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Bilateral Recovering of Sharp Edges on 
Feature-insensitive Sampled Meshes 
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Abstract—A variety of computer graphics applications sample surfaces of 3D shapes in a regular grid without making the sampling 

rate adaptive to the surface curvature or sharp features. Triangular meshes that interpolate or approximate these samples usually 

exhibit relative big error around the insensitive sampled sharp features. This paper presents a robust general approach conducting 

bilateral filters to recover sharp edges on such insensitive sampled triangular meshes. Motivated by the impressive results of 

bilateral filtering for mesh smoothing and denoising, we adopt it to govern the sharpening of triangular meshes. After recognizing the 

regions that embed sharp features, we recover the sharpness geometry through bilateral filtering, followed by iteratively modifying 

the given mesh’s connectivity to form singlewide sharp edges that can be easily detected by their dihedral angles. We show that the 

proposed method can robustly reconstruct sharp edges on feature-insensitive sampled meshes.  

Index Terms—Boundary representations, Geometric algorithms, languages, and systems.  
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1 INTRODUCTION

ORE and more computer graphics applications em-
ploy volumetric representation to reconstruct and 
modify the shape of three-dimensional surfaces. 

Many of such applications conduct the transformation be-
tween volumetric and boundary representation in the man-
ner of: surface-volume conversion, processing, and volume-
surface conversion. For instance, the voxel-based mesh 
simplification [15], the voxel-based three-dimensional 
metamorphosis [9], and some algorithms fixing topological 
errors (ref. [21] and [32]), they all use the volumetric repre-
sentation as intermediate. Besides, in computer-aided engi-
neering, there are many approaches (see [1], [4], and [45]) 
using implicit representation to evolve the shape and to-
pology of a model to provide the optimal mechanical prop-
erty.  

In above applications, the simplest method to determine 
the volumetric or implicit representation is to sample given 
models on regular grids. However, as been mentioned in 
[2], sharp edges and corners on the original surface are re-
moved by the sampling process. Over-sampling could 
somewhat reduce the aliasing error by taking the cost of 
increasing storage memory. Furthermore, as be observed by 
Kobbelt et al. in [23], even if an over-sampling is applied, 
the associated aliasing error will not be absolutely elimi-
nated since the surface normals in the reconstructed model 
usually do not converge to the normal field of the original 
model. Therefore, the technique of recovering sharp edges 
on feature-insensitive sampled models is desired. Some of 
currently existed approaches (e.g., [22], [23], [33] and [35]) 
encode the original surface normals during sampling, so 
that a Hermite dataset is generated to reconstruct sharp 
features. However if the volumetric data is not converted 

from an explicit mesh representation, e.g. the Heterogene-
ous object modeling in [1], no normal could be accurately 
given, we thus need to recover sharp features only from the 
given mesh surfaces.  

The purpose of the approach presented in this paper is 
akin to [2], to recover singlewide sharp edges on triangular 
meshes. However, the filters introduced in [2] can only 
sharpen the “chamfered” edges that are generated by the 
Marching-Cubes algorithm [27] or its variants (ref. [5], [26], 
and [31]). For the insensitive sampled edges that are either 
rounded (e.g., the model in Fig. 1a) or with noises cor-
rupted (e.g., the model in Fig. 1b), the algorithm of [2] fails. 
The Gaussian noises on Fig. 1b and some of the later shown 
models are added for the purpose to demonstrate the ro-
bustness of our approach. In generality, noises are only in 
the form of slight normal disturbances or the smoothly de-
generated sharp regions, where the rounded edges are usu-
ally generated by dynamic surface extraction algorithms – 
e.g., ShrinkWrap [36] or Skin [28]. Besides, objects with a 
non-manifold structure (e.g., the model in Fig. 2) are not 
addressed in [2]. 

1.1 Previous Work 

The work proposed in this paper relates to previous re-
searches conducted in the areas of: feature sensitive sam-
pling, anisotropic mesh smoothing, sharp feature detection 
and recovering, and remeshing techniques, which are con-
secutively reviewed below. 

Feature Sensitive Sampling 
A variety of feature sensitive sampling techniques are 

adopted for isosurface reconstruction and surface remesh-
ing. The authors in [13] generated adaptively sampled dis-
tance fields (ADFs) to increase the accuracy of sampling 
around sharp features. However, as mentioned above, the 
normals on a reconstructed model do not converge to the 
normal field of the original model. Thus, two improved 
isosurface extraction algorithm preserving sharp features 
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[22] and [23] have been presented in literature. Both algo-
rithms adopt Hermite data as input. They work well when 
each cell contains no more than one sharp feature or com-
plex edges (i.e. edges with more than one intersection with 
a surface). The approach in [43] solved the problem with 
more than one sharp feature by integrating the adaptive 
grid generation method and the improved isosurface ex-
traction algorithm. The algorithms presented in [33] and 
[35] improved the output of MC algorithms based on opti-
mization techniques and smoothing operations. Their ap-
proaches are based on mesh evolution towards a given im-
plicit surface with simultaneous control of the mesh vertex 
position and mesh normals. The above approaches all rely 
on either the underlying mathematical surface representa-
tion (so that the sampling frequency could be infinite) or 
the Hermite data equipped with surface normals. However 
as discussed at the beginning of this paper, if the volume or 
implicit data was not sampled from an existed surface rep-
resentation, neither Hermite datasets nor ADFs could be 
given. This leads to the motivation of our research – to re-
construct sharp edges on feature-insensitive sampled trian-
gular meshes without Hermite data. 

