“”','y Compgte?h the given two freeform solids are represented by non-self-
oolean operations of freeform solids with a massive numbeof . . .

polygons in a few seconds. mtersected closed triangular mesh surfaces. Firstlygthen _
triangular meshes are sampled into LDIs. By a clustering

algorithm, each triangle on given models has at least one

or even more corresponding sample points in the LDIs. As

| INTRODUCTION !t W!||. be deta|led_ later, the_ LDIs actually give a semi-

implicit representation of the given models; thereforepiBan

HE conventional methods of Boolean operations for twgyeations can be robustly and efficiently performed on them

solids are based on the intersection computation and tg. resyltant samples in the LDI are then employed to give

surface membership classification. Robustness and effiCieq,empership classification for triangles on the given madels
are the major difficulties in implementing Boolean opemasio e model after membership classification is in a LDI/mesh

on freeform solids with complex geometry, wh_i(_:h are “S“a”Hybrid representation. Lastly, the most challenging part —
represented by polygonal meshes. More specifically, when &' yjnmed adaptive contouring algorithm is developed to
number of polygons involved is massive, it takes a long time .onsiryct the mesh surface in the intersected region them

to detect and compute the intersection curves. FUrthermqrey;mesh hybrid and stitch it to the boundary of the retained
robustness problems are very common in this kind of approaglash surfaces. The trimmed adaptive contouring algorithm i
(e.g., two polygons are tangentially contacted or are onliftterent from a mesh hole filling (e.g., [6]). Since we do not
intersected on one of their boundary edges). Simply usiagyjicity compute the intersection curves, the missedoreg
approximate arithmetic to implement a conventional Booleg,, e reconstructed in general has a larger area. The shape
operation algorithm makes the program unstable (e.g.rB2€ {¢ 1o missed region is however represented by LDI samples.
results in Fig.18). The inconsistencies arising from nuoaﬁar Therefore, the reconstructed surface must capture theeshap
error can lead to incorrect topology (such as breaks in thgh geometric details rather than smoothly interpolating
boundary or inconsistent intersection curves on two splid$)ndaries. Unlike the previous works of polytree (ref.][14
Although the techniques of exact arithmetic (ref. [5], [,24][15])’ extended octree (ref. [12], [13]) and adaptive camitog
[25], [34], [35], [S0]-[52]) and interval computation (ref (ot 146], [48]) which reconstruct the whole mesh surfage,
[22], [44], [45], [72]) have been employed in the algorithmg,,a 4 similar strategy as [10], [19], [61], [79]

of Boolean operations, they are quite expensive in terms of

both computing time and memory. Moreover, conventional ® tO retain the surfaces that are far away from the inter-
algorithms can hardly be parallelized to borrow the advence ~ Sected regiony,

computational power available on consumer PCs with GPU* to reconstruct the surfaces nehy

or multi-core CPU. Another stream of research to solve * @nd produce the two-manifold boundary of a solid model
the robustness problem in Boolean operations is based on by stitching the retained and the reconstructed surfaces.

volumetric representation (e.g., [26], [46], [54], [S9K 7], Sampling is adopted to approximate the boundary of thetresul

[78], [80]). Nevertheless, the procedure of surface-v@won- of a Boolean operation on triangulated solids and the regult

version, processing and volume-surface conversion caly eageconstruction is a two-manifold mesh surface. The Hadgdor
Manuscript was submitted to IEEE TVCG on January 9, 2009. error yvith respect to the correct result decreases with the
Revised manuscript was prepared on May 8, 2010. sampllng rate.

Index Terms—Boolean operations, freeform solids, robust,
approximation, Layered Depth Images.
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all previous ones by checking the tolerances. A more compre-
hensive review can be found in [68]. However, significantaxt
computation and memory are required by the approaches based
on exact arithmetic and interval computation. It is impicait

to apply them on freeform solids with hundreds of thousands
of triangles as the examples shown in this paper.

Approximate arithmetic

Since how to effectively deal with degenerated surface-
surface intersections is one of the most challenging aspect
of exact solid modeling calculations, some approaches were

\ proposed to compute approximate Boolean operations thstea

:

na na na na

Viewing Plane of the exact ones. Biermann et al. [8] introduced a method for
| computing approximate results of Boolean operations agpli

to freeform solids bounded by multi-resolution subdivisio
Fig. 1. A 2D illustration of Layered Depth Images (LDI), artietsamples Surfaces. Different from the aforementioned algorithnhe, t
sorted by ascending depth values in three pixels are altullis cutting and merging steps are applied at the coarse mesh
level, and the resultant coarse mesh is then fit to the given

) ) detailed mesh surfaces. The robustness problem in intersec
We do not reconstruct the intersected region of surfacesc@imputation is solved by the numerical perturbation method

the finest resolution of a LDI. Instead, an octree is employeghplied to the coarse meshes. However, it becomes time-
to make the resolution of the reconstructed mesh adaptivecg)nsuming when applying such a perturbation method to the
1) topology complexity on retained surfaces and 2) geomej,en models with a massive number of polygons. Recently,
complexity of the shape to be reconstructed. Building aSmijth and Dodgson [73] described a topologically robust
octree for partial reconstruction and stitching the retased algorithm, which uses approximate arithmetic. After caligf
surface to the boundary of the retained mesh surface is @ining the relationship between a series of interdependen
open problem. We propose a new algorithm in this paper ¢perations, the consistency in output is ensured and threref
solve this problem. Another major difference between [10} correct connectivity is guaranteed in the final resultse On
[61], [79] and ours is that the membership classification {fajor defect of the approach is its inability to borrow the

accelerated by graphics hardware in our algorithm. power of parallel computing, which is available at consumer
level PCs nowadays, since the operations are interdependen
A. Previous work In addition, the implementation of such a complex algorithm

: . 73] i t s
The previous work about Boolean operations on 3D polfli-S [73] is not easy

hedral objects can be classified into three broad categori€g|umetric methods

ap_proaches_ based on exact_ anthmetlc_ and m;erval COMPUAR alternative to directly computing on mesh surfaces is to
tation, special algorithms using approximate arithmeied

X . convert them into volumetric representation, and then &e r
volumetn(_: methods. _In adQ|t|9n, another relevant stredm Sults of Boolean operations can be easily and robustly bdai
research is the techniques in image space. on volumetric data (e.g., the adaptive distance-field metho
Exact arithmetic and interval computation [26] and the level-set based method in [59]). However, sharp

The algorithms for Boolean operations on 3D solid modekdges and corners of the original surface are removed by the
have been studied for many years (see [55], [63], [64]). Wheampling process. As observed by Kobbelt et al. in [54], even
implementing these algorithms (ref. [40]-[42]), the peablof if an over-sampling is applied, the associated aliasingrerr
robustness is the major concern. Many of the researches issaot absolutely eliminated since the surface normals é& th
exact arithmetic as it provides the most promising approaokéconstructed model usually do not converge to the normal
to the numerical robustness problem. The authors in [5]} [28eld of the original model. Therefore, the normal infornoati
and [25] considered Boolean operations on solids boundedibyencoded during the sampling in [54] and [46] to provide the
piecewise linear surfaces, which are recently optimized aability of reconstructing sharp features on resultantazes.
integrated in CGAL (ref. [16], [34], [35]). More advancedA variety of variants of [46] have been developed thereafter
approaches of Boolean operations by exact arithmetic tiying to enhance the results in the aspects of topology
the curved domain can be found in [50]-[52]. Some oth@reservation (ref. [77], [78], [80]), intersection free8J4 and
approaches employ the technique of interval computatibe. Tmanifold preservation [71]. The authors in [2] employed the
rounded interval arithmetic was adopted in [44] and [45] toctree structure to give inside-outside detection of dsirfe
compute Boolean operations on solids with spline surfacekat resulted in Boolean operations on surfel-boundedisoli
Fang et al. [22] and Segal [72] conducted the toleranc&se major drawback of all these approaches except [2] is
(which are actually intervals) to keep the information oé ththat the surface-volume-surface conversion often daméges
algorithm’s decision-making history. That means, whenw negeometric details and other attributes of the given models.
decision is to be made, the algorithm makes it consistemt wilevertheless, our algorithm has overcome the problem.
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Fig. 2. An overview of our algorithm for fast approximatioro@ean operation on large polyhedral solids. The vase#imadel and the dragon model have
400k and 277k triangles respectively — it is impractical tonpute the Boolean operations on such models using exaletmatic based commercial solid
modeling systems. Our algorithm consists of five steps: 1) é@npling and surface clustering, 2) Boolean operationhenlDI samples, 3) membership
classification, 4) trimmed adaptive contouring, and 5) jpwetessing. Note that, for the purpose of having a cleastifation, the LDI is only sampled at
128 x 128 in this figure.

