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Abstract 

Surface developability is required in a variety of applications in product design, such as clothing, ship hulls, 

automobile parts, etc. However, most current geometric modeling systems using polygonal surfaces ignore this 

important intrinsic geometric property. This paper investigates the problem of how to minimally deform a 

polygonal surface to attain developability, or the so called developability-by-deformation problem. In our study, 

this problem is first formulated as a global constrained optimization problem, and a penalty function based 

numerical solution is proposed for solving this global optimization problem. Next, as an alternative to the global 

optimization approach which usually requires lengthy computing time, we present an iterative solution based on 

a local optimization criterion which achieves near real-time computing speed. Both approaches preserve the 

topology and continuity of the original polygonal surface in the case when more than one individual polygonal 

patches comprise the surface. Experimental examples are provided to demonstrate the functionality of the 

proposed two approaches as well as their comparison in terms of computing cost, effectiveness of attaining 

developability, dimensional difference between the surfaces before and after the optimization, and other 

important aspects. 
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1. Introduction 

Developability is an important intrinsic property of a surface. Informally, a surface is developable if it can 

be flattened onto a plane without any distortion [1]. This is a highly desired property in sheet manufacturing 

industry, where the stretch or compression in the sheet material should be avoided, as they make the product 

more prone to damage since internal strains and stresses are generated. As an example shown in Fig. 1a, the 

original design of the shell has a developable shape which can be bent or rolled by a metal sheet. After deformed 

by Wires [2], its shape becomes the one as shown in Fig. 1b, which is non-developable. The elastic energy maps 

of the shell surface before and after the deformation are given in Fig. 1c and Fig. 1d respectively. As clearly 

shown, a great amount of elastic energy is generated if the newly designed shell is to be manufactured by metal 

sheet. This requirement exists in many applications (e.g., clothing, ship hulls, ducts, shoes, aircraft and 

automobile parts). In this paper, we investigate and propose algorithms for solving the problem of how to 

deform a non-developable surface, in the form of assembled polygonal mesh patches, into a developable one 

while at the same time minimizing the difference between the two surfaces.  

Our algorithms work on polygonal mesh patches which have become a widely accepted standard in most 

computer graphics applications. Triangular meshes are especially preferred due to their algorithmic simplicity, 

numerical robustness, and efficient display. The advantage of switching from spline-based surface 

representation to mesh representation is mainly due to the fact that algorithms for polygonal meshes usually can 

work on shapes with arbitrary topology and do not suffer from the severe restrictions which stem from the rigid 

algebraic structure of polynomial surfaces. More and more commercial modeling systems have included the 

polygonal mesh based module, and more and more applications are developed based on mesh representation.  

The proposed technique is new – no prior research on developability optimization of polygonal surfaces has 

been found in literature. In our approach, the surface developability problem is formulated as a constrained 

optimization problem. The problem is first solved numerically by a penalty function based optimization scheme, 

which is a global approach. The continuity is preserved between the assembled patches. The global optimization 

is very time-consuming even after the gradients of the objective function have already been calculated locally. 

Therefore, as an alternative, we further present a local optimization solution in which the vertices on the surface 

are moved along their normal directions iteratively. The magnitude of each movement is actually derived from a 

locally defined objective function. This local approach enjoys a great advantage of faster computing speed as 

compared to its global counter-part and can be integrated into modeling systems to preserve the developability 

of assembled surface patches in real-time during the entire design process. Different from most existing surface 
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modeling solutions concerned with developability, our solutions, both global and local approaches, are more of 

bottom-up nature – we take as input an arbitrary (non-developable) surface in the form of a set of assembled 

polygonal mesh patches and output a developable polygonal mesh that deviates minimally from the original 

surface. 

              
(a) original shape (b) deformed shape  

            

 

(c) elastic energy map of the original duct (d) elastic energy map of the newly shaped duct  

Fig. 1    Example I – a deformed shell leads to stretch in manufacturing 

The paper is organized as follows. After reviewing the related work, the necessary mathematical 

formulations about the developability of a polygonal mesh are given in section 3, where the developability-by-

deformation problem is formulated as a constrained optimization problem. In section 4, the details of a penalty-

function-based solution are presented that numerically solves this constrained optimization problem. To 

overcome the usually lengthy computing time required by the proposed numerical solution, as an alternative, in 

section 5 we reformulate the problem as a local optimization problem and propose a much quicker numerical 

algorithm to solve the local optimization problem. In section 6 we then provide some experimental examples to 

illustrate the functionality of the proposed solutions as well as their comparison. Finally, the paper is concluded 

in section 7 and we offer some pointers to potential future research in this area.  



 4 

2. Related Work 

Over the past decade, mesh-processing techniques, such as mesh simplification [3-5] and mesh fairing [6-

10], have been improved significantly. Apart from fundamental mesh processing algorithms, many new 

freeform modeling approaches have also been developed. The SKETCH system [11] rapidly constructs an 

approximate shape via direct mark based interaction. The Teddy system [12] constructs a rounded freeform 

mesh model by finding the chordal-axis of the user input 2D closed stroke to build a smooth surface around the 

axis. Other approaches construct mesh surfaces by use of implicit surfaces [13, 14]. Suzuki et al. [15] presented 

a 3D mesh-dragging method for intuitive, efficient geometric modeling of free-form polygonal models; this 

method is based on an adaptive remeshing procedure. With their method, the user can drag a part of a triangular 

mesh and change its position and orientation. Other interactive modeling research results were reported for the 

multi-resolution presentation of models; for example, Zorin et al. [16] built a scalable interactive multi-

resolution editing system based on mesh refinement and coarsification algorithms, and based on Zorin’s 

approach Khodakovsky and Schroder [17] developed an algorithm that can modify the fine level shape of a 

surface. However, in all the above approaches, the developability of the processed polygonal mesh surface is not 

considered. Our paper considers the developability property of the given polygonal surface and converts the 

original non-developable surface into a developable one.  