Anisotropic Mesh Smoothing 

In recent years, many mesh smoothing algorithms have 
been proposed. Some of which are isotropic (see [10], [24], 
and [40]), which therefore indiscriminately smooth noise 
and small features (i.e., the sharp edges on a noisy model 
will become extremely rounded before the model becoming 
smooth). Thus, techniques for anisotropic mesh smoothing 
have been developed to solve the problem of feature pres-
ervation during fairing (ref. [3], [8], [11], [16], and [29]). 
The idea behind these approaches is to modify the diffu-
sion equation to make it non-linear or so call anisotropic 
through curvature tensors. However, by our experimental 
implementations, it is not easy for the anisotropic diffusion 
approaches to form singlewide sharp edges as what our 
approach recovers – especially when noises are corrupted 
so that curvature tensors are noisy. A crease-enhancing dif-
fusion was introduced in [34] to sharpen creases while 
maintaining the mesh connectivity. This approach fails on 
noisy datasets too. All above approaches employed local 
connectivity to compute geometry properties, which greatly 
depends on a regular mesh representation. To overcome 
this limitation, the bilateral filter was recently used to de-
noise a given surface (ref. [12] and [20]). Also, the authors in 
[30] conducted the bilateral filter in the reconstruction of 
surfaces from scattered data. Our sharp edge recovering 

 

Fig. 1. Bilateral recovering of sharp edges: (a) our approach can successfully reconstruct the sharp edges that are rounded on the given mesh 
generated by the ShrinkWrap algorithm [36]; (b) we can successfully recover the sharp edges even if Gaussian noise ( 5/1=σ  of the mean 
edge length) is corrupted, where the noisy-free mesh is generated by a Marching-Cubes algorithm [26]. The models are generated from the dis-
tance-field of the mesh model available in [48]. 

 

Fig. 2. Recovering sharp edges on a non-manifold model which is assembled from several mesh patches (left), so that on the resultant mesh 
(right) the sharpness can be easily detected by every edge’s dihedral angle. 
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method borrows the idea from [20] – using bilateral filters 
to process geometry on the given mesh. 

Another crease-sharpening approach proposed in [39] 
separated the diffusion in two phases: the normal vectors 
are first processed to form sharpness, and the positions of 
vertices on a given mesh are then moved to satisfying the 
optimized normal vectors. Nevertheless, their processing is 
conducted on an implicit representation; when converting 
the surface into an explicit representation, we are still facing 
the problem of sharp edge reconstruction. 

Sharp Feature Detection and Recovering 
As our purpose is to recover sharp edges while main-

taining the shape of smooth regions on the given mesh, we 
need to distinguish the sharp and non-sharp regions. Edges 
are the most important element on a polygonal mesh to 
represent sharp features. Sharp edges are usually recog-
nized and enhanced from its neighboring connectivity 
graph. In [19], a method was presented for extracting sharp 
edges on a multi-resolution organization. Their method is 
based on the measurement of dihedral angles. When the 
sharp features are rounded by small radius, a lot of “sharp” 
edges are detected – so that a thinning process is applied to 
form patches of the surface. Watanabe and Belyaev in [46] 
used the identification of perceptually salient curvature 
extremes to detect curvature features. However, the sharp-
ness geometry is not really reconstructed on edges in above 
approaches. In contrast, the proposed algorithm here modi-
fies the geometry and connectivity around sharp edges so 
that they can be easily recognized by their dihedral angle. 

Curvature tensors have also been employed in [19] and 
[29] to detect and recover sharp features. As mentioned 
above, the curvature tensor based methods have two prob-
lems: 1) the support size greatly depends on the local con-
nectivity – so that regular meshes are needed; 2) they are 
very sensitive to noises. Considering the methods in [19] 
and [29], if noises are introduced on the sharp edges, it is 
very difficult to reproduce singlewide sharp edges robustly. 
This is because that the diffusion process does not make the 
noisy surface converge to original sharp edges. Benefited 
from the robustness of bilateral filtering, our recognition 
and reconstruction algorithms for sharp-features work well 
on noisy datasets. 

Recently, in [2], the authors developed two filters: Edge-
Sharpener and Bender to enhance sharp features at cham-
fered edges. Unfortunately, small sharp features sometimes 
may be rounded but not chamfered in the surface recon-
struction from a feature-insensitive sampled dataset, which 
makes their algorithm fail. In this paper, a robust mesh-
sharpening algorithm is developed to enhance sharp fea-
tures on a given model no matter whether they are cham-
fered or rounded. Also, the non-manifold models are ad-
dressed in the same approach. Our proposed approach 
works well on noisy datasets but [2] works only on the data 
with chamferred edges from MC algorithms.. 