Technigues in image space improved by conducting another sampling along the directio
Using graphics hardware to speed up the evaluation B@rpendiculgr ta. The sampling can be executed on graphics

Boolean operations in image space has a long history (rBrdware with the help of stencil-buffer and depth-buffer

[4], [27], [29], [31]-[33], [49], [66], [67], [74]). The pusose a correctly sampled solid model represented by a LDI, the

of these algorithms is to provide a quick feedback in remgri 'Umber of sampled depths on a pixel must be even — this
rather than boundary evaluation, which indeed is our missi?@n Pe guaranteed by stencil-buffer based peeling (seg. [38]
The inside/outside detection can be conducted very effigien

There are also many approaches in literature using grapl‘@gée [23] and [76]), so a LDI can actually be considered as
hardware for interference and collision computations ia th, semi-implicit representation. LDI adopted in this paper i

image space, where a review can be found in [28] aRdyeeq an extension of the ray-rep (or dexel) in solid moggli
[75]. Among th_em, the approaches of [38], [60] and th ef. [7], [21], [37], [43], [56]-[58], [69]). The common dect
recent variants in [23] and [76] decompose a given non-seff¢ yhese anproaches is similar to the volumetric repreienta

intersected closed object into Layered Depth Images (LQ{lseq ones — when contouring the computed results back into
through a specified viewing, where each pixel in @ LDl,ogh surfaces, many geometric details are easily destroyed
contains a sequence of numbers that specify the depths fnf,ma approaches using voxels (e.g., [11], [17], [20]) hawe th

the intersections (between a ray passing through the cenigp,e hroplem as ray-rep has in this aspect. Our algorithm

of a pixel along the viewing direction and the object t0 b, werforms them on this by retaining the facets from oggin
sampled) to the viewing plane and the depths are sor dels in non-intersected regions.

in ascending order. Figure 1 gives a 2D illustration of the

samples stored in a LDI. Sampling a given model with LDI ]

along a single direction will miss the surface regions thatB- Main results

are nearly perpendicular to (e.g., the bottom region of the We sample the given models into LDI solids by the graphics
surface shown in Fig.1). This situation of miss-samplinglsa hardware accelerated rasterization. Boolean operatioas a
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robustly conducted on the LDI solids. After applying LDI
sampling based membership classification, a trimmed adapti
contouring algorithm is exploited to reconstruct triarayul
faces for the intersected region by the samples of a LD
These result in a robust and fast method of approxima,
Boolean operations on freeform solids with the help of LDI. %\
Our approach maintains the good property of robustness fro
the volumetric approaches while keeping the triangles in . . : .

. . . L Fig. 3. The surface clustering by sampled triangles: (aj wiiany miss-
non-intersected regions, W_h|Ch Can preserve geometrmlﬂetsampled triangles — displayed in dark-gray, and (b) withtrédingles having
better than other volumetric approaches. region ID specified.

II. OVERVIEW

In order to sample a given freeform model well and also at theeventh samples. Therefore, the Boolean operations on
ease the later surface reconstruction, we adopt a stracsete them can be implemented by moving forward incrementally
of LDIs consisting ofz-LDI, y-LDI and z-LDI sampled along on sorted samples of corresponding rays.

x—, y— and z—axis respectively. The images have the samgtep 3: Membership classification

resolution and are located in a way that their rays interaect | th'. ten. th | t the LDI solid loved
the w x w x w nodes of uniform grids. A similar samplingt ':j tls Sep, ﬁ_s;m:p_ es? erM S0 q ej/[are emri oyg

can be found in the approaches of triple ray-rep in [7] ar:r etaiﬁe?:irmal:ed rvgn:(;ve T)?Egri?ia?]gl é“s a‘lrjwo gﬁ/ e?lr?no%éj&se
58], and th li f surfels in [62]. With the hel ' i : ;

[58], an e sampling of surfels in [62]. Wi € help o nd Mg have been sampled into LDI solidss and Lg.

structured LDIs, our algorithm can efficiently compute th . . :
9 Y P or the new solidL,., obtained by Boolean operations, a

Egﬁgzliﬁasfgg;e Boolean operations on large polyfed r%gionR € M4 (or € Mp) remains if and only if it has the

same number of corresponding sampledlin, and L4 (or
Step 1: LDI sampling and surface clustering Lp). Putting the triangles of the remaining region/af, and
The first step of our algorithm is to sample the piecewisey/; together, a mesh surfadep that is part of the resultant
linear surfaces of given models (see Fig.2(a)) into stmectu selid is obtained.Mp is an open surface. The samples in
LDIs. Two given models)/ 4 and Mp are sampled into the 7, .. with their corresponding triangles removed are called
LDI solids L4 and Lg. To make the rays ofL, exactly |R-samples(e.g., the black dots in Fig.2(d)), where “IR-"
overlap the rays of., the sampling ofM 4 and Mp must stands for intersected region. The IR-samples are a déscret
be conducted in the same working envelope — the commgspresentation of surfaces near the intersected regiornkeon
bounding box ofM4 and Mp. The IDs of triangles oM/4  Boolean result ofM/4 and Mp. The IR-samples 0L,
and My are transferred to the samples bfy and L with  together withMp give a Mesh/LDI-hybrid representation of
the help of color buffer. We first assign a unique ID to evenhe resultant solid. The surface regions represented by IR-
triangle of M4 and Mp. The number of every ID is then samples are named astersected regionsFigure 2(d) shows
mapped into an RGB-color. Therefore, after rendering ak$a such a hybrid representation. Note that for the 6peration,
by the colors according to their IDs, we can easily identifhe triangles fromA/z must have their normals flipped by
from which triangle the sample at a fragment is sampled Bgversing the order of their vertices. To ensilfg: does not
its RBG-color. As each color component is represented bycantain any part not on the real resultant model, the regions
number with 8 bits, we can render up 26* = 16,777,216 next to the boundary oM p are removed as well.
distinguished triangles, which is much more than the rexglir i _ i
number in practical use. For small triangles that are miss&i€P 4: Trimmed adaptive contouring
during the Samp"ng, we cluster them into the same regionThiS is the most difficult Step of our algorithm. A trimmed
group as that of their neighboring sampled triangles by aiflo@daptive contouring algorithm is exploited to generate the
fill method (see Fig.2(b) and 3). Note that this clusteringsio mesh surface approximating the shape represented by the
not prevent recovering them by the LDI samples. In fact, thdfz-samples while interpolating the boundary ofp. We

are approximated by the polygons constructed in step 4. first construct the octree structure according to the gegmet
topology and surface stitching criteria (see Fig.2(e)edthe

mesh surfacé/; is contoured from the octree and stitched to
Xp. An example is shown in Fig.2(f), where the red polygons
Belong to M;. Details of the trimmed adaptive contouring

algorithm are presented in the following section.

Step 2: Boolean operation on LDI samples

The computation of a Boolean operation on two LDI solid
L4 and Lp is decoupled into the Boolean operation on th
overlapped rays;' (i, j) € L4 andrP(i,j) € Lp in parallel.