Developable surfaces have been studied for a long time.  The definition of a developable surface (cf. [1]) is 

derived from a ruled surface: for a ruled surface, ( ) ( ) ( )tvtvtX βα +=, , it is developable if β , 
dt

dβ
 and 

dt

dα
 are 

coplanar for all points on X  (where ( )tα  is the base curve and ( )tβ  is the director curve of ( )vtX , ). The 

simplest examples of developable surfaces are cylinders and cones, and a simple and representative example of 

non-developable surfaces is a sphere. Every surface enveloped by a one-parameter family of planes is a 

developable surface. The key concept in characterizing the developability is Gaussian curvature which is the 

product of the maximum and minimum normal curvatures at a given point [1]. In general, a surface is 

developable if and only if the Gaussian curvature of every point on it is zero – this is the constraint that we want 

to preserve during the surface optimization. Research related to Computer Aided Geometric Design, in particular 

those concerning the design and approximation of developable surfaces, can be found in [18-27]. Most of them 

are in terms of NURBS or its special case – B-spline or Bézier surfaces [18-24]. Aumann [18] proposed the 

condition under which a developable Bézier surface can be constructed with two boundary curves. The 

boundary curves in his approach are restricted to lie in parallel planes; the projection of the boundary curves on 

the x-y plane must be a rectangle. Chalfant and Maekawa [19] presented a method to design developable B-
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spline surfaces where boundary curves do not necessarily lie in parallel planes. In the work of Frey and 

Bindschadler [20], the results of Aumann are extended by generalizing the degree of the directions. Their 

system requires solving non-linear system equations to find the Bézier control points. Chu and Séquin [21] 

recently proposed a new method to design a developable Bézier patch. In their method, after one boundary curve 

is freely specified, five more degrees of free are available for a second boundary curve of the same degree. In 

the work of [22-24], the approximation methods are used to design developable B-Spline surfaces based on 

projective geometry. Other approaches are based on alternative perspective: Redont [25] constructs developable 

surfaces by specifying tangent planes along a geodesic of a surface, Randrup [26] approximates a given surface 

by cylinders in its Gaussian image, and Park et al. [27] design developable surfaces by the methods from 

optimal control theory. 

All the work in the above references tried to use developable surfaces to (approximately) construct the 

shape of a product. There are also some surface flattening approaches [28-37] in literature. They usually adopt 

nonlinear programming techniques to find an optimized flattened result with respect to the given 3D surface. 

Shimada and Tada [28] presented a generic surface development algorithm. This algorithm is based on a meshed 

surface. In their algorithm, a dynamic programming method is used to develop a curved surface. An objective 

curved surface is decomposed into regions of adjacent strips. Then each region is developed, in turn, into a 

flattened shape.  The whole shape is derived by solving a multi-stage decision process. Parida and Mudur [29] 

gave an algorithm to develop complex surfaces. Their algorithm first obtains an approximate planar surface, and 

then reorients cracks and overlapping parts in the developed plane to satisfy orientation constraints. The 

algorithm of Parida and Mudur might generate many cracks and calculation errors. McCartney et al. [30] flatten 

a triangulated surface by minimizing the strain energy in the 2D pattern. The surface is first triangulated using 

Delaunay triangulation. Then the triangles are transformed onto a 2D plane. However, there are some flattened 

triangles that cannot preserve their length relationship with respect to the triangles on the surface. This length 

differences are measured as strain energy. If the strain energy is zero, that means the flattened triangle preserve 

their length relationships with the original triangles on the surface, i.e. no deformation occurs. Thus, iterative 

method is applied to minimize this strain energy in the 2D pattern. The endpoints of the triangles are moved in 

orthogonal directions by trial to obtain smaller energy in each iteration. Wang et al. [31] improve McCartney’s 

algorithm by using a spring-mass system. This guides the endpoints to approach better positions by the force of 

springs and the computational speed of the minimization is improved. The accuracy of the flattening can also be 

controlled by using the spring constant. Sheffer and de Sturler [33, 34] presented a texture mapping algorithm 



 6 

that causes small mapping distortion. Their algorithm consists of two steps: 1) using the Angle Based Flattening 

(ABF) parameterization method to provide a continuous (no foldovers) mapping, which concentrates on 

minimizing the angular distortion of the mapping so leads to relatively large linear distortion; 2) to reduce the 

linear distortion, an inverse mapping from the plane to the result of ABF is computed to improve the 

parameterization – the improved result has low length distortion. The methods presented in [38, 39] handle the 

problem in a reverse way by fitting a 2D patch onto a 3D surface. However, even if an optimized flattened 2D 

shape is obtained, warping a sheet of such a 2D shape into the given 3D shape usually leads to stretching if the 

given surface itself is non-developable. Therefore, the essential solution is to let the surface itself be developable. 