The work of [14] is also worthy to mention, where the 
feature curves and corners are extracted and recovered 
from point clouds. However, although their method is de-
veloped for point clouds, points are assumed to be in the 
distribution of two-manifold surface like when recovering 
sharp edges and corners. By this, the methods developed in 

[14] cannot be directly applied to the non-manifold struc-
tures with several patches joining at one edge or corner 
point. Of course, if we separate a non-manifold object into 
several two-manifold patches, we can make [14] work on 
individual patch. Whereas, the collaboration of the recover-
ing procedures taken on several patches is by no means an 
easy job. The method proposed in this paper provides a 
general approach, which can easily recover sharp edges and 
corners on either manifold or non-manifold objects under 
the same framework. There is no such work found in cur-
rent literature.  

Remeshing 
Our algorithm employs remeshing techniques to incre-

mentally remove degenerated triangles formed through 
bilateral filtering. Similar to the methods in [6], [17], [25], 
[38], [44], and [47], two remeshing operators: edge collapse 
and mesh slicing, are conducted, but with some modification 
to preserve sharp features and prevent flips of triangles. 
One may ask why not directly apply a remeshing approach 
on the result of the bilateral filtering. This is because that 
we only want to remesh the region degenerated from sharp 
edges while retaining the rest part so that the volume 
shrinkage is prevented. Therefore, we need to develop a 
detector to distinguish the sharp and non-sharp regions, 
and then recover sharp edges only on the sharp regions. 
Directly applying remeshing to the bilateral filtering results 
will have no way to prevent the shrinkage led by the bilat-
eral filtering. 

1.2 Contribution 

In this paper, the bilateral filtering technique is employed 
together with the dynamical remeshing operators to re-
cover sharp edges on a given triangular mesh surface. 
Compared with other existed approaches for similar pur-
poses, our method shows the following advantages: 

• A robust general approach is developed for recover-
ing sharp edges on either manifold or non-manifold 
models from feature insensitive sampling, while 
previously approaches all focus on two-manifold 
surfaces or points in two-manifold like distribution. 
In our approach, sharp edges are reconstructed only 
from the given mesh surface – no additional normal 
is requested. The connectivity of a given mesh 
around the sharp features is optimized in order to 
let a sharp edge be easily detected by its dihedral 
angle after the processing. 

• With the help of the operators in bilateral filtering 
manner, a robust sharp feature detector is intro-
duced in this paper, which will be effected by nei-
ther the irregular connectivity nor the noisy geome-
try. 

• A novel two-phase recovering algorithm is devel-
oped to separate the geometry recovering and the 
mesh recovering so that the result shows neither 
flipped nor overlapped triangles. 

• Besides, only the mesh around sharp features is re-
produced in our approach – the recovering in this 
means prevents the shrinkage effect by keeping the 
non-sharp region static. 
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2 BILATERAL FILTERING 

The bilateral filtering technology will be reviewed in this 
section. The bilateral filter, which is originally conducted in 
image processing [37] (see also [42]), is a nonlinear filter 
derived from Gaussian blur, with a feature preservation 
term that decreases the weights of pixels as a function of 
intensity differences. In [37], the bilateral filtering for image 

)( pI  at the pixel p  is formulated as 
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is a similarity weight function for feature-preserving with 
parameter sσ  that penalizes large variation in intensity. 

The authors in [12] and [20] recently applied the Bilateral 
filter to smooth and denoise 3D meshes while preserving 
sharp features. Different methods were conducted in [12] 
and [20] to capture surface smoothness, Jones et al. [20] 
used the normal on polygons while Fleishman et al. [12] 
adopted vertex normals. For the neighborhood of a vertex 
v , [20] considered all triangles with the distance from v  to 
their center less than a threshold, while only the 1-ring ad-
jacent vertices were utilized in [12]. Our proposed approach 
also conduct the bilateral filter to drift vertices, with which 
the sharpness could be elegantly recovered. The predictor 
in our approach follows the manner of [20] – adopting the 
normals on triangles and the centers of triangles. Similar to 
[20], the bilateral filter is weighted by the area of triangles 
to account for variations in the sampling rate of the surface. 
Using )(vN  to denote the set of triangles contributing to the 
position of a vertex v , and )(ˆ fn  to represent the unit nor-
mal of f , the formula of a bilateral filter for v  is 
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where fa  and )( fc  are the area and center of f , )(vp f  is 
the projection point of v  on the plane of f  served as a pre-
dictor in the bilateral filter 
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)(vk  is a normalization factor 
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and )(tWc  and )(tWs  are as given in Eq. (2) and (3).  
Simply applying the bilateral filter to the vertices on a 

given model in an iterative way may break the regularity of 
its mesh. Thus, Jones et al. in [20] only moved vertices once 
plus a previous mollification. However, through our tests, 
we find that only one run cannot produce sharpness. Re-
peated filtering is needed. In our approach, the bilateral 
filter is integrated with remeshing operators to iteratively 
recover sharp edges. 

2.1 Bilateral Filtering on Non-manifold Models 

In this section, we address some modifications on the bilat-
eral filter to let it work for non-manifold models. A non-
manifold object Μ  is usually stored as a collection of two-
manifold mesh patches 
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where each mesh surface patch iΜ  is defined as a pair 
),( VK , with K  as a simplicial complex specifying the con-

nectivity of vertices, edges, and faces (i.e., the topological 
graph of iΜ ), and },,{ 1 mvvV L=  as the set of vertices 
defining the shape of a polyhedral patch in 3

ℜ . The conti-
nuities between patches are preserved by storing linkers on 
boundary vertices. The vertices belonging to different 
patches sharing the same position are called common verti-
ces, whose positions should be kept consistent when proc-
essing meshes (see Fig. 2 – the small yellow cubes show 
common vertices). Manifold object could be represented in 
this framework either, but with only one patch. 