In other words,
N A B . Step 5: Post-processing
Lres = Vim{ay, 310 9) I (4,5) o (4, 5) } @ 1he post-processing step conducts the remaining work of
with “¢o” denoting one of the Boolean operations!”y “N” or  triangulating the quadrilateral faces dd;, eliminating the
“\". From the definition of ray-rep, we know that the sampleson-manifold entities on the resultant mesh surface, aliuffil
on the rays actually represent a one-dimensional solid evheéhe local topology information in the data structure of thesim
a ray enters into the solid at thmdd-th samples and leavessurface — see the result in Fig.2(g).
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[1l. TRIMMED ADAPTIVE CONTOURING ON o A{ I N
MESHLDI-H YBRID REPRESENTATION 27 4

A trimmed adaptive contouring algorithm is developed
to generate the mesh surfadé; in intersected regions by
samples ofL,.,. Meanwhile, M; is stitched to the mesh
surfaceM p, which is obtained after membership classification. , ;
The adaptivity is gained by using a hierarchical structure — § N
octree. The algorithm consists of two major steps: 1) octre / A
construction and 2) mesh generation and stitching. As dtresu L |
M; and Mp are tightly stitched together to produce the ® m ! . J
resultant surface of Boolean operations. Although somdlsma ,

Flg. 4. Examples of cells with complex topology. (a) The topy of
holes (OI’ ga_lps_) are generated Qn the resultant mesh, they Right-face of cell is ambiguously defined by the insidedale status of
be easily eliminated by a cleaning process. nodes. (b) The topology in the cell is ambiguously defined ty nodes’

configuration. (c) The cell holding an edge with multiple gées (the blue
ones) has complicated topology.

a) | - |

A. Octree construction

An octree is constructed to govern the mesh generation of . .,' D"’[ ' - i
My, where the space occupied by each node is defined as a S : j
cell. However, different from the construction strategy of the
octree as shown in [71], [77], [78], we need to consider both ) e ] - A ]
the topology and the shape 8f; and the boundary ol/p. Bl IR =

The octree is constructed in a top-down manner. Starting fro _ o
the root cell, the cels are recursively refined ito egt-sucl, 5, Sanpes o 2 e soig v ) e s ke St (1r
cells based on the conditions of 1) the topology simpliCityse cavities can be sampled by rays of the LDI.

2) the geometry approximation, and 3) the surface stitching

For a LDI with w x w resolution and that has the orthogonal

distancer between rays, if we assume that= 2" + 1 with  gyamples. Fake empty volumes and fake empty faces can be
n being an integer, we can define the root cell's widtt288  checked in a similar way.

and locate the root cell to the position where its edges aperl o, 4 cellC with its width longer tharr, if it is in any of
with rays in L,..s. By this, the refined cells can always havefhe following cases,

their edges overlapped with rays in..s as long as the widths .

of the cells are> . Therefore, the inside/outside status of the * face ambiguous;

eight nodes in a cell can be detected quickly. « voxel ambiguous; _
« having more than one sample on a cell-edge;

Topology simplicity ~ For the face of a cell’, when the , peing a fake solid (or empty) volume;
diagonal nodes on the face have the same inside/outside stat , having a fake solid (or empty) face;

the topology of the surface inside the cell is ambiguoushqe cell C must be further subdivided into eight sub-cells.

defined (e.g., the right face in Fig.4(a)). This is calfade . X
ambiguous When any pair of diagonally opposite nodes if\ro.f'nd the. right balance between ;peed and accuracy, the
the cell C' has one sign (inside or outside) while the Otherreflnement is bounded by the resolution of the LDI.
vertices have a different sign, the topology of the surfaseie Geometry approximation  The samples of.,., inside a
the cell is also ambiguous (e.g., Fig.4(b)). This is named esll C can be considered as a set of Hermite data points
voxel ambiguousiVhen a cell has any of the above ambiguitywhich specify the geometry i®. The normal vector of a
it needs to be further refined to figure out the real topologyermite point inL...s is obtained by the triangle from which
inside. Furthermore, as shown in Fig.4(c), when any edge the point is sampled. In the later mesh generation algorithm
a cell contains more than one LDI sample (i.e., have multiptee geometry of a leaf-node céll containing the reconstructed
intersections between the ray and the real resultant ®)ifacurfaceM; is approximated by a vertex and its adjacent faces.
the cell also contains complex topology and needs to bedurtiThe vertex is located at ® EF-minimizing-pointq., whose
subdivided. position minimizes theQuadratic Error Function (QEF),

A cell that contains a part of the surface but all its eighr(q.) = >, ((q. — hi) -ny,)?, defined by all Hermite
nodes are detected assideis defined as #ake solid volume data points(h;,ny,) in C. To be robust, the positiomy.
If a cell is a fake solid volume, its inside topology is comple minimizing Q@ (q.) can be computed by the singular value
For a cell whose width is greater thansuch a case can bedecomposition (SVD). Therefore, to control the geometry
detected by checking if any LDI sample is in the cell when thepproximation error on\/;, we check the error betweed).
cell’s eight nodes are alhsidethe resultant solid. A similar and the planes defined by the Hermite sampleS(K;, n;,)
situation occurs when a cell hasfake solid face— a face that|(q.—h;)-n.,| > €4, the cellC needs to be further refined.
with all its four nodes inside (or outside) but having some, is a coefficient used to control the shape approximation
1D solids from the LDI passing through. Figure 5 gives soneror. We choose, = 0.1r in all our examples.
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Procedure 1CellRefinement (celC, edge-listE)
Require: E containing the boundary edges bfp
Ensure: the edges in® intersect the domain of
1: if (IsCellRefinementNeeded( £)) then
2. Subdivide cellC into eight sub-cell<’; ;1 ... s);
SubdivideFE into eight listsE; corresponding ta’;;
for all 7 such thatl <4 <8 do
Call CellRefinement(;, E;); {Recursively
end for
end if

(@ u n

Fig. 6. lllustrations of the only two configurations in a céll with simple
boundary topology: (af’ contains a single boundary edge (in red), and({b)
contains two adjacent boundary edges and their sharedk\@rtgellow). (c)
Complex topology is presented i if it contains only two adjacent boundary
edges but not their shared vertex — the yellow vertex is dattie cell.

N aRw

Surface stitching  According to the IR-samples definedProcedure 2isCellRefinementNeeded (cdll, edge-listE)
in the previous section, a cell' can be classified into the 1: if the width ofC' < r then

following different categories. 2:  return false
« reconstructed-interior-cellif all samples ofL,., inside  3: €lse ifno LDI sample inC'is an IR-samplehen
C are IR-samples; 4. retun falsg _
« retained-interior-celi if no sample insideC’ is an IR- 5 else if C"is NOT with a simple topologythen
Samp'e; 6 return true;
« boundary-cellothers that have both IR-samples and other”: €nd if S _ _
LDI samples. 8: Compute theQEF-minimizing-pointq. by all Hermite

As we will stitch the vertices generated in the leaf-node sample;(hi,nhi) in C;

cell to the boundary curves of the open surfath, the o forall ido

topology of the boundary embedded in a oélimust also % if [(qc —hy) '_nhi| > g4 then
be considered when constructing the octree. Every boundary’ ret.urn true;

cell spans the space intersectihfly (or Mp) that has some end if

triangles removed and some retained. Thus, it must hold sorhie _end for

boundary curves ol p. The surfacelp in the cellC has a ig if rC’etlj"?otrpupel.ex-boundary-cethen

boundary curve with simple topology @ contains 16 end if

« a single boundary edge dff» (e.g., Fig.6(a)), or 17: return false
« two adjacent boundary edges and their shared vertex (e-g-;
Fig.6(b)).