As alluded earlier, we propose to convert the Gaussian curvature of every point on the assembled mesh 

patches to zero during an optimization process. However, since differential geometry analyzes surfaces in the 

continuum domain, the traditional equations for calculating the Gaussian curvature cannot be applied to a mesh 

surface directly. A discrete Gaussian curvature computing method is needed. After Calladine (1984) firstly 

formulated the discrete Gaussian curvature in [40], Kobbelt et al. [41] gave the formulas of discrete Gaussian 

curvature based on the fact that a mesh can be interpreted as an approximation of a smooth surface. The idea in 

[41] is to discretize the formulation for defining the Gaussian curvature on a smooth surface based on a theorem 

by Rodrigues [1]. In a similar way, Sheffer [42] gave another discrete Gaussian curvature approximation, which 

is scale independent. In our approach, we utilize the formula of Kobbelt et al. [41] to derive the developability 

of a polygonal mesh surface. 

3. Mathematical Formulation 

This section gives the necessary mathematical formulation based on which our optimization algorithms will 

be developed.  

3.1  Representation of assembled polygonal patches 

A polygonal patch M  is defined as a pair ),( VK , where K  is a simplicial complex specifying the 

connectivity of the vertices, edges, and faces (in other words, the topological graph of M ), and 

},,{ 1 mvvV L=  is the set of vertices defining the shape of the polyhedral patch in 3ℜ . The above definition 

follows the notation in [43]. In this paper, to simplify the algorithm, every polygonal face in M  is subdivided 

into triangles by the Constrained Delaunay Triangulation (CDT) [44] of a planar contour. If the contour of a 

polygonal face is not coplanar, we project the vertices of this face onto its least-square plane to apply the CDT. 

No new vertex is inserted; and then the triangulation on the vertices before projection can be obtained by 
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maintaining the same connectivity of CDT result on the least-square plane. From K , it is straightforward for 

our algorithm to fetch the adjacent nodes, edges, and faces of a triangular node in constant time. The object 

considered in our approach is denoted by O  which is a collection of assembled polygonal patches iM , i.e., 

mMMMO ∪∪∪= L21 . Each surface patch iM  is a two-manifold in the form of a piecewise linear 

triangular mesh. The given polygonal patches are usually assembled together by sharing some common 

triangular edges (as illustrated in Fig. 2). In the following, the developability of a polygonal patch is first studied 

locally, and then its global developability function is defined. 

  

(a) assembled surface patches (b) mesh representation of each patch 

Fig. 2    Assembled polygonal surface patches 

3.2 Developability of a polygonal mesh patch 

By theorems from differential geometry, one can easily detect whether a surface is developable according to 

its overall Gaussian curvature [1] – “the Gaussian curvature of a developable surface is identically zero at every 

regular point”. However, Gaussian curvature is not well defined mathematically on a piecewise linear polygonal 

mesh surface. Thus, the following proposition is needed for this purpose. 

Proposition 3-1 At any internal point of a developable piecewise linear surface, the summed inner angle is 

identically π2 . 

Proof. For a point iq  on a developable piecewise linear surface patch M , if jθ  is an inner angle adjacent to 

iq  before flattening and 
F
jθ  is the corresponding inner angle flattened on the 2D plane, as illustrated in Fig. 3, 

the inner angles satisfy 
F
jj θθ =  since the surface at this point can be flattened without stretching or 
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overlapping. In the 2D plane, ∑ j

F
jθ  equals π2  for an internal vertex. When M  is developable, which 

demands 
F
jj θθ =  at every point on M , we have πθ 2=∑ j

j . 

The approximation Gaussian curvature formula in [41] on an internal triangular node iq  is 

∑

∑−
=

j
j

j
j

q

A
i

3

1

2 θπ
κ ,                                                                         (1) 

where jθ  are the inner angles incidental at iq , and jA  are the corresponding triangle areas. When utilizing the 

above approximation of Gaussian curvature to detect the developability of the given patch M , by the theorem 

of differential geometry, we have 0=
iqκ , which also leads to πθ 2=∑ j

j . Q.E.D. 

F
jθ

jθ

 
Fig. 3    The inner angles before and after flattening the triangles around a vertex 

For an internal vertex, we call it a developable point when πθ 2=∑ j
j  is satisfied at this point; otherwise, 

it is called a non-developable point. Using Proposition 3-1, we can detect whether a given mesh patch M  is 

developable by checking every internal vertex. However, simply stating whether a surface is developable or not 

is insufficient for identifying the degree of developability of the surface. Thus, we define the developability 

function on a tessellated surface as follows. 

Definition 3-2 The developability function of a tessellated surface M  is defined as 

∑ −=
i

qisum i
Aq

A
MD ))(2(

1
][ θπδ                                                      (2) 
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where )(tδ  is the impulse function, ∑=
j

jq AA
i 3

1
 is the sum of the areas of the incidental triangles at a 

vertex iq  on M , and A  is the area of M . )( isum qθ  is either the sum of inner angles incidental at iq  when iq  

is an internal vertex, or set to π2  if iq  is on the boundary of M . 

The developability function is actually a weighted sum of the discrete Gaussian curvature given in Eq(1). 