For a vertex Μ⊂Μ∈ iv  on a given model Μ , if iv Μ∈  
is an inner vertex, we do not want its position to be effected 
by the triangles if Μ∉ , so its contributing face set )(vN  
includes only triangles if Μ∈  with the distance from f  to 
v  less than cσ2 , which is also called the support size of a 
bilateral filter. For a boundary vertex bv , as its position is 
jointly determined by several patches around it, triangles 
on all these patches are included in )( bvN . 

3 BILATERAL SHARP FEATURE RECOGNITION 

The region degenerated from sharp features during an in-
sensitive sampling is determined through identifying verti-
ces with great surface normal variation. With the help of the 
robust bilateral filter, our algorithm can successfully recog-
nize sharp feature regions on noisy datasets in four steps: 

• Bilateral mollification; 
• Sharp-vertices detection; 
• Isolating sharp-vertices through detecting sharp-

region-edges and sharp-region-faces; 
• Restoring each vertex to its original position before 

bilateral mollification. 
For a vertex Μ⊂Μ∈ iv , let )(vF  contain all triangles 

neighboring to v  and )(ˆ fn  give the unit normal of f , we 
can conduct the following formula to compute the smooth-
ness at v : 
                  )(,})(ˆ),(ˆinf{)( vFfffnfnv jiji ∈∀><=τ .             (8) 
Note that, to ensure the stability of evaluating )(ˆ fn  in )(vτ , 
those degenerated triangles (i.e., those with extremely small 
or large angles) are excluded from )(vF . When θτ cos)( <v  
(θ  is a user-defined angle for sharpness criterion), we then 
treat v  as a candidate vertex on sharp features – called 
sharp-vertex. Our sharp-vertex detection method borrows 
some idea from what Smith and Brady used to detect sharp 
edges on an image in [37]. Since the bilateral filter lately 
applied to sharpen a mesh also depends on the normals of 
triangles around sharp-vertices, the detection and recover-
ing methods here are consistent.  

In order to make our detector robust to the irregularity 
on given meshes, we give up adopting local connectivity 
but use the Euclidean distance to identify contributed sur-
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face normals at v . The definition of )(vF  is similar to )(vN  
in Eq.(4) but with the support size reduced by half – i.e., cσ  
instead of cσ2 . To efficiently detect the triangles with their 
distance to a vertex less than cσ , we conduct the space 
subdivision technique to reduce the searching range. The 
space bounding Μ  is divided into NML ××  voxels with 
the width cσ . A triangle face f  is considered as contribut-
ing to a voxel if its bounding box has some overlap with the 
voxel. By this space subdivision, for the vertex falling in a 
voxel, its neighboring triangles are only searched among 
the triangles contributing to this voxel and its 26 neighbors. 

Considering about noisy datasets, a mollification process 
is introduced to solve the normal variation problem. We 
perform several passes of bilateral filtering (Eq. (4-6)) on a 
noisy model Μ  before using Eq. (8) to measure the 
smoothness at each vertex on Μ . This is called bilateral 
mollification.  

Only detecting sharp-feature vertices is insufficient. 
Some sharp-vertices belonging to different sharp features 
may be directly linked by edges if the features are very 
close to each other. For example, the sharp-vertices shown 
in the zoom-view of Fig. 3i should be classified into two 
groups. Here, we conduct the following filtering steps to 
detect sharp-region-edges and sharp-region-faces, by which the 

sharp-vertices on different features are isolated. The filter-
ing steps are: 

• Set each triangle with three sharp-vertices as a 
pseudo-sharp-triangle (i.e., not true), while every edge 
of a pseudo-sharp-triangle is considered as a pseudo-
sharp-edge; 

• For each pseudo-sharp-triangle, if its area is increased 
after the bilateral mollification, its three edges will 
be marked as non-sharp; 

• Each pseudo-sharp-edge not being marked as non-
sharp is classified as a sharp-region-edge; 

• Each triangle with three sharp-region-edges is as-
signed as a sharp-region-triangle. 

The second step comes from the observation that the trian-
gles with its vertices belong to different sharp features are 
usually enlarged after the bilateral mollification. Even if the 
given model is noisy-free, it is also important to apply the 
bilateral mollification step to isolate sharp-vertices belong-
ing to different features. 