By this rule, all cells containing boundary edges/df are . o . .
classified asimple-boundary-cells cells containing bound- m'n'mgl'EdgeS 9‘7? that exh|b|t a sign change on their two
ary with simple topology, ocomplex-boundary-cells other endpoints. Themmmal—edges an edge on the Ie_af—nod_e cell
cells holding boundary edges offp. If the cell C is a that does not_properly contain an e_dge of a neighboring !eaf.
boundary-cell the refinement ofC only stops when it is a Me?“ generation can be compactly implemented by recuysivel
simple-boundary-cell calling the functions to process the .volumes., the faces f';md

This criterion is adopted to ensure that the final meéne edges of cells. More implementation details of contugri

surface generated from the octree can be tightly stitch octree can be found n [70]. Here., we only TOCUS on the
to Mp. Details of the stitching are discussed in the su lifference between ou_rtnmmed adaptive contouring athoni
section of surface stitching below. In practice, to speedhep and. standard contouring. .
computation, topology simplicity and geometry approxiioat First of all, we do not construct faces for all m|n|mgl—
error are only detected on thoseonstructed-interior-cellas  €d9€s with a change of sign. In conventional contouring,
the mesh surfaca/; is only constructed by theeconstructed- duadrilateral (or triangular) faces are constructed aloiine

interior-cellsandboundary-cellsThe pseudo-code is as showdninimal edges that exhibit a sign change when the minimal
in Procedure 1 Calling Procedure CellRefinemenwith the ©€d9es are adjacent to four (or three) leaf-node cells. Hemev

root cell and all boundary edges W can construct the W€ aré going to generate the mesh surfacg which is a
octreeT, for mesh generation and stitching. The refinemefi€sh surface only in the space spannedbyndary-cellor

of cells can be run in parallel on multi-core CPUs. reconstructed-interior-cell _
The remarks and propositions below prove how a watertight

result can be produced b\/p and M.

B. Mesh generation and stitching
Remark 1 Faces ofM; are only constructed on the sign-

changed minimal-edges whose neighboring cells are either
boundary-cellor reconstructed-interior-cell

After constructing the octred’., the mesh surface\l;
stitching to the retained mesh surfaddp (obtained by
surface membership classification) is generated by coimtgur
the octree. Similar to other octree contouring algorithms iAs illustrated in Fig.7(a), if there are four cells around a
[46], [77], [78], the polygonal faces are only constructed ominimal-edge and one cell among them igetained-interior-
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o
-
@) n Fig. 8. lllustrations of stitching a vertex in imple-boundary-celholding
only one boundary edge (in red): (left) the QEF-minimizing-poing. is
computed, (middle)g. is projected to its closest point afy and (right) a
vertex v is created to split the original face.
" bound I
(b) . - - ounaary-ce

P
4

reconstructed-interior-cell

Fig. 7. [lllustrations of mesh generation in partial adaptontouring: (a) no
face is constructed as there isedained-interior-cell and (b) a face (in gray) o
is constructed to link the vertices in theundary-celland thereconstructed-
interior-cells The vertex in thereconstructed-interior-cellis displayed in
purple.

cell, no face is generated for the minimal edge. When all four
cells are eitheboundary-cellor reconstructed-interior-cella
quadrilateral face is generated during the contouring ,(éhg
case shown in Fig.7(b)).

Proposition 1 If all leaf boundary-cellsin the octree are
with simple topology, the mesh{; generated by the above

method has the same boundary topology as that/et Fig. 9. lllustrations of a more complex example of stitchthg reconstructed

mesh surfacé\/; to the boundary edges of the retained mesh surfdge
Proof. For the leaf cells of the octree constructed by the afore-

mentioned methodieconstructed-interior-cell&nd retained-

interior-cells are separated byoundary-cellsand empty closest point tag. on e.

(solid) cells. The polygons are constructed only accordang
the sign changed minimal-edges, thus the boundary on tr
reconstructed mesh surfadd; is only from the boundary-
cells If a boundary-cellC;, is a simple cell, the topology o
Mp'’s boundary inC}, is the same as that of the boundar
formed by the reconstructed faces foff;. Therefore,M; and
Mp have the same boundary topology. o

he boundary edge and its adjacent face must be split by the
texv of cell C so thatM; and Mp match inC not only
geometrically but also topologically. An illustration is/gn in
f Fig.8. A more complex case is that one boundary edgasses
¥hrough a few boundary cells (as shown in Fig.9). Therefare,
our implementation, we separate the projection and spiitti
After projecting all vertices in theimple-boundary-cellghe
Vertices of the reconstructed mesl; are created in created vertices are attachedetand sorted by their positions
both the reconstructed-interior-celland theboundary-cells on e. The splitting is conducted thereafter as a face may be
adjacent to sign changed minimal-edges. The vertices in @it into more than one triangle (see Fig.9).

reconstructed-interior-cellsire placed at the position of the'rProposition 2 If the reconstructed mesh surfadé; and

QEF-minim_izing-points(e.g., the purple vertex in .Fig'?(b))'the open mesh\/p have the same boundary topologhyi;
A more difficult problem about how to locate vertices in the ; : .
e and M p are connected in watertight by locating the boundary
boundary-cellds discussed below. vertices onM; in the way of Remark 2.
The vertices of the mesh/; in those leaf boundary-cells
are positioned by stitching to the boundary of the mesh sarfa The proof of this proposition is straightforward. However,
Mp. the leaf boundary-cells in the octree T intrinsically with
simple topology. Morecomplex-boundary-cellare generated
when the sampling distance of LDI solids is much larger than
the size of triangles on given models (e.g., as the case shown
in Fig.3). Increasing the sampling rate of LDI decompositio
Remark 2(b) The vertexv in a simple-boundary-cel’ helps reduce the number abmplex-boundary-cell&n the
(whose QEF-minimizing-point ig.) contains only a single octree. However, having a very high resolution may greatly
boundary edge:, and the position ok is computed by the increase the time and memory requested, which is impracti-

Remark 2(a) For a simple-boundary-cell' with two adja-
cent boundary edges, their shared vengxs adopted as the
vertex in this cell.
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cal. Therefore, three filters are developed and consetytive
applied to amend/p before mesh generation.

« Edge-Splitfilter: For a boundary in a leaf boundary-
cell C, if no endpoint ofe is in C, a new vertexv,,, is
inserted to splite at the middle point ok’s part inside
C. Meanwhile, the adjacent face efis also split. Note
that, the splitting is conducted after all new vertices have
been introduced as one triangle may be split into more
than two triangles (e.g., Fig.10(b)).

« Node-Collapsefilter: For a leaf boundary-cellC, all
boundary vertices of\/p in C are collapsed into one
boundary vertex . — the relevant edges are merged and
the faces are eliminated as well. See Fig.10(b) and (c)
for the illustration. Implementation details can be found
in [36].

« Node-Positiorfilter: For acomplex-boundary-cell’, the
only boundary vertexv. obtained after applying the
Node-Collapsefilter is moved to its QEF-minimizing-
point.

Figure 10 illustrates the procedure of processing the bagynd
of Mp by these filters. After applying th&dge-Splitfilter
and then theNode-Collapsefilter on all leaf boundary-cells
in the OCtre_éT_T’ ea(_;h boundary vertex of the remaining mes undary-cells (a) The mesh surfacé/p leads tocomplex-boundary-cells
surfaceM p is in a different leaboundary-celin 7. Although () After applying theEdge-Splitfilter, new vertices and new edges are

these filters do not fully convert the topology in themplex- irltfodu%ed (i?‘ cyan). (C)_T?S) restllltdot?tained aﬁgr L;}Sli_ng delf-Colloélipse
. er, where the vertices in (b) circled by orange dash liaescollapsed into
boundary'cellgo a S|mple one, they make the resultant meéﬁe vertex in the cell — the related triangles and edges améneted and

surfaceM; stitch to M p with a very limited number of holes. merged as well. The hole will be filled by the quadrilateralefa constructed
The number of holes can also be reduced by increasing tighe sign-changed minimal edges.
resolution of LDI sampling (e.g., Fig.11).

Similar to the cell refinement step, the mesh generation st
can also be parallelized and run on multi-core CPUs. Ho\
ever, mesh generation is memory-access intensive rataert
compute intensive. Therefore, the speed up by parall@izat
is not significant for mesh generation.