The value of the developability function gives a progressive estimate of the developability of a surface. When 

1][ =MD , all internal vertices on this surface are developable points; in other words, M  is developable. When 

0][ =MD , it means that we cannot find any developable point on the surface – M  is absolutely non-

developable. For any )1,0(][ ∈MD , there are some developable points on M . The larger the value of ][MD , 

the more developable the surface M is. 

3.3 Constrained optimization 

For a given polygonal patch M  with n vertices and [ ] 1<MD , the problem we are to solve here is to find 

an optimized *M  with the same topology as M  but with different vertex positions. The *M  should be 

developable (i.e., 1*][ =MD ), and the difference between *M  and M  should be minimized since the shape of 

M  is what the designer desires. Therefore, we formulate the problem as a constrained optimization problem 

min *)( MM −  subject to 1*][ =MD .                                                        (3) 

In the definition of the developability function, there is an impulse function which may lead to irregularity 

during the optimization. Here, we define a new developability detect function ][LG  to take place of the 

developability function ][LD  as 

2
*)))(((*][ ∑=

i
i MqgMG                                                               (4) 

where *)(Mqi  is the position of a triangular vertex *Mqi ∈ , and the function )( iqg  is the vertex 

developability detect function given as 







Β∈

Β∉−
= ∑

)(0

)(2
)(

i

i
k

k
i

q

q
qg

θπ
                                                          (5) 

where Β  is the set of triangular vertices on the boundary of the given mesh patch *M . It is not hard to verify 

that when 0*][ =MG , the sum of the inner angles at every internal vertex equals π2 , hence 1*][ =MD  is 

satisfied. Thus, we replace the developability constraint by this new one and the constrained optimization 

problem is redefined as 
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min *)( MM −  subject to 0*][ =MG .                                                     (6) 

 It is important to state that the optimization formulation of Eq. (6) pertains to a single patch iM  on the 

embedded object O . Since O  is usually made of several surface patches assembled together, the continuity 

constraint should also be added when these patches are optimized individually. This will be discussed when the 

details of the algorithm is presented. 

4. Global Optimization 

A penalty function based scheme is presented in this section that solves the constrained optimization 

problem of Eq. (6). This is a global optimization (i.e., all vertices move at the same time at an iteration step). 

Two essential tasks need to be embarked upon: the numerical solution of the optimization itself and the 

continuity preservation among the patches during the optimization process, as entailed separately next.  

4.1 Penalty function based scheme 

By definition of the constrained optimization problem (Eq.(6)), we attempt to minimize the surface 

discrepancy between M  and *M . An elastic energy *)(ME  is defined below to quantify the difference, 

( )∑ −=
j

jejsj lqqME
20

,,*)(                                                              (7) 

where j is the index of a triangular edge, *, Mq sj ∈  and *, Mq ej ∈  are the vertices of the edge, and 
0
jl  is the 

length of the triangular edge j on M . This energy function simulates a spring network in which every spring 

follows along a triangular edge on *M . The energy measures the change of length on every triangular edge 

between *M  and M . Thus, the constrained optimization problem is redefined as 

min *)(ME  subject to 0*][ =MG .                                                      (8) 

Eq. (8) can be converted into an unconstrained optimization problem by adding the constraint as a penalty term 

to the objective function [45]. As a result, the objective function to be optimized becomes 

2
*))((

2
*)(*)( MGMEMJ

ρ
+=                                                          (9) 

where ρ  is the coefficient to balance the weight between *)(ME  and *)(MG . The choice of ρ  is by no 

means trivial; for a smaller ρ , the computing procedure converges slowly to 0*][ =MG ; when ρ  is large, on 

the other hand, the shape of the surface after optimization usually deviates too much from the one before the 

optimization. For any starting optimization point 0
M , the procedure begins to minimize )( 0MJ  with 
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∑=
j

j

e

l
MGn

20

20
)(

])[(

1
ρ , where en  is the number of triangular edges. After applying the conjugate gradient 

method to minimize the value of )(MJ  with a fixed number of iteration steps (which is empirical and is 5 in 

our implementation), we obtain a new point 1
M . Then, we use 1

M  as a starting guess for the minimum of 

)(MJ  with ∑=
j

j

e

l
MGn

20

21
)(

])[(

1
ρ  and obtain 2

M , and so on. In actual computation, we stop the process 

either when the constraint violation is less than a given threshold or when changes in )(MJ become insignificant.  

This optimization procedure guarantees the convergence. Since our objective function (Eq.(9)) is in a quadratic 

form, with a fixed ρ , the conjugate gradient procedure will converge to a minimum near the initial value. This 

follows what we expected to minimize the difference of M  and *M . With the value of ][ iMG  becomes 

smaller and smaller, ρ  increases accordingly, so the surface evolves to more and more developable during the 

computing (i.e., 0][ →MG ). Theoretically, we arrive at the developable patch *M  in the limit as ρ  tends to 

infinity. 