Fig. 3 shows a comparison of the sharp feature recogni-
tion results from the dihedral angle based method [2], the 
curvature tensor based method [29], and our approach. All 
are on a model corrupted with Gaussian noisy ( 5/1=σ  of 
the mean edge length). Fig. 3c gives the color map of mean 

 

Fig. 3. Comparison of different sharp-feature detection methods on a model corrupted with Gaussian noisy (a) (with e2.0=σ , where e  is 
the mean edge length). (b) gives the sharp feature detection result from the dihedral angle based method [2] (with the dihedral angle threshold 

75.0cos
1−

=θ ). (c) shows the color map of its mean curvature. (d, e) show the curvature tensors based detection results from [29] (with the 
curvature threshold e/1  and e/5.0 ). After 30 passes of the bilateral filtering, the noisy model becomes (f), whose colorful mean curvature 
map is as (g). The result of our bilateral sharp region recognition is illustrated in (h) (with ec 5.1=σ  and 75.0cos =θ ). Red cubes denote 
the sharp-vertices, while the sharp-region-edges are represented with black line segments. (i) sharp-region-faces are colored in green on the 
result of our bilateral sharp feature recognition. 
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curvatures on the surface, where red represents the maxi-
mal value and blue denotes the minimum. It is not difficult 
to find that both the dihedral angle based method and the 
curvature tensor base scheme fail on the noisy model (see 
Fig. 3b, 3d, and 3e). After thirty passes of bilateral filtering, 
the noisy model becomes as shown in Fig. 3f. We then 
measure the sharp feature vertices by Eq. (8) with threshold 

ec 5.1=σ  and 75.0cos =θ . Finally, the position of each ver-
tex on the model is restored (see Fig.3h and Fig. 3i). Our 
result is much better than the results from other two meth-
ods, and adjacent sharp features are successfully isolated 
(i.e., neither sharp-region-edges nor sharp-region-faces link 
them – see Fig. 3i). 

One may ask why not apply the other two methods on 
the model after bilateral mollification to detect sharp fea-
tures. This is because that, as shown in the mesh represen-
tation on Fig. 3f, the bilateral filtering result usually drifts a 
lot of vertices and edges around the “sharp” region. Caused 
by the degenerate triangles, the curvature tensors and the 
dihedral angles cannot be stably evaluated. For instance, 

Fig. 3g shows the color map of mean curvatures on the 
model of Fig. 3f, where extreme curvatures do not always 
occur on the “sharp” regions. For our method in Eq.(8), the 
stability is guaranteed since those skinny triangles have 
been excluded from the detector. 

4 BILATERAL SHARP EDGE RECOVERING 

The algorithm for recovering sharp edges is addressed in 
this section. First of all, the positions of all sharp-vertices are 
optimized by several passes of bilateral filtering – this is 
called geometry recovering; then, the sharpened geometry 
shape is encoded into Hermite data units to govern the 
shape and connectivity modification on the given mesh – 
this is named as mesh recovering.  

4.1 Geometry Recovering 

The bilateral filter (ref. Eq. (4-6)) is applied on all sharp-
vertices to form the geometry of sharpness. As mentioned in 
[12], directly applying the bilateral filer for image process-
ing to a 3D surface has three problems: 1) irregularity; 2) 
shrinkage; 3) drifting. For the irregularity, we follow the 
manner of Jones et al. [20] to overcome this issue through 
weighting the contributed triangles by their areas. As the 
bilateral filter is not volume preserved, shrinkage will occur 
on the given mesh. To avoid that, only the sharp-vertices 
are filtered in our algorithm, and the other static non-sharp-
vertices will take the role as a keel to prevent shrinking. For 
the problem of vertex drifting, Fleishman et al. in [12] 
avoided this problem by moving vertices only along their 
normals. However, this will also prevent the generation of 
sharp features. Jones et al. in [20] only moved vertices once 
plus a previous mollification – but this will not produce 
sharpness too. As repeated filtering is needed, we solve the 
vertex drifting problem by separating the geometry and the 
mesh recovering of sharp edges. 

One bottleneck of applying the bilateral filter to sharpen 
a three-dimensional surface is how to efficiently determine 

)(vN  on every sharp-vertex. We also conduct the space 
partition method presented in above section to reduce the 
computational cost. This time, the voxel size is chosen as 

cσ2 . 
The result after directly applying the bilateral filter to 

sharp-vertices does not really produce sharp edges. The 
filter only changes the position of vertices but do not mod-
ify the connectivity of meshes. As shown in Fig. 4, a lot of 
edges are drifted and crowded at the region where ex-
pected to have singlewide sharp edges. Because of the ver-
tex drifting, the mesh becomes irregular around sharpened 
region, so many degraded triangles appears. In some ex-
treme cases, the normals of some triangles may be flipped 
as illustrated in Fig. 5. Not only irregularity but also the 
sharpness detection problem occurs – since many thin and 
small triangles crowd together, the dihedral angles indicat-
ing sharpness cannot be stably evaluated. See the bottom 
right figure in Fig. 4, only a small number of edges can pass 
the sharpness detection of dihedral angles. The only way to 
solve this problem is to optimize the connectivity of meshes 
on the given model during the sharp edge recovering, 
which leads to the so called mesh recovering algorithm pre-

 

Fig. 4. Result of geometry recovering. For the given non-manifold 
model (top-left), after the sharp regions have been recognized 
(top-middle), the geometry of sharpness can be reconstructed by 
several passes of bilateral filtering (top-right). However, the regu-
larity of given mesh is broken (bottom-left and bottom-middle) and 
a sharp edge is difficult to be detected by its dihedral angle (see 
bottom-right – very few edge’s dihedral angle is greater than the 
threshold, the ones greater are specified by black lines).  

 

Fig. 5. In some extreme case, the normal of a triangle may be 
flipped in a bilateral filtering – the figures give the cross-sections of 
a model under bilateral sharpening where the red nodes are 
pseudo-sharp vertices.  