Since only one vertex is constructed in each cell, tt
complex topology inside a cell cannot be successfully reca
structed if the sampling rate is insufficient. In other wortthe
resultant model of our approach would not be homeomorpt
to the correct result as ours only approximates the realeshz
and topology at the intersected regions. This however can ..
improved by increasing the sampling rate of the LDI.

ig. 10. lllustrations of filtering the boundary of the meahface in leaf

513x513 1025 x 1025

Fig. 11. Scattered small holes are generated on the reswaitiro$titching
algorithm. The boundaries of holes are displayed by bold¢kblegments.
With the increase in the LDI solids’ resolution, the numbghales is reduced

C. Processing for two-manifold topology quickly.

To generate a two-manifold mesh surface as the result of
Boqllean operations, we r_1eed to carefully process t_he f[gpolo The following Node-Operoperator is applied to eliminate
entities whep recopstructlng the_ mesh surfb@efor stitching. the hanging vertices on the boundary.
When creating a trianglé, ., to link three verticesr,,, v, and ]
v., the existing topological entities around the vertices tmus * Node-Openoperator: For a boundary vertex; linked
be checked. For vertices, and v,, if there is already an with n(n > 2) boundary edges/n —2)/2) new vertices
edgev,v, that has triangles on both its sides, we give up coincident tov, are constructed, and the edges and faces

constructing the trianglefy.c... The construction off,.c., is linking to v, are separated so that every vertex is linked

also canceled when a similar case occurs on the edge
or v,v,. As a result, the resultant surface stitchingh- is

with only two boundary edges (see Fig.12).
Now every boundary vertex oi,..; has two boundary edges

either a two-manifold surface or an open mesh surface wibhnly. It is easy to walk along the boundary edges to link them
a few hanging vertices. The generation of hanging edgesinso closed boundary loops (i.e., holes). Then, we apply the

prevented.

dynamic programming based triangulation technique in ¢6] t
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Fig. 14. lllustrations of the tangential contact: (a) twdid® A and B and
their corresponding LDI solidd.4 and L g, (b) the samples are randomly
removed by the intrinsic moving forward algorithm for Boate operations,
Fig. 13. The configuration with the longest distance from dage pointp  and (c) all the samples on one solid are retained at the téatierrontacted
to the samples — the yellow ones on the LDI inside a cell. region using the strategy of Remark 3.

fill every hole by an optimal set of triangles that minimizehe tangentially contacted samples are merged (or elimibat
the total area of filled triangles. The resultant surfa¢e.; is when computingL,.,. On a ray, the 1D volumes (or gaps)

obtained. whose thickness are smaller thamre removed from the 1D
volumes of the resultant LDI samples.= 10~ is chosen

V. DISCUSSION in our implementation. This is because the depth values are

A. Sampling encoded in single precision floats on graphics hardware, and

e = 1075 is slightly larger than the smallest number that can
be presented by single precision float (i.e., with 32 bits).
However, when merging is conducted intrinsically by the
moving forward algorithm for Boolean operations, the tange
Definition  The point setS sampled from the model/ is tially contacted samples ah4 andL 5 are removed randomly.
defined as al-covering of M if any pointp on M can find a This may lead the LDI based membership classification to
pointq € S that ||p — q| < d. mistakenly remove the contacted triangles. For example, as
shown in Fig.14, when computing union of two models
Lemma A model M sampled into a structured set of LDIsand B, the intrinsic merging may cause some samples frbm
gives ad-covering of M with d bounded byy/3r, wherer is  and some fron13 to be removed at the tangentially contacted
the sampling distance in the LDI. region (see Fig.14(b)). In the worst case, there is no tteang
at the contacted region with its corresponding sampleseall r
Proof. The rays from a structured set of LDIs actually formgined after the union operation — thus, no triangle is rei

many cubic cells. The samples of LDIs are located at thger membership classification. Although the surface can b
edges of the cells. After analyzing the possible configansti yeconstructed later in the reconstruction step, the urssace
of surface inside the cells, the configuration with the I®19€,emoval and reconstruction waste much computing time and

distance from a surface poipito the samples on the LDI'is 3y introduce unnecessary geometric errors. Such a mistake
as shown in Fig.13. The distances frgumto the intersections removal of triangles can be prevented if the method below is
on the cell edges ar¢/3r. Therefore, after sampling a 9iveNadopted in Boolean operations.

model M into LDIs with sampling distance, the obtained ) )

point setS gives ad-covering of M with d < v/3r. Remark 3 When merging two tangentially contacted sam-
- o Pbles on two overlapped rays from, and Lg, the one with

Obviously, L,., = L o Ly gives the same result as 42 greater (or smaller) value in its corresponding trianglasl

LDI solid sampled fromM,., = M4 o Mp. By the above @moved consistently.

Lemma, we can conclude that.,.; is a d-covering of

M;cs = Mo Mp. Therefore,L,., provides enough samplesc - apout self-intersection removal

for the surface membership classification and the subséque

surface reconstruction.

We have not analyzed whethédr.., can provide enough
samples for surface membership classification and reaanstr
tion.

r]The algorithm proposed in this paper requires that the
surfaces of two given models are closed non-self-integsect

] mesh surfaces. For objects that are incorrectly presented b

B. Robustness enhancement on tangential contact mesh surface with small-holes, we fill the holes by the method

The most difficult problem in a boundary evaluation based [6]. If the models are with big holes, they can be processed

implementation of Boolean operations is how to handle th®y the method in [47] or [9]. Although holes on mesh surfaces
tangential contact. Here, it is solved by computing the Banl can be easily detected, the detection of self-intersestimn

operation on LDI solids instead of mesh surfaces — i.@he mesh representation is difficult. Nevertheless, thay ca
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modern graphics hardware, and the construction of the ectre
is parallelized using OpenMP.

In order to compare the proposed algorithm with the
state-of-the-art, we also implemented two other prograons f
Boolean operations. One calls the API functions provided by
the commercial software package ACIS R15 [1], and the other
employs the Boolean operation functions on 3D selective Nef
Complexes in the newest version of CGAL library [16]. The

comparisons of computing time are listed in Table I. It can
be found that our method works well on the freeform models
with a massive number of triangles (e.g., the models in Fig.2
16 and 17), which cannot be computed by ACIS and CGAL.
Moreover, it is surprising that, although the exact arittimis
conducted, ACIS fails in the two tangential contact example
from the jewelry industry while ours works well in them
(see Fig.16(e) and (f)). CGAL can work out the example

D

®
(though very slowly) with two rings in Fig.16(f) but fails

in the example of ring and bars in Fig.16(e). We also test
the models on the commercial software Rhinoceros [65] that
claims to offer robust and very fast Boolean operations. It
fails in several example models tested here (see Tabletheln
failed examples, sometimes the program stops the compnutati
after several seconds and does not modify the input models.
In some examples, incorrect results are generated. Fighire 1
shows the examples with incorrect output from Rhinoceros.
For those examples where correct models can be generated by
Rhinoceros, the speed of Rhinoceros is much slower than ours
Fig. 15. The illustration of removing (a) a local self-irtection, (b) a global (See also the statistics shown in Table ).
ieDIfl-g]at(rer:Z(Ie;stgrrlearne?n(g\)/e?j.more complicated self-intetien, where the blue Succgssfully computing the exa_mples ShOV.VI’? in Fig.2, 16
and 17 in a few seconds has verified the efficiency and the
robustness of our algorithm presented in this paper. Amothe

be detected and removed from the LDI solid by a countirf§{€"€Sting phenomenoniis that, when increasing the résolu
algorithm of LDI sampling, most of the additional time is spent on the

For a ray, we assign each segmeMNamal Index Starting tsatr?Npllngfparti_ Spec;frllcatl_ly, whert1 t?e resolution t:sllnceehs h
from zero, we increase the index by one when meeting 0 orfour imes, the time Cost of our approach rises muc

Hermite sample whose normai, is opposite to the ray's more slowly than that of thg increase in resolution. _
direction n, (i.e., n, - n, < 0); conversely, the index is As our proposed algorithm computes the approximate

decreased by one when meeting a sample thatn, > 0 Boolean operations, the surface errors are measured ungng t
- .