When using the gradient-based method to minimize )(MJ , we need to compute the gradients of J  with 

respect to iq . First of all, we have 

iii q

G
G

q

E

q

J

∂

∂
+

∂

∂
=

∂

∂
ρ .                                                                  (10) 

Analytically, ( )∑ −
∂

∂
=

∂

∂
j

ijji
ii

lqq
qq

E 20
, where jq  are the vertices adjacent to iq , and 

0
ijl  are the original 

length between iq  and jq . Thus, we obtain 

( )∑
−

−=
∂

∂
j

ij

ji

ijji
i qq

qq
lqq

q

E 02 .                                                         (11) 

For 
iq

G

∂

∂
, since it is very complex (with more than 40 terms), we compute it numerically using the central 

difference equation 
h

hqGhqG

q

G ii

i 2

)()( −−+
=

∂

∂
. When the position of a vertex iq  is changed, of the terms in 

G, only the )(Lg s with respect to iq  and its adjacencies will incur changes. Thus, to reduce the computing time 

of 
iq

G

∂

∂
, we adopt the following equation to determine it numerically, 

h

hqGhqG

q

G iPiP

i 2

)()( −−+
=

∂

∂
                                                         (12) 
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where ∑+=
j jiiP qgqgqG

22
))(())(()(  with jq  being the adjacent vertices to iq , and h is a small constant 

(the determination method of h according to the value of )( iP qG  is from [46]). 

In the above formulas, the gradients of J  with respect to the vertex positions of M  are computed locally, 

so the computing time is reduced. Now, we can compute the optimized J  with respect to M  by a conjugate 

gradient method which includes the iterative process of computing gradients at current state and searching for an 

optimum state along the conjugate direction [45]. The unnecessary details of the conjugate gradient method are 

omitted here. The terminal condition of the conjugate gradient method is chosen to be η<
− −

][

][][

0

1

MG

MGMG
ii

 

where ][ iMG  is the value of the constraint function in the ith iteration (current value), ][ 0MG  is the value of 

the constraint function before optimization, and η  is a small threshold number (we choose %01.0=η  in our 

testing examples). Similar to other iterative solutions, a maximum iteration number maxN  is used in our system 

as another stop criterion – the numerical iteration stops after it has iterated maxN  steps. 

4.2 Continuity preservation 

In the object O  consisting of assembled mesh patches iM  ( mi ,,1L= ), a vertex shared by more than one 

patches is called an assembling vertex. All other assembly constraints, e.g., different kinds of fixed tolerance, 

need to be converted into the information of coincident assembling vertices and their related linked vertex sets. 

Associated with an assembling vertex pq , we define a linked vertex set 
pqL which contains all the mesh vertices 

in O  coincidental at pq ; also, for any vertex 
pqq Lq ∈ , there is the associated linked vertex set 

qqL  where we 

have 
qqp Lq ∈ . The cardinality of the linked vertex set of a vertex is exactly the number of patches sharing the 

vertex. By means of these linked vertex sets, the connectivity information of assembled patches is stored. 

However, this connectivity is ignored when the shape of every OM i ∈  is being optimized individually – for 

two coincidental triangular nodes belonging to two different patches, their positions are adjusted independently 

since the gradients of J  respect to them might be different; so cracks will appear at places where two patches 

originally met.  

The numerical scheme then needs to be enhanced to take into consideration of preserving the 0G  continuity 

of .O  The basic idea is to make the linked vertices consistent during the optimization. To achieve this 

consistency, the formulas of computing gradients at the assembling vertices are modified. When changing the 
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position of an assembling vertex aq , the positions of vertices in 
aqL  should be maintained the same as aq . 

Thus, the gradient of E  with respect to aq  relates to not only ( )∑ −
20

ajja lqq  but also all the other terms 

( )∑ −
20

pqqp lqq  (
aqq Lq ∈ ) in E , where ja qq  are the incident edges at aq , and  qpqq  are the edges with 

one endpoint 
aqq Lq ∈ . Thus, the gradient is modified to become 

( ) ( )∑∑
−

−=−
∂

∂
=

∂

∂
j

aj

ja

ajja
j

ajja

aa qq

qq
lqqlqq

qq

E 020 2 ,                             (13) 

where jq  are either the vertices adjacent to aq  or the adjacent vertices to a vertex in 
aqL . Also, the gradient of 

G  with respect to aq  should be changed to  

h

hqGhqG

q

G aPAaPA

a 2

)()( −−+
=

∂

∂
,                                                    (14) 

where ∑∑ ++=
j

j
q

qaaPA qgqgqgqG
222

))(())(())(()(  with jq  being either the adjacent vertices of aq  or 

the adjacent vertices of qq  (
aqq Lq ∈ ). When calculated with the above prescribed method, the gradients of the 

linked vertices become consistent with each other. Therefore, while searching for the optimum along the 

conjugate direction, the updating of their positions is also kept consistent, which in turn then ensures the 0G  

continuity. 

5. Local Optimization 

Although the penalty function based global optimization gives a high quality result, its computing speed is 

usually very slow which cannot satisfy the requirement of real-time design activities. In this section, the 

developability-by-deformation problem is reformulated as a local optimization problem and an algorithm is 

given that iteratively updates the position of vertices to achieve a developable mesh.  