 

Fig. 6. It is difficult to distinguish the flip singularity (left – the cross-
section illustration of overlapped triangles) from an extreme sharp 
feature (right – the cross-section presentation of an extreme sharp 
feature).  
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sented in the section below. 

4.2 Mesh Recovering 

Although directly applying bilateral filters on the sharp-
vertices does not give us an expected mesh surface, it at 
least provides a good profile of the final surface with sharp 
features. What currently needed is to modify connectivity 
so to improve the regularity of meshes and the sharpness at 
pseudo-sharp edges while still maintaining the shape gen-
erated by the iterations of bilateral filtering. 

If we directly optimize the connectivity on the meshes 
after geometry recovering (e.g., adopting the method in 
[6]), we will face several difficulties: Firstly, the edges repre-
senting sharp features need to be detected and preserved – 
but as mentioned above, they are hardly identified among 
the edges crowded at the sharp regions. Secondly, it is a 
tough job to eliminate flipped triangles since this kind of 
modification involves local geometry changes, which are 
difficult to preserve the original shape produced by bilat-
eral filtering. Also, it is not easy to identify whether a trian-
gle is flipped; in other words, we cannot distinguish the 
flipped triangles from the triangles forming extreme sharp 
features (e.g., as illustrated in Fig. 6). Lastly, even if we 
conduct the method presented in section 3 to detect sharp-
region-edges and preserve them during mesh optimization, 
we can hardly retain sharp corners since they cannot be 
recognized. 

What happens if the mesh connectivity is optimized 
during the procedure of geometry recovering? From our 
tests, we find that this may generate over-sharpened re-
sults, i.e., the sharpness is over-enhanced. This is because 
that after the shape and normal of a triangle is modified by 
a remeshing operator, we lost its original position and ori-
entation to serve as a predictor in later bilateral filtering 
steps. Especially when some triangles are removed, the ac-
curacy of predictors is decreased since the predictors of a 

bilateral filter is based on a statistical error norm (ref. [20]). 
An example result of over-sharpening on a cylinder is 
shown in Fig. 7. 

Our method to overcome all above difficulties is by en-
coding the result of geometry recovering into a Hermite 
data collection. Then, this Hermite data collection is em-
ployed to govern the mesh recovering algorithm which 
moves the sharp-vertices while optimizes the connectivity 
on sharp-region-triangles. With the help of this separation 
of geometry recovering and mesh recovering, the over-
sharpening problem is solved (e.g., the result in Fig. 8). 

The position and orientation of a triangle f  after geome-
try recovering is encoded as a vector consists of the center 
position )( fc , the area fa , the unit normal )(ˆ fn  of f , 
which is called a Hermite data unit of f . After encoding 
Hermite data unit of every triangle, the positions of sharp-
vertices on the model Μ  are restored to its original loca-
tion. Then, three operators are iteratively applied to modify 
both the geometry and the connectivity in the region to be 
sharpened, which include one geometric operator – Vertex-
Sharpener and two topological operators – MeshSlicing and 
EdgeCollapse.   

VertexSharpener – the purpose of this geometric operator 
is to move every sharp-vertex on Μ  to a new position pre-
dicted by the background Hermite data units. For a sharp-
vertex Μ⊂Μ∈ iv , we use Eq. (4) – the bilateral filter to 
determine its new position v′ . However, the triangles in 
Eq. (4) are replaced by the previously stored Hermite data 
units. All Hermite data units with their distance to v  less 
than cσ2  are considered. Since the area of each triangle is 
record and contributes to v′ , the skinny triangles have less 
influence on the result. 

The VertexSharpener updates the positions of sharp-
vertices for several runs. In each pass, whether the new 
position v′  will flip the normals of triangles around v  is 
detected. If normal flip occurs, we adopt the binary search 
method to determine a closest position *v  to v′  on vv ′  
without normal flip, and move the vertex to *v . For a very 
noisy given model, several passes of Laplacian smoothing 
[40] are applied on the sharp-vertices after encoding the 
Hermite data units – so that the regularity of meshes are 
enhanced before applying the VertexSharpener operator. 
Note that to avoid the vibration of face normals caused by 
the dynamic remeshing, the normal vector of each triangle 
is recorded and will not be updated during the whole mesh 
recovering process. 

MeshSlicing – this operator together with the following 
EdgeCollapse operator are conducted to remove extreme thin 
triangles generated by VertexSharpener. As mentioned in 
[41] and [6], extreme thin triangle can be classified as 

• Needles: triangles, whose longest edge is much 
longer than the shortest one; 

• Caps: triangles with an angle close to π . 
The MeshSlicing is from the work of [6] to convert caps into 
needles, but the slicing here is only applied to the sharp-
triangles. Note that the recorded normal of each sharp-
triangle must be copied to the newly created triangles to 
make the flip prevention work. 

 

Fig. 7. The given model (top) may be over sharpened (bottom) if we 
optimize its connectivity during bilateral filtering. 

 

Fig. 8. The over-sharpening problem is solved after separating the 
geometry recovering and the mesh recovering. 
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EdgeCollapse – this operator is employed to remove ex-
treme thin triangles. The EdgeCollapse actually removes nee-
dles among all sharp-region triangles. Considering about 
an edge Μ⊂Μ∈ ie , if it satisfies all the following condi-

tions, the edge will be collapsed: 
• e  is a sharp-region-edge; 
• the length of e  not greater than cασ ; 
• if the positions of its two endpoints are moved to 

their middle point, no normal of their adjacent tri-
angles will be flipped; 

• the collapse will not lead to topology degradation 
(ref. [18]). 