Note that according to the ray-casting based sampling rdetH}Plicly available Metro tool [18] by comparing with the &xa
of LDI, no sample having its normal perpendicular #g Boolean operation’s result obtained from CGAL. From Table

can be obtained. After specifying tiéormal Index only the I, it is not difficult to conclude that our method_ge_nerates_
samples whose neighboring segments are labeld,as or accurate models, and the accuracy converges while inageasi
(1,0) are retained. The formal proof of this algorithm has gorf8€ sampling rate.

beyond the scope of this paper and can be found in [39]. FigureéVhy do we not simply reconstruct the resultant mesh
15 shows the illustration of the algorithm. The blue ones gpurface fromL,.,? This is because the full reconstruction from

Fig.15 are those samples removed in this way to eliminatecs often damages the geometric details in non-intersected
self-intersections on the input model. regions and also takes a longer computational time. To prove

this, some tests are conducted to fully reconstruct mesh
surfaces froni,..; (i.e., letMp = ¢ and reconstrucd/; from
V. EXPERIMENTAL RESULTS all samples inL...;). In these tests, we choose the moderate

We have implemented the above algorithm in C++ pIursesolutlon —513 x 513 LDI solids. The statistics of both the

OpenGL and tested various examples with a massive numgoﬂﬂu\%‘g&'?ﬁ :rqgl tzg zgisg error are listed in Table Il
of triangles (see Fig. 1, 16 and 17) on a consumer level y '

with Intel Core 2 Quad CPU Q6600 2.4GHz + 4GB RAM andlimitations =~ The major limitation of our algorithm is that
GeForce 8800 GT graphics card. The implementation of LBElf-intersection may happen on the resultant mesh because
sampling is based on the code of OpengGL in [38] which takése mesh generation method is akin to dual-contouring. More
advantage of the excellent computational power provided kigtails can be found in [48], where the authors have given an

D
°®

©
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Fig. 16. Examples of our fast approximate Boolean operatigorithm on various models: (a) ((Cuhe Sphere)n Sphere2) and ((Cubg Sphere)n
Sphere2), (b) (Chaix Octa-Flower), (c) (PigJ Filigree), (d) (Helix\ Multi-slices N Cylinder), (e) (Ringu Bars\ Bars) — the \” operation needs to handle
tangential contact, and (f) the union of tangentially coted Ring-A and Ring-B.

TABLE Il
STATISTICS OFFULL RECONSTRUCTION FROML y¢s AT THE MODERATE
RESOLUTION— 513 x 513

Example | Emean(%)* | Computing Time
Chair — Octa-Flower 9.30 x 10~ * 2.90 (sec.)
Helix — Slices 2.21 x 1073 4.29 (sec.)
(Helix — Slices)n Cylinder | 3.19 x 1073 4.15 (sec.)
Ring-A U Ring-B 1.67 x 1074 3.59 (sec.)

* The errors are reported in percentage with reference to the
diagonal lengths of the models’ bounding boxes.

second limitation of our algorithm is that complex topology
inside the finest resolution of a cell is collapsed, which may
miss features whose sizes are smaller than that of the finest
cell. However, this can be avoided if the sampling rate of the
Layered Depth Images is assigned to bound dhsovering
(see Lemma 1). An alternative is to use the method presented
in [3] to predict the topology inside the finest cell and then
adjust the method to generate polygons.

VI. CONCLUSION

In this paper, we have presented an approximate Boolean
operation algorithm using Layered Depth Images (LDI) for

improved contouring algorithm. We will further study it tees freeform solids, which are bounded by mesh surfaces with a
how their technique can be integrated into our algorithm. massive number of triangles. The major parts of our algarith

our current implementation, we simply employ the above-selire the sampling based membership classification using LDI,
intersection elimination method to process input model® Tand the trimmed adaptive contouring to reconstruct the mesh



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

Fig. 17. Boolean operation examples on freeform solids withassive number of faces: (DraggrBunny) and (Buddhas Vase-Lion) — triangles at the
non-intersected regions are NOT modified.

by various example models with complex geometry and topol-
ogy.

ACKNOWLEDGMENT

This work was supported by the Hong Kong RGC/CERG
Grant (CUHK/417508) and the CUHK Direct Research Grant
(CUHK/2050400). Mr. Yunbo Zhang and Mr. Pu Huang from
CUHK helped to implement the ACIS and CGAL based
Boolean operation program. We deeply thank the valuable
comments from the anonymous reviewers which help to
improve this paper a lot. The author would also like to
thank Dr. Yu Wang (HKUST), Dr. Yong Chen (USC) and
the AIM@SHAPE Shape Repository for sharing some models
used in this paper, and Ms. Siu Ping Mok for proof reading
the manuscript.

Fig. 18. Incorrect results are generated by Rhinoceros [65] REFERENCES

[1] 3D ACIS Modeling, http://www.spatial.com, 2008.
[2] B. Adams and P. Dutré, “Interactive boolean operationsurfel-bounded
solids,” ACM Trans. on Graphicsyol.22, no.3, pp.651-656, 2003.
surface in the intersected regions from the LDI. The adwgmnta[3] C. Andijar, P. Brunet, A. Chica, I. Navazo, J. Rossigre A. Vinacua,
in numerical robustness of other approaches using volignetr “Optimizing the topological and combinatorial complexdisosurfaces,”

. is inherited i | ithm: h ike Computer-Aided Designjol.37, no.8, pp.847-857, 2005.
representations is inherited in our algorithm; howevetiken [4] R. Banerjee, V. Goel, and A. Mukherjee, “Efficient paehlevaluation

other volumetric representation based methods, we do notof CSG tree using fixed number of processoRtbc. the second ACM
damage the facets in non-intersected regions, thus piegery_ Symposium on Solid Modeling and Applicatiops,137-146, 1993.

ic d il d al di h . .[[?I] R. Banerjee and J. Rossignac, “Topologically exactuaidn of polyhe-
geometric detaills and also speeding up the computation. € dral defined in CSG with loose primitivesComputer Graphics Forum,

efficiency and robustness of our algorithm have been verified vol.15, no.4, pp.205-217, 1996.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13
TABLE |
COMPUTATIONAL STATISTICS IN TIME (SECOND)
Face Num. Our Approach with Diff. Res.
Example Figure | First | Second| ACIS | CGAL | Rhinoceros| 257 x 257 [ 513 x 513 [ 1025 x 1025
Vase-LionU Dragon 2 400k | 277k n/a* n/a ~71 4.35 (0.967) | 5.26 (1.75) 8.33 (4.04)
Chair — Octa-Flower 16(b) | 464 158k | 1.72 7.82 ~2 0.624 (0.250)| 1.51 (0.577) | 4.68 (1.59)
Pig U Filigree 16(c) | 1,208 | 260k n/a n/a fail (~7) 2.23 (0.733) | 3.00 (1.31) 5.63 (2.95)
(Helix — Slices)n Cyn. | 16(d) | 74k 920 19.9 77.5 ~47 1.36 (0.593) | 2.56 (0.811) | 5.16 (1.48)
180 39.9 56.9 ~58 1.34 (0.515) | 2.45 (0.826) | 5.82 (2.03)
Ring U Bars — Bars 16(e) | 10.4k | 4,172 | 0.56 n/a fail (~1) | 0.405 (0.203)| 0.811 (0.390)| 2.23 (1.01)
4,172 n/a n/a 0.499 (0.234)| 1.17 (0.405) | 3.12 (1.19)
Ring-A U Ring-B 16(f) | 12.3k | 14.3k n/a 35.0 fail (~43) | 0.608 (0.234)| 1.37 (0.531) | 4.09 (1.48)
Dragon— Bunny 17 277k | 69.6k n/a n/a ~25 2.47 (0.593) | 3.37 (1.11) 6.26 (2.71)
Buddhau Vase-Lion 17 871k | 400k n/a n/a fail (~597) | 9.00 (1.68) 10.1 (2.59) 15.2 (6.61)

* n/a denotes that the API function reports fail during B@wleoperations;
T In bracket is the time used for sampling and reading back fiteengraphics hardware.

TABLE 1l
SHAPE ERRORREPORTED BY THEMETROTOOL [18]

Res.:257 x 257 Res.:513 x 513 Res.: 1025 x 1025
Example Frean(%) | Emaz(%) | Emean (%) | Emaz(%) | Fmean (%) | Fmaz(%)
Chair — Octa-Flower 1.03 x 1073 1.43 7.66 x 1071 0.783 2.89 x 1077 0.377
Helix — Slices 3.14 x 1073 0.842 1.08 x 1073 0.406 412 x 1074 0.187
(Helix — Slices)n Cylinder | 5.67 x 1073 0.795 1.88 x 1072 0.414 9.95 x 107* 0.180
Ring-A U Ring-B 822 x 107* | 0.0496 | 5.07 x107* 0.966 2.31 x107* | 0.0365

* The errors are reported in percentage with reference talthgonal lengths of the models’ bounding boxes.