5.1 Reformulation of the problem 

Recall the original definition of the constrained optimization problem (Eq.(6)), our objective is to modify a 

given mesh M  into a developable one *M  while minimizing the difference between M  and *M . Let us 

consider only one vertex q  on the given mesh M , where 0)( ≠qg . The basic idea of local optimization is 

moving q along its normal direction qn  (which is the average normal of q’s adjacent faces) to find a new 

position qnqq δ+=*  with 0*)( =qg ; at the same time, the movement scale δ  must be kept as small as 
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possible in order to minimize the surface change. Therefore, the global optimization problem is decomposed 

into a combination of local optimizations on triangular vertices. On a vertex q , the problem is defined as 

min 2δ  subject to 0)( =δT ,                                                            (15) 

with ∑++=
j

jq qgnqgT
22

))(())(()( δδ  with jq  being the adjacent vertices to iq . When q moves, it affects 

not only the developability at q itself but also that of all its adjacent vertices. Thus, the constraint )(δT  of local 

optimization on q  is set on both the vertex q  and its neighbors. When using the Lagrange Multiplier Method to 

solve the above optimization problem (Eq. 15), the Lagrange function can be written as 

)(2 δλδ TL +=                                                                        (16) 

where λ  is the Lagrange multiplier. By setting 0=
∂

∂

δ

L
 and 0=

∂

∂

λ

L
, we obtain the following equations: 

02 =+
δ

λδ
d

dT
,                                                                        (17) 

0)( =δT .                                                                             (18) 

After replacing )(δT  in (18) with a linear approximation based on T ’s Taylor series  

))(()()( 000 δδδδδ −+≈ TTT & , 

the following equation of updating δ  is obtained 
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)(

0

0
0

δ

δ
δδ

T

T

&
−=  .                                                                     (19) 

From (17), we have 
)(

2

δ

δ
λ

T&
−= , so by the property of the Lagrange method of constrained optimization [45], if 

0≠δ  and 0)( ≠δT& , the iteration of Eq. (19) converges to the minimum (if 0)( =δT& , we just simply fix the 

vertex). Now that the magnitude of the update of an individual vertex at an iteration step is decided by Eq. (19), 

next we need a mechanism by which the order of the local optimization on the vertices can be determined. The 

square of the vertex developability detect function )( iqg  as defined in Eq. (5) presents itself to be a natural 

choice and is adopted in our system.  

 

5.2 Outline of the algorithm  

 Our local optimization algorithm is built around vertex selection and vertex position updating. As 

mentioned earlier in section 3.1, our system represents a model by an adjacency graph structure, which includes 
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vertices, edges, and faces, as well as the connection relationship among them; they are all explicitly represented 

and linked together. Each vertex maintains a list of the edges of which it is a member. The overall algorithm is 

outlined below by Algorithm LocalDevelopabilityOptimize(O). 

 ______________________________________________________________________________________ 

Algorithm LocalDevelopabilityOptimize(O) 

Input: a given object O represented as a set of polygonal mesh patches  

Output:  the optimized polygonal mesh patches 

1. Compute the vertex developability detect function g(q) at each vertex q on the given mesh patches; 

2. Compute the unit normal n of each vertex q on O; 

3. Place all vertices in a maximum heap H  keyed on the 2)]([ Lg  measure – the vertex with the 

maximum 2)]([ Lg  is placed at the top of H; 

4. 0←j ; 

5.  Do { 

6.  Select the vertex q at the top of H and update its movement scale δ  along its unit normal n 

according to Eq.(17); 

7.  Update the 2)]([ Lg  cost of q and its adjacent vertices to reflect the movement δ on q – this will 

change the locations of these vertices in H; 

8. 1+← jj ;  

9.  } while ( (the 2)]([ Lg  of the vertex at top of H is greater than ε ) and ( maxNj < ) ); 

10.  Update the positions of all the vertices by their movement scales; 

11.  Update the normal vectors of all the vertices on O; 

12. return. 

______________________________________________________________________________________ 

 

We elaborate the above algorithm by addressing the following questions. 

Surface difference control 

In the above algorithm, the difference between the optimized mesh and the given mesh is not controlled. Such a 

control can be added when updating the vertex q at the top of H – in our implementation, we just simply set 

Tδδ =  if Tδδ >  and truncate δ  to Tδ−  when Tδδ −< , where Tδ  is the given difference tolerance. It calls 

to pay the special attention to the unit normal at each vertex – it remains unchanged in the entire iterative 

process and is updated only once at the end of the process – every vertex moves along its original normal 

passing through its original position during the iteration. If all vertices move by Tδ  along their original normal 

directions, the result would be identical to an offset surface of the given surface ( Tδ  is the value of offset). 
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Therefore, the optimized mesh is controlled between the Tδ+  and Tδ−  offset surfaces of the given surface. The 

smaller the tolerance Tδ , the closer the optimized mesh patches are to the original surface, and the slower the 

optimization algorithm converges. On the opposite, a larger tolerance Tδ  will result in a faster convergence but 

at a cost of larger deviation from the original surface. 

Terminal conditions of iterations 

During the iteration of algorithm LocalDevelopabilityOptimize(O), the 2)]([ Lg  value of the vertex at top of 

the heap decreases while the step number of iteration, j, increases. These two factors are utilized to control the 

terminal condition of the iteration. Which of the two takes effect depends crucially on the given tolerance Tδ  – 

when the value of Tδ  is large enough, the given polygonal patches can be fully optimized, we stop at ε≤)(qg  

for the top element q in heap H; on the other hand, a too small Tδ  will stingingly limit the movement of each 

vertex and the optimization (Eq. (15)) would dwell at certain level and has to be stopped by the maximum 

number of iterations maxN  criterion. 