When applying the EdgeCollapse operator to a mesh surface, 
we insert all qualified candidate edges into a minimal heap 
which sorts edge lengths. Then, the edges are iteratively 
removed from top of the heap and collapsed until the 
length of top edge in the heap is greater than cασ . In all 
our experimental tests, we choose 4.0=α . 

4.3 Algorithm Overview 

The algorithm for mesh recovering applies above opera-
tors iteratively on the given model so that sharp edges are 
reconstructed successfully. The overall algorithm is summa-
rized as below. 

• Apply the bilateral filter to sharp-vertices to con-
struct the geometry sharpness and encode the de-
formed triangles in a Hermite data collection;  

• Restore the position of each sharp-vertex; 
• Relax the connectivity on sharp-vertices – by the 

Laplacian operator; 
• Repeat that: 

Apply VertexSharpener on Μ  for ten runs; 
Apply MeshSlicing on Μ  to convert caps into 
needles; 
Apply EdgeCollapse on Μ  to eliminate needles; 

• Using VertexSharpener to finalize the sharpened ge-
ometry on Μ  for two runs. 

The vertex relaxation at the beginning of recovering algo-
rithm plus later flip-prevented VertexSharpener operator can 
avoid the normal flips (e.g., the case shown in Fig. 5). Even 
if the normal of a triangle has been flipped in the Hermite 
data units, it does not matter. As long as the Hermite data 
units give correct shape after sharpening, the orientation of 
a triangle on the final sharpened mesh depends only on its 
normal after vertex relaxation, so the normal flip is abso-
lutely prevented. For the loop in the mesh recovering algo-
rithm, usually only three to five runs give excellent sharp-
ening results.  

Note that if a noisy dataset is given, one pass of bilateral 
filtering is finally applied to all the non-sharp-vertices (not 
including the sharp-vertices) on the resultant model to fur-
ther smooth its geometry, which serves as a post-filtering. 
Since the operations on sharp and non-sharp regions are 
separately conducted, the non-sharp region will serve as sup-

port to prevent the volume shrinkage when processing the 

sharp region; vice versa. 

5 RESULT AND DISCUSSION 

Our bilateral recovering algorithm has been tested on a 
range of noisy and noisy-free models. The examples are 
constructed either directly from a volume model or through 
a surface-volume-remeshing conversation routine. In all the 
examples tested, when the original shape was sampled 

 

Fig. 9. Model II (left) and III (right) are constructed from implicit mod-
els, where different colors represent that different material stuffs are 
filled – so heterogeneous models are given. 

 

Fig. 10. The bilateral recovering result of sharp edges on Model III. 

 

Fig. 11. After corrupting Gaussian noisy ( 5/1=σ  of the mean edge 
length) on Model III, the sharp region and edges can still be success-
fully recognized and reconstructed. 

 

Fig. 12. The recovering result of Model IV – a forming plate corrupted 
with Gaussian noises. 
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with a sufficiently high rate, most of the sharp features can 
be successfully recovered. Also, we have observed that our 
algorithm significantly reduces the shape errors (both the 
Hausdorff distance Emax and the mean distortion Emean) by 
recovering sharp edges – the errors are measured through 
the publicly available Metro tool [7].  

Our first example is a freeform flower model that has 
been shown in Fig. 1. Both noisy-free and noisy datasets 
have been tested. The second example is a non-manifold 
model, which has been previously shown in Fig.2. The 
model is directly constructed from an implicit representa-
tion (see the left of Fig. 9). The third testing example is also 
non-manifold (see the right of Fig. 9 and Fig. 10); while 
comparing to the result after geometry recovering in Fig. 4, 
the sharp edges are easily detected and preserved by dihe-
dral angles on the resultant model in Fig. 10. Fig. 11 demon-
strates the functionality of our approach on the third model 
corrupted with Gaussian noises ( 5/1=σ  of the mean edge 

length). The fourth model is a mechanical model – forming 
plate, which has previously shown in Fig. 3 also with Gaus-
sian noises. The recovering result is given in Fig. 12. The 
method proposed in this paper also works well on complex 
models (e.g., the models in Fig.13). 

In Fig. 14, the processing results from the anisotropic dif-
fusion [29], the crease-enhancing diffusion [34], the bilateral 
filtering (with 30 passes), and our approach are compared 
on two noisy models ( 5/1=σ  of the mean edge length). By 
the anisotropic diffusion, when a noisy model is given, it is 
difficult to correct the mean curvatures to let the diffusion 
process converge to sharp edges. The same problem hap-
pens on the crease-enhancing diffusion – effected by noises, 
some sharp features are incorrectly chamfered or blurred. 
Iteratively applying bilateral filters will make many edges 
crowded at the sharp region. The results from our method 
show the best performance in recovering sharp edges while 
preserving the detail geometry. In term of computing time, 

 

Fig. 13. The recovering results of complex noisy models. 