[6] G. Barequet and M. Sharir, “Filling gaps in the boundafyaopolyhe-
dron,” Computer Aided Geometric Desigyml.12, pp.207-229, 1995.
[7] M.O. Benouamer and D. Michelucci, “Bridging the gap beam CSG and

Menon, and H.B. Voelcker, “The ray casting engine and rayesgnta-

tives,” Proc. ACM Symposium on Solid Modeling and Applications 1991

pp.255-267, 1991.

Brep via a triple ray representation?roc. the Fourth ACM Symposium [22] S. Fang, B.D. Briiderlin, and X. Zhu, “Robustness iricsohodelling: a

on Solid Modeling and Applicationgp.68-79, 1997.

[8] H. Biermann, D. Kristjiansson, and D. Zorin, “ApproxineatBoolean
operations on free-form solidsProc. ACM SIGGRAPH 2001pp.185-
194, 2001.

[9] S. Bischoff, D. Pavic, and L. Kobbelt, “Automatic resation of polygon
models,” ACM Trans. on Graphicsyol.24, no.4, pp.1332-1352, 2005.

[10] S. Bischoff and L. Kobbelt, “Structure preserving CADodel repair”,

Computer Graphics ForurtEurographics 2005 proceedings), vo.24, no.3,

pp.527-536, 2005.
[11] R. Boonning and H. Muuller, “Interactive sculptugirand visualization

of unbounded voxel volumesProc. of the seventh ACM symposium o

Solid modeling and applicationgp.212 - 219, 2002.

[12] P. Brunet and | Navazo, “Geometric modelling using éxactree
representation of polyhedral object®toc. of Eurographics 85pp.159-
169, Nice, September 9-13, 1985.

[13] P. Brunet and | Navazo, “Solid representation and dpmrausing
extended OctreesACM Trans. on Graphicsyol.9, no.2, pp.170-197.

[14] I. Carlbom, I. Chakravarty, and D.A. Vanderschel, “Airfaechical data
structure for representing the spatial decomposition obB@cts,”"|IEEE
Computer Graphics and Applicationpl.5, no.4, pp.24-31, 1985.

[15] 1. Carlbom, “An algorithm for geometric set operationsing cellular
subdivision techniquesfEEE Computer Graphics and Applicatioml.7,
no.5, pp.44-55, 1987.

[16] CGAL, http://www.cgal.org, 2008.

[17] H. Chen and S. Fang, “A volumetic approach to interact€SG

modeling and rendering,Proc. the fith ACM Symposium on Solid

Modeling and Applicationspp.318-319, 1999.
[18] P. Cignoni, C. Rocchini, and R. Scopigno, “Metro: measy error on

simplified surfaces,Computer Graphics Forunvpol.17, no.2, pp.167-174,

1998.

[19] J. Du, B. Fix, J. Glimm, X. Jia, X. Li, Y. Li, and L. Wu, “A siple
package for front tracking "Journal of Computational Physicsol.213,
no.2, pp.613-628, April 2006.

[20] E. Eisemann and X. Décoret, “Single-pass GPU solidelization for
real-time applications,Proc. of Graphics Interface 200@p.73-80, 2008.

[21] J.L. Ellis, G. Kedem, T.C. Lyerly, D.G. Thielman, R.J.akka, J.P.

tolerance-based intuitionistic approacbmputer-Aided Designjol.25,
no.9, pp.567-576, 1993.

[23] F. Faure, S. Barbier, J. Allard, and F. Falipou, “Imdmesed collision
detection and response between arbitrary volumetric thje®roc.
Eurographics/ACM Siggraph Symposium on Computer Anima#o08.

[24] S. Fortune and C.J. van Wyk, “Efficient exact arithmedtic computa-

tional geometry,Proc. 9th ACM Symposium on Computational Geometry,

pp.163-172, 1993.
[25] S. Fortune, “Polyhedral modelling with exact arithingtProc. 3rd ACM
Symposium on Solid Modelingp.225-234, 1995.

r126] S.F. Frisken, R.N. Perry, A.P. Rockwood, and T.R. Jpfiadaptively

sampled distance fields: a general representation of stumpeofputer
graphics,”"Proc. ACM SIGGRAPH 200(¢p.249-254, 2000.

[27] M. Goodrich, “An improved ray shooting method for camstive
solid geometry models via tree contractiontiternational Journal of
Computational Geometry and Applications).8, no.1, pp.1-24, 1998.

[28] N.K. Govindaraju, M.C. Lin, D. Manocha, “Fast and rélia collision
culling using graphics hardwarelEEE Trans. Visualization and Com-
puter Graphicsyol.12, no.2, pp.143-154, 2006.

[29] S. Guha, S. Krishnan, K. Munagala, and S. Venkatasuénian, "Ap-
plication of the two-sided depth test to CSG renderingroc. 2003
symposium on Interactive 3D graphiqp.177-180, 2003.

[30] A. Guéziec, G. Taubin, F. Lazarus, and B. Horn, “Cugtend stitching:
converting set of polygons to manifold surface§EE Trans. Visualiza-
tion and Computer Graphics/ol.7, no.2, pp.136-151.

[31] J. Hable and J. Rossignac, “CST: Constructive Solidnfming for
Rendering BReps and CSGEEE Trans. Visualization and Computer
Graphics,vol.13, no.5, pp.1004-1014, 2007.

[32] J. Hable and J. Rossignac, “Constructive solid trimgfinin ACM
SIGGRAPH 2006 Sketche2)06.

[33] J. Hable and J. Rossignac, “Blister: Gpu-based rendeaf boolean
combinations of free-form triangulated shape&CM Trans. Graphics,
vol.24, no.3, pp.1024-1031, 2005.

[34] P. Hachenberger and L. Kettner, “Boolean operations3bnselective
nef complexes: optimized implementation and experimemsyc. ACM



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 14

Symposium on Solid and Physical Modeling (SPM 2008).163-174, [62] H. Pfister, M. Zwicker, J. van Baar, and M. Gross, “Sisfesurface

2005. elements as rendering primitives?roc. SIGGRAPH 20Q0pp.335-342,
[35] P. Hachenberger, L. Kettner, and K. Mehlhorn, “Booleaperations 2000.

on 3D selective Nef complexes: Data structure, algorithomimized [63] A.A.G. Requicha and H.B. Voelcker, “Solid modeling: Aistorical

implementation and experiment$Computational Geometry: Theory and summary and contemporary assessmd&fZE Computer Graphics and

Applications,vol.38, no.1-2, pp.64-99, 2007. Applications vol.2, no.2, pp.9-24, March 1982.
[36] B. Hamann, “A data reduction scheme for triangulatedames,”Com- [64] A.A.G. Requicha and H.B. Voelcker, “Boolean operatioin solid
puter Aided Geometric Designpl.11, pp.197-214, 1994. modelling: Boundary evaluation and merging algorithni8foc. IEEE
[37] E.E. Hartquist, J.P. Menon, K. Suresh, H.B. Voelcker, Zhgajac, vol.73, no.1, pp.30-44, January 1985.

“A computing strategy for applications involving offsetsweeps, and [65] Rhinoceros, ver 4.0 Evaluation, http://www.rhino8aim, 2009.

Minkowski operations,”Computer-Aided Desigrvol.31, no.3, pp.175- [66] F. Romeiro, L. Velho, and L.H. de Figueiredo, “Scala@®U rendering

183, 1999. of CSG models,”"Computers and Graphicsyol.32 no.5, pp.526-539,
[38] B. Heidelberger, M. Teschner, and M. Gross, “Real-tim@umetric October, 2008.

intersections of deforming objectsProc. Vision, Modeling, and Visu- [67] J. Rossignac and J. Wu, “Correct Shading of Regular28¢ solids us-

alization 2003,pp.461-468, Munich, Germany, November 19-21, 2003. ing a Depth-Interval Buffer,Advances in Computer Graphics Hardware
[39] J.A. Heisserman, Generative Geometric Design and Bamwyn Solid V, pp.117-138, Sprinter-Verlag, Berlin, 1990.