Continuity preservation 

By definition, the 2)]([ Lg  value of any point on the boundary of O is zero; as a result, it will not be moved 

during the optimization (note that a vertex with zero 2)]([ Lg  is put at the bottom of heap H). However, one still 

faces the continuity problem if an assembling vertex is interior to some patch (see Fig. 4). We resolve this 

problem by the simplest way – all the assembling vertices remain fixed during the optimizing process. For an 

interior assembling vertex, if its 0)]([ 2 >Lg , its developability is enhanced via adjusting the positions of its 

adjacent vertices. The reason, why the developability at an internal assembling vertex can be achieved by 

perturbing the neighboring non-assembling vertices, is that: by the definition of function )(δT  in eq.(15), 

∑++=
j

jq qgnqgT
22

))(())(()( δδ , where jq  are the adjacent vertices to the moved vertex, the movement 

of a vertex is not only measurement on the developability at this vertex but also on the vertices around it. 

Therefore, when perturbing the non-assembling vertices around an assembling vertex, the developability at the 

assembling vertex is also increased. 
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Fig. 4    Interior assembling vertices 

   

   

 

(a) given surface and its 

Gaussian map 

(b) results of global 

optimization 

(c) results of local optimization 

( 0.1=Tδ ) 

Fig. 5    Example I – global vs. local optimization 

6. Experimental Results 

In this section, we give some experimental examples to demonstrate the functionality of both the global and 

local optimization approaches, as well as their comparison. In the first example, Example I, which was 

originally shown in Fig. 1, we applied both the global and local optimizations to the original surface.  The 

surface before optimization and its Gaussian map are given in Fig. 5a (in a Gaussian map, the color of a point 
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represents its 2)]([ Lg  value). The resultant surfaces after both the global and local optimizations are shown in 

Fig. 5b and 5c respectively, where for the local optimization of Fig. 5c the tolerance Tδ  is set to 1.0. Both the 

global and local optimization approaches achieve fully optimized results within the required maximum iteration 

steps. As seen in the figures, the global optimization gives a smoother resultant surface. This is because in a 

global optimization all the vertices move together, while the local approach moves vertices one by one. 

Therefore, the original smoothness of the given surface is not maintained by the local optimization approach. 

The following examples, Example II and III, also verify this point.  

Example II is the surface of a shoe upper layer; since it is usually manufactured from a planar leather sheet, 

the surface is desired to be developable. Fig. 6 displays the optimization results. In this particular case, neither 

the global nor the local approach can achieve the full optimum i.e., both of them were stopped by the maximum 

iteration step criterion (for the local optimization the difference tolerance Tδ  is set to 0.38). 

Example III comes from the application of apparel industry. The assembled polygonal patches of a pair of 

short pants are constructed in three-dimensional space; each patch must be developable since it will come from 

its corresponding 2D pattern in manufacturing. The Gaussian map of the original surface (Fig. 7a) shows that 

the original design incurs severe non-developability. The result surfaces after the optimizations are shown in Fig. 

7b and 7c. Unlike the first two examples, in this case, the local optimization approach, with 4.2=Tδ , achieves 

a fully developable result while the global approach fails to do so within 200 iteration steps. 

The computational statistics of Example I, II, and III is given in Table 1. Implemented by a program written 

in C++ and running on a standard PC, the local optimization approach is seen to be able to generate the desired 

result in near real-time; on the other hand, the global optimization approach usually takes several minutes to 

reach a result with a decent level of surface developability. As expected, the converge speed of the local 

optimization crucially depends on the difference tolerance Tδ . For a properly chosen Tδ , the local optimization 

can converge quickly; otherwise, the iterative process is stopped by the maximum iteration criterion maxN . In 

the most extreme case of 0=Tδ , no any improvement can be made as the original surface is fixed. After 

experimenting with a variety of test examples, it is observed that a LT =δ
 
in general achieves satisfactory 

improved developability while maintaining reasonably well the dimensions of the original surface, where L  is 

the average length of the triangular edges on the given polygonal mesh patches. Thus, in all the three examples, 

Tδ  is set to be L .  
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In addition to the Gaussian map, the distance error map, in which the colors represent the distances of 

vertices to the original surface, is utilized in our system to compare the results from global and local approaches. 

The distance error maps for the given three examples are shown in Fig. 8. As revealed from the figure, the 

maximum distance error from the global optimization approach generally is smaller than the one generated from 

the local approach. This phenomenon can be explained by noting that, by its nature, in the local optimization, 

only a small subset of the vertices with high 2)]([ Lg  values will be moved, whereas in the global optimization 

all the vertices are moved in sync at each iteration step. As a result, to achieve a same level of overall 

developability, certain vertices often need to be moved by larger distances in the local optimization than their 

counter-parts in the global optimization, due to the restraint on the moveable vertices in the local optimization. 

The distance error map is also adopted to study the effect of the difference tolerance Tδ  on the level of 

optimization in the local optimization approach. In Fig. 9, it is evidently seen that enlarging Tδ  increases the 

freedom of movement for vertices in the local optimization which in turn enhances the optimization result. 