 

Fig. 14. For given models in (a), after Gaussian noises are corrupted (see (b)), the sharp edge recovering results by the anisotropic diffusion 
[29] (c), the crease-enhancing diffusion [34] (d), 30 passes of bilateral filtering [20] (e), and ours (f) are compared. 



10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,  MANUSCRIPT ID 

 

our approach approximately takes the same time as about 
500 passes of anisotropic diffusion or 700 iterations of 
crease-enhancing diffusion. The detail computing time on 
example models is listed in Table 1. 

Another interesting investigation concerns the evalua-
tion of the error reduction on a given model sampled with 
different densities. Theoretically, our sharp feature recover-
ing algorithm should somewhat increase the accuracy of an 
feature-insensitive sampled model no matter in which rate 
it is sampled; also, with the increase of sampling rate, the 
model produced by our approach is expected to give less 
error. Our tests prove these two opinions. Fig. 15 shows our 
results on model I and IV – both are tested in four different 
sampling densities. 

5.1 Parameters 

When using our approach to reconstruct sharp features 
on a given model, two parameters need to be chosen: cσ  
and sσ . The first parameter cσ  actually determines the 
support size of our filter and the sharp feature detector.  It 
could be defined in an interactive manner: let the user se-
lect a point of mesh where the surface is expected to be 
sharp, and then the support size is iteratively increased 
until the normal variation of triangles falling in the support 
greater than the threshold (we usually choose 0.75). With a 
fixed cσ , the value of parameter sσ  indicates the ability to 

form sharp features, which is determined in a trial-and-
error manner. We usually start from cs σσ 1.0= ; if some 
sharp edges are missed on the result, we then increase sσ  
until sharp edges and corners are well recovered. The op-
timal parameters used in our examples are listed in Table 1 
– all are measured relative to the mean edge length. Fig. 16 
shows an example effect of increasing sσ  with a fixed cσ . 

The feature missing problem reported in the approach of 
[2] could be well solved since we can adjust the coefficient 

cσ  to increase the support size of bilateral predictor – by 
which the missed features can be recovered.  

5.2 Limitations 

Similar to the sharpening algorithm presented in [2], the 
feature that blends smoothly into a flat area may be miss-
sharpened if the sampling rate is not able to generate 
enough great normal variations around aliasing regions. 
Also, some unwanted sharpening will be given on small 
radius blends. These two problems are both effected by an 
insufficient sampling rate – so that they can in some meas-
ure be solved if a denser sampling is provided. For the 
problem of unwanted sharpening, it can also be overcome 
by interactively introducing the intension of users about 
where to sharpen and where not. 

In this paper, the nearness is determined through 
Euclidean distances. As mention in [12], Geodesic distance 
is more appropriate to determine the nearness of a bilateral 
filter – however, the computing of Geodesic distance is 
much more expensive. We need to seek a balance between 
the quality and the efficiency. In our current implementa-
tion, we adopt Euclidean distance based detector and pre-
dictor, which give good results at most examples. 

6 CONCLUSION 

We have presented a robust general approach with the as-
sistant of bilateral filters to recover sharp edges on feature-
insensitive sampled triangular meshes, which interpolate or 
approximate the shape sampled on regular grids. Our ap-
proach has two phases: bilateral sharp feature recognition 
and bilateral sharp edge recovering. The experimental re-
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Fig. 15. With the increases of sampling rate, the model processed by 
our approach gives less error; even if a very dense sampling rate is 
applied to remesh a model, our algorithm can still reduce some alias-
ing error. In this test, four different sampling densities are conducted to 
convert the original model into a volume representation, and then is 
reconstructed into a mesh model: low – sampled at 64x64x64; medium 
– the model is sampled by a 128x128x128 grid; high – 192x192x192; 
and in super high resolution – 256x256x256 samples are conducted. 

 

Fig. 16. The effects of increasing sσ  with a fixed cσ . 

TABLE 1 
COMPUTATIONAL STATISTICS 

ec /σes /σ

238.50.52.034.7k13cVII – head

189.70.52.030.3k13bVI – Mickey

46.80.251.59.8k13aV – pig 

30.40.51.56.5k3 & 12IV – noisy 

55.50.52.011III – noisy 

25.70.51.1
7.2k

4 & 10III – noisy free

21.90.251.18.3k2 II

79.30.51.512.8k1bI – noisy 

99.2 0.51.525.1k1a I – noisy free

Time (s)TrianglesFigureModel ec /σes /σ
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30.40.51.56.5k3 & 12IV – noisy 

55.50.52.011III – noisy 

25.70.51.1
7.2k

4 & 10III – noisy free

21.90.251.18.3k2 II

79.30.51.512.8k1bI – noisy 

99.2 0.51.525.1k1a I – noisy free

Time (s)TrianglesFigureModel 

 
*All computations are performed on a standard PC with PIV 2.6GHz CPU 

+ 512MB RAM. 
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sults prove that our method works robust on various mod-
els. Sharp edges are constructed only from given mesh sur-
face, i.e., no additional normal is requested. The shape qual-
ity of elements around the sharp edges is controlled while 
preserving the sharpness. Sharp edges on a non-manifold 
structure can also be well recovered. After applying our 
recovering approach on insensitive sampled meshes, the 
sharp edges are reconstructed and can be easily detected 
through dihedral angles. 
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