Grammars, Ch5, PhD Dissertation, Carnegie Mellon Unitgréio9ol. [68] J.R. Rossignac, “Solid and physical modelingg’chnical Report2007.
[40] C. Hoffmann,Geometric and Solid Modeling: An IntroductioMorgan  [69] P. Santos, R. de Toledo, and M. Gattass, “Solid heighp-reets: mod-

Kauffmann, 1989. eling and visualization,” Proc. ACM symposium on Solid arldy$ical
[41] C. Hoffmann, J. Hopcroft, and M. Karasik, “Robust seegtions on Modeling 2008, pp.359-365, 2008.

polyhedral solids,”IEEE Computer Graphics and Applicationspl.9, [70] S. Schaefer and J. Warren, “Dual contouring: the sesaeice,”Rice

no.6, pp.50-59, 1989. University Technical Repor2002.

[42] C. Hoffmann, “Robustness in geometric computatiodsSME Journal [71] S. Schaefer, T. Ju, and J. Warren, “Manifold dual coritm)’ |IEEE
of Computing and Information Science in Engp).1, pp.143-156, 2001. Trans. Visualization and Computer Graphicgl.13, no.3, pp.610-619,

[43] T. Van Hook, “Real-time shaded NC milling displa®CM SIGGRAPH 2007.

Computer Graphicsyol.20, no.4, pp.15-20, Aug. 1986. [72] M. Segal, “Using tolerance to guarantee valid polyladmodeling
[44] C.-Y. Hu, N.M. Patrikalakis, and X. Ye, “Robust intehsolid modelling results,”ACM SIGGRAPH Computer Graphijcgol.24, no.4, pp.105-114,

- Part I: representationComputer-Aided Desigrvol.28, no.10, pp.807- 1990.

817, 1996. [73] J.M. Smith and N.A. Dodgson, “A topologically robustgatithm for
[45] C.-Y. Hu, N.M. Patrikalakis, and X. Ye, “Robust intehsolid modelling Boolean operations on polyhedral shapes using approxiarétenetic,”

- Part II: boundary evaluation,Computer-Aided Designjol.28, no.10, Computer-Aided Designvol.39, pp.149-163, 2007.

pp.819-830, 1996. [74] N. Stewart, G. Leach, and S. John, “An improved z-bu@SG render-
[46] T. Ju, F. Losasso, S. Schaefer, and J. Warren, “Dualocoing of ing algorithm,” Proc. ACM SIGGRAPH/EUROGRAPHICS workshop on

hermite data,ACM Trans. on Graphicsyol.21, no.3, pp.339-346, 2002. Graphics hardwarepp.25-30, Lisbon, Portugal, 1998.
[47] T. Ju, “Robust repair of polygonal modelsCM Trans. on Graphics, [75] M. Teschner, S. Kimmerle, B. Heidelberger, G. ZachmannRaghu-

vol.23, no.3, pp.888-895, 2004. pathi, A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnenat-Thaim W.
[48] T. Ju and T. Udeshi, “Intersection-free contouring onattree grid,” Strasser, and P. \olino, “Collision detection for deformealbbjects,”
Proc. Pacific Graphics2006. Computer Graphics Forupmvol.24, no.1, pp.61-81, 2005.

[49] M. Kelley, K. Gould, B. Pease, S. Winner, and A. Yen, “daare [76] M. Trapp and J. Dollner, “Real-time volumetric testsing Layered
accelerated rendering of CSG and transpareriygt. SIGGRAPH 1994, Depth Images,Proc. of Eurographics 20Q8yp.235-238, 2008.

pp.177-184, 1994. [77] G. Varadhan, S. Krishnan, Y.J. Kim, and D. Manocha, tEe&sensitive
[50] J. Keyser, S. Krishnan, and D. Manocha, “Efficient andusate B- subdivision and isosurface reconstructiorftoc. IEEE Visualization

rep generation of low degree sculptured solids using exattinzetic: 2003, pp.99-106, 2003.

| - Representations,Computer Aided Geometric Desigmwpl.16, no.9, [78] G. Varadhan, S. Krishnan, T.V.N. Sriram, and D. Manqcfiapology

pp.841-859, 1999. preserving surface extraction using adaptive subdivjsidtroc. 2004
[51] J. Keyser, S. Krishnan, and D. Manocha, “Efficient anduaate B-rep Eurographics/ACM SIGGRAPH Symposium on Geometry Prougssi

generation of low degree sculptured solids using exachragtic: Il - pp.235-244, 2004.

Computation,”Computer Aided Geometric Desigvml.16, no.9, pp.861- [79] C. Wojtan, N. Thirey, M. Gross, and G. Turk, “Deformingeshes that

882, 1999. split and merge” ACM Transactions on Graphicwvol.28, no.3, Article
[52] J. Keyser, T. Culver, M. Foskey, S. Krishnan, and D. Mave “ES- 76, 10 pages, August 2009.

OLID: A system for exact boundary evaluatiotGomputer Aided Design, [80] N. Zhang, W. Hong, and A. Kaufman, “Dual contouring wttipology-

vol. 36, no. 2, pp. 175-193, 2004. preserving simplification using enhanced cell represiemtAtProc. IEEE
[53] H.S. Kim, H.K. Choi, and K.H. Lee, “Feature detection tofangular Visualization 2004pp.505-512, 2004.

meshes based on tensor voting theo@gmputer-Aided Desigrvol.41,
pp.47-58, 2009.

[54] L.P. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seitleeature
sensitive surface extraction from volume datBfoc. ACM SIGGRAPH

2001, pp.57-66, 2001. _ _ ) Charlie C. L. Wang is currently an Associate
[55] M. Mantyla, “Boolean operations of 2-manifolds tligh vertex neigh- Professor at the Department of Mechanical and
borhood classification,ACM Trans. on Graphigsvol.5, no.1, pp.1-29, Automation Engineering, the Chinese University of
1986. ] ] ] Hong Kong, where he began his academic career
[56] J. Menon, R.J. Marisa, and J. Zagajac, “More PowerfuidSdodeling PLACE in 2003. He gained his B.Eng. (1998) in Mecha-
Through Ray RepresentationdEE Computer Graphics and Applica- PHOTO tronics Engineering from Huazhong University of
tions, vol.14, no.3, pp.22-35, May 1994. . HERE Science and Technology, M.Phil. (2000) and Ph.D.
[57] J.P. Menon and H.B. Voelcker, “On the completeness amyersion of (2002) in Mechanical Engineering from the Hong
ray representations of arbitrary solid§foc. ACM Symposium on Solid Kong University of Science and Technology. He
Modeling and Applications 199fp.175-286, 1995. ) is a member of IEEE and ASME, and an execu-
[58] H. Muller, T. Surmann, M. Stautner, F. Albersmann, K.ik¢gt, “Online tive committee member of Technical Committee on
sculpting and visualization of multi-dexel volumeBfoc. the eighth ACM ' computer-Aided Product and Process Development (CAPPISHME. Dr.
symposium on Solid Modeling and Applicatiopp,258-261, 2003. Wang has received a few awards including the ASME CIE Youngir&er

[59] K .Museth, D.E."Bl’een, R.T. Wh|taker,AH Barr, “Levekt surface Award (2009)Y the CUHK Young Researcher Award (2009)’ theHBWice-
editing operators’ACM Trans. on Graphicsyol.21, no.3, pp.330-338, Chancellor's Exemplary Teaching Award (2008), and the BRagter Awards

July 2002. L ] o of ASME CIE Conferences (in 2008 and 2001). His current nefemterests
[60] F.S.Nooruddin and G. Turk, “Interior/exterior clafsation of polygonal include geometric modeling in computer-aided design anaufaaturing,
models,” Proc. IEEE Visualization 200Qyp.415-422, 2000. biomedical engineering and computer graphics, as well aspatational

[61] D. Pavic, M. Campen, and L. Kobbelt, “Hybrid Boolean§bmputer physics in virtual reality.
Graphics Forumto appear, 2010.