Viewed from another perspective, the distance error map together with the Gaussian map of the final optimized 

surface serve to “measure” the level of non-developability of the original surface: smaller errors on the distance 

error map but larger values on the Gaussian map indicate an “easy” conversion from the original non-

developable surface to a highly developable surface with minimum deviation, while the opposite combination 

implies a “difficult” task – large discrepancies have to be resulted on the final surface if high degree of 

developability is desired. The maps of principal curvatures - minκ  and maxκ  of the surfaces in Fig. 9 are also 

listed in Fig. 10. It is easy to find that the principal curvatures are increased with the enlargement of Tδ , so 

more wrinkles occurs. However, for example when 0.1=Tδ , the places with large minκ  have a corresponding 

small value of maxκ  (see Fig. 10). That’s why more wrinkles can still give a result with better developability. 
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Table 1    Computational Statistics 

Example 
Vertex 

number 

Optimize 

Approach 

Time 

Cost 

Result 

Figure 
0
maxg  *

maxg  Terminal Condition 

Global 46s Fig. 5b 3101.2 −×  %01.0
][

][][

0

1

≤
− −

MG

MGMG
ii

 
I 517 

Local 1s Fig. 5c 

0.14 

5109.9 −×  
4*

max 10−≤g  

Global 390s Fig. 6b 3101.1 −×  200max =N  
II 3047 

Local 23s Fig. 6c 
0.093 

3100.1 −×  500000max =N  

global 310s Fig. 7b 3103.1 −×  200max =N  
III 3016 

local 1s Fig. 7c 
0.19 

5109.9 −×  
4*

max 10−≤g  

*All tested on a PIII 900 PC with a program written in C++ with 1) %01.0=η  and 200max =N  for the global 

optimization approach; and 2) 410−=ε  and 500000max =N for the local optimization approach. 

 

 

    

   

 

(a) given surface and its 

Gaussian map 

(b) result of global 

optimization  

(c) result of local optimization 

( 38.0=Tδ ) 

Fig. 6    Example II – the surface of a shoe last 
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(a) the original pants and 

their Gaussian map 

(b) result of global 

optimization 

(c) result of local optimization 

( 4.2=Tδ ) 

Fig. 7    Example III – a pair of short pants with multiple patches 
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global optimization result local optimization result  

(a) Example I 

  

 

global optimization result local optimization result  

(b) Example II 

  

 

global optimization result local optimization result  

(c) Example III 

Fig. 8    The distance error maps of global and local optimization results 
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5.0=Tδ  75.0=Tδ  0.1=Tδ   

(a) resultant surfaces 

 

 

   

 

5.0=Tδ  75.0=Tδ  0.1=Tδ   

(b) distance error maps of the resultant surfaces 

 

 

   

 

5.0=Tδ  75.0=Tδ  0.1=Tδ   

(c) Gaussian maps of the resultant surfaces  

Fig. 9    Increasing Tδ  leads to larger distance errors but better developability 
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5.0=Tδ  75.0=Tδ  0.1=Tδ   

(a) minκ  of the resultant surfaces  

   

 

5.0=Tδ  75.0=Tδ  0.1=Tδ   

(b) maxκ  of the resultant surfaces  

Fig. 10    Increasing Tδ  leads to more wrinkles (larger principal curvature) but better developability 

7. Summary and Discussion 

The focus of this paper is the so called developability-by-deformation problem – how to deform a given 

non-developable polygonal surface into a developable one with minimum change. Because developability of a 

surface is often a strongly required attribute in a diversity of engineering applications, a practical solution to this 

problem is highly needed. We contribute by proposing two numerical solutions to the developability-by-

deformation problem. Both approaches are based on the principle of energy minimization which seeks to 

minimize the amount of deformation while at the same time maximizes the degree of developability of the 

surface. The two differ with each other in how this minimization is formulated as well as the way the vertices on 

the polygonal mesh are moved during the minimization process: while the first approach formulates the 

minimization as a global constrained optimization in which all the vertices move simultaneously at each 

iteration step, the second approach is of local optimization nature where only one vertex is moved at a time 
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based on a locally defined optimization criterion. Experimental examples are provided to demonstrate the 

functionality of the proposed two approaches as well as their comparison in terms of computing cost, 

effectiveness of attaining developability, dimensional difference between the surfaces before and after the 

optimization, and other important aspects. 

Both solutions can be integrated into a geometric modeling system for product design where surface 

developability is obliged. Owing to its better ability of maintaining the smoothness of the original surface due to 

its global nature, the first solution, the global optimization approach, can be used for those applications where 

the smoothness and quality of the product surface are emphasized. On the other hand, the local optimization 

based solution may better suit situations where real-time computation – such as in computer graphics simulation 

– is demanded. Another potential application of the local optimization solution is in wrinkle design, such as in 

shoe manufacturing, where wrinkles are sometimes deliberately designed to be formed during the manufacturing 

process of the shoe (for fashion and aesthetic purpose). 

On possible future work, as mentioned above, since the smoothness of the original surface is not preserved 

during the local optimization, one potential topic is how to add smoothing terms into the local updating operator 

to enforce the required smoothness on the surface. Also, in our current implementation of the local optimization, 

the surface continuity of multiple patches is preserved by simply fixing all the assembling vertices during the 

optimizing iteration – this obviously limits the degree of freedom of vertex movements. Thus, study of a better 

and more flexible continuity preserving method in the local optimization approach is another worthy further 

work. The topology of the original polygonal surface can be preserved by enforcing continuity across the 

boundaries of triangular patches. However, self-intersection might occur after re-positioning the vertices, 

especially in the case of the local optimization with large Tδ . Another possible further work is thus to integrate 

the self-collision detection and responding algorithm into the strategy of vertex movement. 
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